Advertisement for orthosearch.org.uk
Results 1 - 20 of 241
Results per page:
Bone & Joint Open
Vol. 5, Issue 8 | Pages 628 - 636
2 Aug 2024
Eachempati KK Parameswaran A Ponnala VK Sunil A Sheth NP

Aims. The aims of this study were: 1) to describe extended restricted kinematic alignment (E-rKA), a novel alignment strategy during robotic-assisted total knee arthroplasty (RA-TKA); 2) to compare residual medial compartment tightness following virtual surgical planning during RA-TKA using mechanical alignment (MA) and E-rKA, in the same set of osteoarthritic varus knees; 3) to assess the requirement of soft-tissue releases during RA-TKA using E-rKA; and 4) to compare the accuracy of surgical plan execution between knees managed with adjustments in component positioning alone, and those which require additional soft-tissue releases. Methods. Patients who underwent RA-TKA between January and December 2022 for primary varus osteoarthritis were included. Safe boundaries for E-rKA were defined. Residual medial compartment tightness was compared following virtual surgical planning using E-rKA and MA, in the same set of knees. Soft-tissue releases were documented. Errors in postoperative alignment in relation to planned alignment were compared between patients who did (group A) and did not (group B) require soft-tissue releases. Results. The use of E-rKA helped restore all knees within the predefined boundaries, with appropriate soft-tissue balancing. E-rKA compared with MA resulted in reduced residual medial tightness following surgical planning, in full extension (2.71 mm (SD 1.66) vs 5.16 mm (SD 3.10), respectively; p < 0.001), and 90° of flexion (2.52 mm (SD 1.63) vs 6.27 mm (SD 3.11), respectively; p < 0.001). Among the study population, 156 patients (78%) were managed with minor adjustments in component positioning alone, while 44 (22%) required additional soft-tissue releases. The mean errors in postoperative alignment were 0.53 mm and 0.26 mm among patients in group A and group B, respectively (p = 0.328). Conclusion. E-rKA is an effective and reproducible alignment strategy during RA-TKA, permitting a large proportion of patients to be managed without soft-tissue releases. The execution of minor alterations in component positioning within predefined multiplanar boundaries is a better starting point for gap management than soft-tissue releases. Cite this article: Bone Jt Open 2024;5(8):628–636


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 2 | Pages 159 - 165
1 Feb 2008
Unitt L Sambatakakis A Johnstone D Briggs TWR

We studied the influence of soft-tissue releases and soft-tissue balance on the outcome of 526 total knee replacements one year after operation. The surgery had been performed by seven surgeons in five centres in the United Kingdom between October 1999 and December 2002. Balancing was carried out by five surgeons using spacers and trials and by two surgeons using a ‘balancer’ instrument. All the surgeons assessed the adequacy of their releases by taking measurements with the balancer after soft-tissue release before implanting the components. Independent observers collected the Oxford knee scores and applied the American Knee Society functional and knee scores as well as recording the range of movement of the replaced knee. These were compared with the pre-operative scores and the extent of the releases. We found differences in outcomes between minimal and extensive releases and between balanced and imbalanced knees. Knees requiring extensive soft-tissue releases showed greater change in the short-term clinical outcome without increased complications and achieved similar results at one year compared with those with less deformity pre-operatively which had required less soft-tissue release. Balancing an imbalanced knee improved the short-term knee outcome


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 7 | Pages 949 - 954
1 Jul 2009
Mehrafshan M Rampal V Seringe R Wicart P

The results of further soft-tissue release of 79 feet in 60 children with recurrent idiopathic congenital talipes equinovarus were evaluated. The mean age of the children at the time of re-operation was 5.8 years (15 months to 14.5 years). Soft-tissue release was performed in all 79 feet and combined with distal calcaneal excision in 52 feet. The mean follow-up was 12 years (4 to 32). At the latest follow-up the result was excellent or good in 61 feet (77%) according to the Ghanem and Seringe scoring system. The results was considered as fair in 14 feet (18%), all of whom had functional problems and eight had anatomical abnormalities. Four feet (5%) were graded as poor on both functional and anatomical grounds. The results were independent of the age at which revision was undertaken


