Aims. The aims of this study were: 1) to describe extended restricted kinematic alignment (E-rKA), a novel alignment strategy during robotic-assisted total knee arthroplasty (RA-TKA); 2) to compare residual medial compartment tightness following virtual surgical planning during RA-TKA using mechanical alignment (MA) and E-rKA, in the same set of osteoarthritic varus knees; 3) to assess the requirement of
We studied the influence of
The results of further
In juvenile chronic arthritis the hips are commonly affected and this becomes the most important reason for losing independence and mobility: the joint develops a painful flexion contracture with marked loss of movement.
We reviewed the results of a selective à la carte
We report the results of 23
We report the results of anterior
INTRODUCTION. Achieving balance in TKA is critical in assuring favorable outcomes. But, in order to achieve quantifiably balanced loading values, is it more advantageous to make bony corrections or release soft-tissue? The answer to this question will be paramount in evaluating the most appropriate surgical techniques for use with new dynamic technology, thereby maximizing favorable clinical outcomes. Therefore, the purpose of this investigation was to evaluate a possible quantitative loading threshold, using intraoperative sensors, which may dictate surgical correction of bone versus
Introduction. Instability after total knee arthroplasty (TKA) represents, in excess of, 7% of reasons for implant failure. This mode of failure is correlated with soft-tissue imbalance, and has continued to be problematic despite advances in implant technology. Thus, understanding the options available to execute safe and effective
Soft tissue releases are often required to correct deformity and achieve gap balance in total knee arthroplasty (TKA). However, the process of releasing soft tissues can be subjective and highly variable and is often perceived as an ‘art’ in TKA surgery. Releasing soft tissues also increases the risk of iatrogenic injury and may be detrimental to the mechanically sensitive afferent nerve fibers which participate in the regulation of knee joint stability. Measured resection TKA approaches typically rely on making bone cuts based off of generic alignment strategies and then releasing soft tissue afterwards to balance gaps. Conversely, gap-balancing techniques allow for pre-emptive adjustment of bone resections to achieve knee balance thereby potentially reducing the amount of ligament releases required. No study to our knowledge has compared the rates of soft tissue release in these two techniques, however. The objective of this study was, therefore, to compare the rates of soft tissue releases required to achieve a balanced knee in tibial-first gap-balancing versus femur-first measured-resection techniques in robotic assisted TKA, and to compare with release rates reported in the literature for conventional, measured resection TKA [1]. The number and type of soft tissue releases were documented and reviewed in 615 robotic-assisted gap-balancing and 76 robotic-assisted measured-resection TKAs as part of a multicenter study. In the robotic-assisted gap balancing group, a robotic tensioner was inserted into the knee after the tibial resection and the soft tissue envelope was characterized throughout flexion under computer-controlled tension (fig-1). Femoral bone resections were then planned using predictive ligament balance gap profiles throughout the range of motion (fig-2), and executed with a miniature robotic cutting-guide. Soft tissue releases were stratified as a function of the coronal deformity relative to the mechanical axis (varus knees: >1° varus; valgus knees: >1°). Rates of releases were compared between the two groups and to the literature data using the Fischer's exact test.Introduction
Methods
In total knee arthroplasty (TKA), component realignment with bone-based surgical correction (BBSC) can provide soft tissue balance and avoid the unpredictability of soft tissue releases (STR) and potential for more post-operative pain. Robotic-assisted TKA enhances the ability to accurately control bone resection and implant position. The purpose of this study was to identify preoperative and intraoperative predictors for soft tissue release where maximum use of component realignment was desired. This was a retrospective, single center study comparing 125 robotic-assisted TKAs quantitatively balanced using load-sensing tibial trial components with BBSC and/or STR. A surgical algorithm favoring BBSC with a desired final mechanical alignment of between 3° varus and 2° valgus was utilized. Component realignment adjustments were made during preoperative planning, after varus/valgus stress gaps were assessed after removal of medial and lateral osteophytes (pose capture), and after trialing. STR was performed when a BBSC would not result in knee balance within acceptable alignment parameters. The predictability for STR was assessed at four steps of the procedure: Preoperatively with radiographic analysis, and after assessing static alignment after medial and lateral osteophyte removal, pose capture, and trialing. Cutoff values predictive of release were obtained using receiver operative curve analysis.Introduction
Methods
Moderate to severe hallux valgus is conventionally
treated by proximal metatarsal osteotomy. Several recent studies
have shown that the indications for distal metatarsal osteotomy
with a distal soft-tissue procedure could be extended to include
moderate to severe hallux valgus. The purpose of this prospective randomised controlled trial was
to compare the outcome of proximal and distal Chevron osteotomy
in patients undergoing simultaneous bilateral correction of moderate
to severe hallux valgus. The original study cohort consisted of 50 female patients (100
feet). Of these, four (8 feet) were excluded for lack of adequate
follow-up, leaving 46 female patients (92 feet) in the study. The
mean age of the patients was 53.8 years (30.1 to 62.1) and the mean
duration of follow-up 40.2 months (24.1 to 80.5). After randomisation,
patients underwent a proximal Chevron osteotomy on one foot and
a distal Chevron osteotomy on the other. At follow-up, the American Orthopedic Foot and Ankle Society