The Journal of Bone & Joint Surgery British Volume
Vol. 68-B, Issue 3 | Pages 404 - 408
1 May 1986
Swann M Ansell B

In juvenile chronic arthritis the hips are commonly affected and this becomes the most important reason for losing independence and mobility: the joint develops a painful flexion contracture with marked loss of movement. Soft-tissue release operations consisting of psoas and adductor tenotomies have proved a safe and effective method of relieving pain and improving function. We report 89 such operations in 52 patients. More extensive soft-tissue release operations or synovectomy of the hips offer no advantage and recovery is often more painful and prolonged


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 11 | Pages 1526 - 1530
1 Nov 2009
Park S Kim SW Jung B Lee HS Kim JS

We reviewed the results of a selective à la carte soft-tissue release operation for recurrent or residual deformity after initial conservative treatment for idiopathic clubfoot by the Ponseti method. Recurrent or residual deformity occurred in 13 (19 feet) of 33 patients (48 feet; 40%). The mean age at surgery was 2.3 years (1.3 to 4) and the mean follow-up was 3.6 years (2 to 5.3). The mean Pirani score had improved from 2.8 to 1.1 points, and the clinical and radiological results were satisfactory in all patients. However, six of the 13 patients (9 of 19 feet) had required further surgery in the form of tibial derotation osteotomy, split anterior tibialis tendon transfer, split posterior tibialis transfer or a combination of these for recurrent deformity. We concluded that selective soft-tissue release can provide satisfactory early results after failure of initial treatment of clubfoot by the Ponseti method, but long-term follow-up to skeletal maturity will be necessary


The Journal of Bone & Joint Surgery British Volume
Vol. 70-B, Issue 2 | Pages 224 - 227
1 Mar 1988
Clarke D Ansell B Swann M

We report the results of 23 soft-tissue release procedures in 15 patients who had juvenile chronic arthritis. The operation, which includes hamstring tenotomies and posterior capsulotomy, is a safe and effective way of eliminating contracture, relieving pain and improving function


The Journal of Bone & Joint Surgery British Volume
Vol. 76-B, Issue 2 | Pages 267 - 270
1 Mar 1994
Witt J McCullough C

We report the results of anterior soft-tissue release of the hip for fixed flexion deformity in 17 patients (31 hips) with juvenile chronic arthritis. The mean age at operation was 8 years 6 months. All the patients were reviewed at one and three years and 11 (21 hips) were available for review at five years. The results were good as regards early pain relief and improved mobility. At one year, the average fixed flexion deformity was reduced from 35 degrees to 9.5 degrees, and at three years it was 18 degrees. This degree of improvement was maintained in the hips followed for five years. At 5 to 12 years' follow-up (mean 6.7) seven patients (14 hips) have required no further surgery and have maintained an acceptable range of motion. We discuss the influence of surgery on radiographic changes and on femoral neck anteversion


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 16 - 16
1 Jan 2016
Anderson C Roche M Golladay G Elson L
Full Access

INTRODUCTION. Achieving balance in TKA is critical in assuring favorable outcomes. But, in order to achieve quantifiably balanced loading values, is it more advantageous to make bony corrections or release soft-tissue? The answer to this question will be paramount in evaluating the most appropriate surgical techniques for use with new dynamic technology, thereby maximizing favorable clinical outcomes. Therefore, the purpose of this investigation was to evaluate a possible quantitative loading threshold, using intraoperative sensors, which may dictate surgical correction of bone versus soft-tissue release. METHODS. A retrospective analysis of 122 multicenter patients, in receipt of sensor-assisted primary TKA, was conducted. 40 lbs. was used as a threshold, above which bone was corrected; below which soft-tissue was corrected. All patients were categorized in to the following groups: Group A – candidates for bony correction, but received soft-tissue correction; Group B – candidates for soft-tissue/receiving soft-tissue; Group C – candidates for bony correction/receiving bony correction. RESULTS. The patient groups that followed the surgical algorithm appropriately (loading ≥ 40 lbs. dictates bony correction; loading < 40 lbs. dictates soft-tissue correction) reported significantly higher clinical outcomes scores (KSS and WOMAC) and satisfaction, 1-year following primary TKA. DISCUSSION AND CONCLUSIONS. Novel technology, such as intraoperative sensing, has provided surgeons with unprecedented access to information regarding the kinetic/kinematic nature of knee joints. In order to mitigate recurring complications after primary TKA, it is imperative that sensing output and clinical outcomes are correlated and studied in order to maximize patient benefits. In this investigation, it was observed that a 40 lb. threshold provided a clinically relevant delineation between when to correct bone, and when to adjust soft-tissue. When that algorithm was applied, patients reported significantly better clinical outcomes than when the algorithm was not applied


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 2 - 2
1 May 2016
Elson L Roche M Golladay G Anderson C
Full Access

Introduction. Instability after total knee arthroplasty (TKA) represents, in excess of, 7% of reasons for implant failure. This mode of failure is correlated with soft-tissue imbalance, and has continued to be problematic despite advances in implant technology. Thus, understanding the options available to execute safe and effective soft-tissue release is critical to mitigating future complications due to instability. This study aimed to use intraoperative sensors to evaluate a multiple needle puncturing technique (MNPT), in comparison with traditional transection-based release, to determine its biomechanical and clinical efficacy. Methods. Seventy-five consecutive, cruciate-retaining TKAs were performed, as part of an 8-site multicenter study. All procedures were performed with the use of an intraoperative sensor to ensure quantitative balance, as per previously reported literature. Of the 75-patient cohort, 50 patients were balanced with the MNPT; 20 patients were balanced with traditional transection. All patients were followed out to 1-year, and administered KSS, WOMAC, and satisfaction. Alignment and ROM was captured for all patients, pre-operatively and at the 1-year follow-up interval. Results. All patient joints could be released to a balanced joint state, regardless of technique used. There was no significant difference between the two groups (MNPT vs. transection), pre-operatively, with respect to range of motion or alignment (114° MNPT; 114° transection). At 1-year, post-operatively, there was no significant difference in WOMAC score, KSS scores, satisfaction, or ROM (Respectively: 13.1 MNPT vs. 14.6 transection; 174.9 MNPT vs.176.5 transection; 31.7 “Very Satisfied” MNPT vs. 32.2 “Very Satisfied” transection; 124° MNPT vs. 125° transection). No adverse outcomes related to balancing technique have been reported. Discussion. Instability contributes to the current 2.7 billion dollar TKA revision burden in the United States. Understanding the efficacy of different techniques in soft-tissue balancing may help to mitigate unfavorable complications. In this study, it was found that the MNPT is just as safe and effective at achieving soft-tissue balance as transectional release techniques, and showed no deviation from the achievement of optimal post-operative outcomes at 1-year. This technique, when used with intraoperative sensors to quantify joint balance, may thereby offer a more controlled way to release soft-tissue, incrementally, to achieve precise balance


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 1 - 1
1 Feb 2020
Plaskos C Wakelin E Shalhoub S Lawrence J Keggi J Koenig J Ponder C Randall A DeClaire J
Full Access

Introduction

Soft tissue releases are often required to correct deformity and achieve gap balance in total knee arthroplasty (TKA). However, the process of releasing soft tissues can be subjective and highly variable and is often perceived as an ‘art’ in TKA surgery. Releasing soft tissues also increases the risk of iatrogenic injury and may be detrimental to the mechanically sensitive afferent nerve fibers which participate in the regulation of knee joint stability.