(AOFAS) hallux metatarsophalangeal interphalangeal (MTP-IP) score,
patient satisfaction, post-operative complications, hallux valgus
angle, first-second intermetatarsal angle, and tibial sesamoid position
were similar in each group. Both procedures gave similar good clinical
and radiological outcomes. This study suggests that distal Chevron osteotomy with a distal
soft-tissue procedure is as effective and reliable a means of correcting
moderate to severe hallux valgus as proximal Chevron osteotomy with
a distal soft-tissue procedure. Cite this article:
The effect of each step of medial soft tissue release was assessed taking the expansion strength and patellar condition into account in five fresh frozen normal cadaver specimens. In each cadaver specimen, only proximal tibia was cut. Then, ACL was cut, and deep MCL fiber was released. This condition was set as “the basic”. Joint gap distance and angle were measured at full extension, 30°, 60°, 90°, 120° flexion and in full flexion. The measurement was firstly done with the standard tensor/balancer with the patella everted, and the next with the offset tensor/balancer with the patella reduced. The torque of 10, 20 and 30 inch-pounds were applied through the specialized torque wrench. After the measurement in “the basic”, PCL, MCL superficial fibres, pes anserinus and semi-membranosus were released step by step. Measuring the joint gap distance and angle with the same scheme above were conducted after the each step.Introduction
Methods
The aim of mechanical alignment in total knee arthroplasty is to align all knees into a fixed neutral position, even though not all knees are the same. As a result, mechanical alignment often alters a patient’s constitutional alignment and joint line obliquity, resulting in soft-tissue imbalance. This annotation provides an overview of how the Coronal Plane Alignment of the Knee (CPAK) classification can be used to predict imbalance with mechanical alignment, and then offers practical guidance for bone balancing, minimizing the need for
Aims. Multiple secondary surgical procedures of the shoulder, such as
Aims. Surgical approaches that claim to be minimally invasive, such as the direct anterior approach (DAA), are reported to have a clinical advantage, but are technically challenging and may create more injury to the soft-tissues during joint exposure. Our aim was to quantify the effect of
Aims. There is a lack of high-quality research investigating outcomes of Ponseti-treated idiopathic clubfeet and correlation with relapse. This study assessed clinical and quality of life (QoL) outcomes using a standardized core outcome set (COS), comparing children with and without relapse. Methods. A total of 11 international centres participated in this institutional review board-approved observational study. Data including demographics, information regarding presentation, treatment, and details of subsequent relapse and management were collected between 1 June 2022 and 30 June 2023 from consecutive clinic patients who had a minimum five-year follow-up. The clubfoot COS incorporating 31 parameters was used. A regression model assessed relationships between baseline variables and outcomes (clinical/QoL). Results. Overall, 293 patients (432 feet) with a median age of 89 months (interquartile range 72 to 113) were included. The relapse rate was 37%, with repeated relapse in 14%. Treatment considered a standard part of the Ponseti journey (recasting, repeat tenotomy, and tibialis anterior tendon transfer) was performed in 35% of cases, with
Total knee replacement (TKR) smart tibial trials
have load-bearing sensors which will show quantitative compartment
pressure values and femoral-tibial tracking patterns. Without smart
trials, surgeons rely on feel and visual estimation of imbalance
to determine if the knee is optimally balanced. Corrective soft-tissue
releases are performed with minimal feedback as to what and how
much should be released. The smart tibial trials demonstrate graphically
where and how much imbalance is present, so that incremental releases
can be performed. The smart tibial trials now also incorporate accelerometers
which demonstrate the axial alignment. This now allows the surgeon
the option to perform a slight recut of the tibia or femur to provide
soft-tissue balance without performing
Introduction. Accurate alignment of components in total knee arthroplasty (TKA) is a known factor that contributes to improvement of post-operative kinematics and survivorship of the prosthetic joint. Recently, CAOS has been introduced into TKA in effort to reduce positioning variability that may deviate from the mechanical axis. However, literature suggests that clinical outcomes following TKA with CAOS may not present a significant improvement from traditional methods of implantation. This would infer that achieving correct alignment, alone, might be insufficient for ensuring an optimal reconstruction of the joint. Therefore, this study seeks to evaluate the importance of soft-tissue balancing, through the quantification of joint kinetics collected with intraoperative sensors, with or without the combined use of CAOS. Methods. Seven centers have contributed 215 patients who have undergone primary TKA with the use of intraoperative sensors. Of the 7 surgeons contributing patients to this study, 3 utilize CAOS; 4 utilize manual techniques. Along with standard demographic and surgical data being collected as per the multicenter study protocol,
We report our initial experience of using the Ponseti method for the treatment of congenital idiopathic club foot. Between November 2002 and November 2004 we treated 100 feet in 66 children by this method. The standard protocol described by Ponseti was used except that, when necessary, percutaneous tenotomy of tendo Achillis were performed under general anaesthesia in the operating theatre and not under local anaesthesia in the out-patient department. The Pirani score was used for assessment and the mean follow-up time was 18 months (6 to 30). The results were also assessed in terms of the number of casts applied, the need for tenotomy of tendo Achillis and recurrence of the deformity. Tenotomy was required in 85 of the 100 feet. There was a failure to respond to the initial regimen in four feet which then required extensive