Measured resection TKA approaches typically rely on making bone cuts based off of generic alignment strategies and then releasing soft tissue afterwards to balance gaps. Conversely, gap-balancing techniques allow for pre-emptive adjustment of bone resections to achieve knee balance thereby potentially reducing the amount of ligament releases required. No study to our knowledge has compared the rates of soft tissue release in these two techniques, however. The objective of this study was, therefore, to compare the rates of soft tissue releases required to achieve a balanced knee in tibial-first gap-balancing versus femur-first measured-resection techniques in robotic assisted TKA, and to compare with release rates reported in the literature for conventional, measured resection TKA [1].

Methods

The number and type of soft tissue releases were documented and reviewed in 615 robotic-assisted gap-balancing and 76 robotic-assisted measured-resection TKAs as part of a multicenter study. In the robotic-assisted gap balancing group, a robotic tensioner was inserted into the knee after the tibial resection and the soft tissue envelope was characterized throughout flexion under computer-controlled tension (fig-1). Femoral bone resections were then planned using predictive ligament balance gap profiles throughout the range of motion (fig-2), and executed with a miniature robotic cutting-guide. Soft tissue releases were stratified as a function of the coronal deformity relative to the mechanical axis (varus knees: >1° varus; valgus knees: >1°). Rates of releases were compared between the two groups and to the literature data using the Fischer's exact test.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 49 - 49
1 Feb 2020
Gustke K Morrison T
Full Access

Introduction

In total knee arthroplasty (TKA), component realignment with bone-based surgical correction (BBSC) can provide soft tissue balance and avoid the unpredictability of soft tissue releases (STR) and potential for more post-operative pain. Robotic-assisted TKA enhances the ability to accurately control bone resection and implant position. The purpose of this study was to identify preoperative and intraoperative predictors for soft tissue release where maximum use of component realignment was desired.

Methods

This was a retrospective, single center study comparing 125 robotic-assisted TKAs quantitatively balanced using load-sensing tibial trial components with BBSC and/or STR. A surgical algorithm favoring BBSC with a desired final mechanical alignment of between 3° varus and 2° valgus was utilized. Component realignment adjustments were made during preoperative planning, after varus/valgus stress gaps were assessed after removal of medial and lateral osteophytes (pose capture), and after trialing. STR was performed when a BBSC would not result in knee balance within acceptable alignment parameters.

The predictability for STR was assessed at four steps of the procedure: Preoperatively with radiographic analysis, and after assessing static alignment after medial and lateral osteophyte removal, pose capture, and trialing. Cutoff values predictive of release were obtained using receiver operative curve analysis.


Moderate to severe hallux valgus is conventionally treated by proximal metatarsal osteotomy. Several recent studies have shown that the indications for distal metatarsal osteotomy with a distal soft-tissue procedure could be extended to include moderate to severe hallux valgus.

The purpose of this prospective randomised controlled trial was to compare the outcome of proximal and distal Chevron osteotomy in patients undergoing simultaneous bilateral correction of moderate to severe hallux valgus.

The original study cohort consisted of 50 female patients (100 feet). Of these, four (8 feet) were excluded for lack of adequate follow-up, leaving 46 female patients (92 feet) in the study. The mean age of the patients was 53.8 years (30.1 to 62.1) and the mean duration of follow-up 40.2 months (24.1 to 80.5). After randomisation, patients underwent a proximal Chevron osteotomy on one foot and a distal Chevron osteotomy on the other.

At follow-up, the American Orthopedic Foot and Ankle Society (AOFAS) hallux metatarsophalangeal interphalangeal (MTP-IP) score, patient satisfaction, post-operative complications, hallux valgus angle, first-second intermetatarsal angle, and tibial sesamoid position were similar in each group. Both procedures gave similar good clinical and radiological outcomes.

This study suggests that distal Chevron osteotomy with a distal soft-tissue procedure is as effective and reliable a means of correcting moderate to severe hallux valgus as proximal Chevron osteotomy with a distal soft-tissue procedure.

Cite this article: Bone Joint J 2015;97-B:202–7.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 72 - 72
1 Jan 2016
Nagamine R Weijia C Patil S D'Lima D Todo M
Full Access

Introduction

The effect of each step of medial soft tissue release was assessed taking the expansion strength and patellar condition into account in five fresh frozen normal cadaver specimens.

Methods

In each cadaver specimen, only proximal tibia was cut. Then, ACL was cut, and deep MCL fiber was released. This condition was set as “the basic”. Joint gap distance and angle were measured at full extension, 30°, 60°, 90°, 120° flexion and in full flexion. The measurement was firstly done with the standard tensor/balancer with the patella everted, and the next with the offset tensor/balancer with the patella reduced. The torque of 10, 20 and 30 inch-pounds were applied through the specialized torque wrench. After the measurement in “the basic”, PCL, MCL superficial fibres, pes anserinus and semi-membranosus were released step by step. Measuring the joint gap distance and angle with the same scheme above were conducted after the each step.


The Bone & Joint Journal
Vol. 106-B, Issue 6 | Pages 525 - 531
1 Jun 2024
MacDessi SJ van de Graaf VA Wood JA Griffiths-Jones W Bellemans J Chen DB

The aim of mechanical alignment in total knee arthroplasty is to align all knees into a fixed neutral position, even though not all knees are the same. As a result, mechanical alignment often alters a patient’s constitutional alignment and joint line obliquity, resulting in soft-tissue imbalance. This annotation provides an overview of how the Coronal Plane Alignment of the Knee (CPAK) classification can be used to predict imbalance with mechanical alignment, and then offers practical guidance for bone balancing, minimizing the need for soft-tissue releases. Cite this article: Bone Joint J 2024;106-B(6):525–531


The Bone & Joint Journal
Vol. 105-B, Issue 4 | Pages 455 - 464
15 Mar 2023
de Joode SGCJ Meijer R Samijo S Heymans MJLF Chen N van Rhijn LW Schotanus MGM

Aims. Multiple secondary surgical procedures of the shoulder, such as soft-tissue releases, tendon transfers, and osteotomies, are described in brachial plexus birth palsy (BPBP) patients. The long-term functional outcomes of these procedures described in the literature are inconclusive. We aimed to analyze the literature looking for a consensus on treatment options. Methods. A systematic literature search in healthcare databases (PubMed, Embase, the Cochrane library, CINAHL, and Web of Science) was performed from January 2000 to July 2020, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. The quality of the included studies was assessed with the Cochrane ROBINS-I risk of bias tool. Relevant trials studying BPBP with at least five years of follow-up and describing functional outcome were included. Results. Of 5,941 studies, 19 were included after full-text screening. A total of 15 surgical techniques were described. All studies described an improvement in active external rotation (range 12° to 128°). A decrease in range of motion and Mallet score after long-term (five to 30 years) follow-up compared to short-term follow-up was seen in most studies. Conclusion. The literature reveals that functional outcome increases after different secondary procedures, even in the long term. Due to the poor methodological quality of the included studies and the variations in indication for surgery and surgical techniques described, a consensus on the long-term functional outcome after secondary surgical procedures in BPBP patients cannot be made. Cite this article: Bone Joint J 2023;105-B(4):455–464


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 59 - 66
1 Mar 2024
Karunaseelan KJ Nasser R Jeffers JRT Cobb JP

Aims. Surgical approaches that claim to be minimally invasive, such as the direct anterior approach (DAA), are reported to have a clinical advantage, but are technically challenging and may create more injury to the soft-tissues during joint exposure. Our aim was to quantify the effect of soft-tissue releases on the joint torque and femoral mobility during joint exposure for hip resurfacing performed via the DAA. Methods. Nine fresh-frozen hip joints from five pelvis to mid-tibia cadaveric specimens were approached using the DAA. A custom fixture consisting of a six-axis force/torque sensor and motion sensor was attached to tibial diaphysis to measure manually applied torques and joint angles by the surgeon. Following dislocation, the torques generated to visualize the acetabulum and proximal femur were assessed after sequential release of the joint capsule and short external rotators. Results. Following initial exposure, the ischiofemoral ligament (7 to 8 o’clock) was the largest restrictor of exposure of the acetabulum, contributing to a mean 25% of overall external rotational restraint. The ischiofemoral ligament (10 to 12 o’clock) was the largest restrictor of exposure of the proximal femur, contributing to 25% of overall extension restraint. Releasing the short external rotators had minimal contribution in torque generated during joint exposure (≤ 5%). Conclusion. Adequate exposure of both proximal femur and acetabulum may be achieved with minimal torque by performing a full proximal circumferential capsulotomy while preserving short external rotators. The joint torque generated and exposure achieved is dependent on patient factors; therefore, some cases may necessitate further releases. Cite this article: Bone Joint J 2024;106-B(3 Supple A):59–66


The Bone & Joint Journal
Vol. 106-B, Issue 7 | Pages 735 - 743
1 Jul 2024
Gelfer Y Cavanagh SE Bridgens A Ashby E Bouchard M Leo DG Eastwood DM

Aims. There is a lack of high-quality research investigating outcomes of Ponseti-treated idiopathic clubfeet and correlation with relapse. This study assessed clinical and quality of life (QoL) outcomes using a standardized core outcome set (COS), comparing children with and without relapse. Methods. A total of 11 international centres participated in this institutional review board-approved observational study. Data including demographics, information regarding presentation, treatment, and details of subsequent relapse and management were collected between 1 June 2022 and 30 June 2023 from consecutive clinic patients who had a minimum five-year follow-up. The clubfoot COS incorporating 31 parameters was used. A regression model assessed relationships between baseline variables and outcomes (clinical/QoL). Results. Overall, 293 patients (432 feet) with a median age of 89 months (interquartile range 72 to 113) were included. The relapse rate was 37%, with repeated relapse in 14%. Treatment considered a standard part of the Ponseti journey (recasting, repeat tenotomy, and tibialis anterior tendon transfer) was performed in 35% of cases, with soft-tissue release and osteotomies in 5% and 2% of cases, respectively. Predictors of relapse included duration of follow-up, higher initial Pirani score, and poor Evertor muscle activity. Relapse was associated with poorer outcomes. Conclusion. This is the first multicentre study using a standardized COS following clubfoot treatment. It distinguishes patients with and without relapse in terms of clinical outcomes and QoL, with poorer outcomes in the relapse group. This tool allows comparison of treatment methods and outcomes, facilitates information sharing, and sets family expectations. Predictors of relapse encourage us to create appropriate treatment pathways to reduce relapse and improve outcome. Cite this article: Bone Joint J 2024;106-B(7):735–743


The Bone & Joint Journal
Vol. 96-B, Issue 11_Supple_A | Pages 78 - 83
1 Nov 2014
Gustke KA

Total knee replacement (TKR) smart tibial trials have load-bearing sensors which will show quantitative compartment pressure values and femoral-tibial tracking patterns. Without smart trials, surgeons rely on feel and visual estimation of imbalance to determine if the knee is optimally balanced. Corrective soft-tissue releases are performed with minimal feedback as to what and how much should be released. The smart tibial trials demonstrate graphically where and how much imbalance is present, so that incremental releases can be performed. The smart tibial trials now also incorporate accelerometers which demonstrate the axial alignment. This now allows the surgeon the option to perform a slight recut of the tibia or femur to provide soft-tissue balance without performing soft-tissue releases. Using a smart tibial trial to assist with soft-tissue releases or bone re-cuts, improved patient outcomes have been demonstrated at one year in a multicentre study of 135 patients (135 knees). Cite this article: Bone Joint J 2014;96-B(11 Suppl A):78–83


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 356 - 356
1 Dec 2013
Jerry G Dounchis J
Full Access

Introduction. Accurate alignment of components in total knee arthroplasty (TKA) is a known factor that contributes to improvement of post-operative kinematics and survivorship of the prosthetic joint. Recently, CAOS has been introduced into TKA in effort to reduce positioning variability that may deviate from the mechanical axis. However, literature suggests that clinical outcomes following TKA with CAOS may not present a significant improvement from traditional methods of implantation. This would infer that achieving correct alignment, alone, might be insufficient for ensuring an optimal reconstruction of the joint. Therefore, this study seeks to evaluate the importance of soft-tissue balancing, through the quantification of joint kinetics collected with intraoperative sensors, with or without the combined use of CAOS. Methods. Seven centers have contributed 215 patients who have undergone primary TKA with the use of intraoperative sensors. Of the 7 surgeons contributing patients to this study, 3 utilize CAOS; 4 utilize manual techniques. Along with standard demographic and surgical data being collected as per the multicenter study protocol, soft-tissue release techniques and medial-lateral intercompartmental loads—as indicated by the intraoperative sensors—were also captured pre- and post-release. “Optimal” balance was defined as a medial-lateral load difference of ≤ 15 lbs. A chi-squared analysis was performed to determine if the percentage of soft-tissue release was significantly different between the two groups: patients with CAOS, and patients without CAOS. Results. Of the 215 patients (35% with CAOS, 65% without CAOS) who have received TKA, using intraoperative sensors to assess mediolateral balance, 92.6% underwent soft-tissue release. Stratifying this data by surgical technique: 89% of the patients with CAOS, and 94% of patients without CAOS, were released. A chi-squared analysis—with 3 degrees of freedom; and 99% confidence—was executed to determine if the 5% difference between the two groups was significant. The analysis showed that there was no significant difference between the two groups, thus we can conclude that soft-tissue release is as equally necessary in the CAOS TKA group, as it is in the traditional TKA group. Discussion. It is widely accepted that correct alignment of TKA components contributes to improved kinematic function of the affected joint. Recently, technology has been developed to digitally guide surgeons through bony cuts, thereby decreasing the incidence of deviation from the mechanical axis. However, alignment may not be the foremost contributing factor in ensuring an optimal joint state. In this evaluation, 92.6% of the cohort required some degree of releasing of ligamentous structures surrounding the knee joint, regardless of intraoperative technique used. A chi-squared analysis of the data supports the claim that soft-tissue release is used in nearly all cases, irrespective of the use of CAOS (p < 0.001). This suggests that soft-tissue release is necessary in nearly all cases, even after appropriate alignment has been digitally verified. The data strongly supports the idea that obtaining an optimally functioning joint is multifactorial, and that alignment may play a more minor role in achieving ideal joint reconstruction than previously assumed, being superseded by the necessity to achieve soft-tissue balance


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 10 | Pages 1385 - 1387
1 Oct 2006
Changulani M Garg NK Rajagopal TS Bass A Nayagam SN Sampath J Bruce CE

We report our initial experience of using the Ponseti method for the treatment of congenital idiopathic club foot. Between November 2002 and November 2004 we treated 100 feet in 66 children by this method. The standard protocol described by Ponseti was used except that, when necessary, percutaneous tenotomy of tendo Achillis were performed under general anaesthesia in the operating theatre and not under local anaesthesia in the out-patient department. The Pirani score was used for assessment and the mean follow-up time was 18 months (6 to 30). The results were also assessed in terms of the number of casts applied, the need for tenotomy of tendo Achillis and recurrence of the deformity. Tenotomy was required in 85 of the 100 feet. There was a failure to respond to the initial regimen in four feet which then required extensive soft-tissue release. Of the 96 feet which responded to initial casting, 31 (32%) had a recurrence, 16 of which were successfully treated by repeat casting and/or tenotomy and/or transfer of the tendon of tibialis anterior. The remaining 15 required extensive soft-tissue release. Poor compliance with the foot-abduction orthoses (Denis Browne splint) was thought to be the main cause of failure in these patients