Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
Bone & Joint Research
Vol. 11, Issue 12 | Pages 843 - 853
1 Dec 2022
Cai Y Huang C Chen X Chen Y Huang Z Zhang C Zhang W Fang X

Aims. This study aimed to explore the role of small colony variants (SCVs) of Staphylococcus aureus in intraosseous invasion and colonization in patients with periprosthetic joint infection (PJI). Methods. A PJI diagnosis was made according to the MusculoSkeletal Infection Society (MSIS) for PJI. Bone and tissue samples were collected intraoperatively and the intracellular invasion and intraosseous colonization were detected. Transcriptomics of PJI samples were analyzed and verified by polymerase chain reaction (PCR). Results. SCVs can be isolated from samples collected from chronic PJIs intraoperatively. Transmission electron microscopy (TEM) and immunofluorescence (IF) showed that there was more S. aureus in bone samples collected from chronic PJIs, but much less in bone samples from acute PJIs, providing a potential mechanism of PJI. Immunofluorescence results showed that SCVs of S. aureus were more likely to invade osteoblasts in vitro. Furthermore, TEM and IF also demonstrated that SCVs of S. aureus were more likely to invade and colonize in vivo. Cluster analysis and principal component analysis (PCA) showed that there were substantial differences in gene expression profiles between chronic and acute PJI. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that these differentially expressed genes were enriched to chemokine-related signal pathways. PCR also verified these results. Conclusion. Our study has shown that the S. aureus SCVs have a greater ability to invade and colonize in bone, resulting in S. aureus remaining in bone tissues long-term, thus explaining the pathogenesis of chronic PJI. Cite this article: Bone Joint Res 2022;11(12):843–853


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 96 - 96
1 Nov 2018
Atkins GJ
Full Access

Periprosthetic joint infections (PJI) are increasing in prevalence and are recognised as one of the most common modes of failure of joint replacements. Osteomyelitis arising from PJI is challenging to treat, difficult to cure and increases patient mortality 5-fold. PJI can have subtle symptoms and lie dormant or go undiagnosed for many years, suggesting persistent bacterial infection. Staphylococcus aureus is the most common pathogen causing PJI. Osteocytes are the most numerous and long-lived cell type in hard bone tissue. Our recent work has shown that S. aureus can infect and reside in human osteocytes without causing cell death, both experimentally and in bone samples from patients with PJI. Osteocytes respond to infection by the differential regulation of a large number of genes, suggesting previously unknown immune functions of this important cell type. S. aureus adapts during intracellular infection of osteocytes by adopting a quasi-dormant, small colony variant (SCV) phenotype, a property of several bacterial species known to cause PJI, which could contribute to persistent or silent infection. These findings shed new light on the aetiology of PJI and osteomyelitis in general. Further elucidation of the role of osteocytes in bone infection will hopefully lead to improved disease detection and management


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 78 - 78
1 Jul 2020
Atkins G Yang D Wijenayaka A Kidd S Solomon L Gunn N Findlay D
Full Access

Periprosthetic joint infection (PJI) is a potentially devastating complication of joint replacement surgery. Osteocytes comprise 90–95% of all cells in hard bone tissue, are long-lived and are becoming increasingly recognised as a critical cell type in the regulation of bone and systemic physiology. The purpose of this study was to examine role of these cells in PJI pathophysiology and aetiology, with the rationale that their involvement could contribute to the difficulty in detecting and clearing PJI. This study examined the ability of human osteocytes to become infected by Staphylococcus aureus and the responses of both the host cell and pathogen in this scenario. Several S. aureus (MRSA) strains were tested for their ability to infect human primary osteocyte-like cells in vitro and human bone samples ex vivo. Bone biopsies were retrieved from patients undergoing revision total hip arthroplasty for either aseptic loosening associated with osteolysis, or for PJI. Retrieved bacterial colony number from cell lysates and colony morphology were determined. Gene expression was measured by microarray/bioinformatics analysis and/or real-time RT-PCR. Exposure to planktonic S. aureus (approx. 100 CFU/cell) resulted in intracellular infection of human osteocyte-like cells. We found no evidence of increased rates of osteocyte cell death in bacteria exposed cultures. Microarray analysis of osteocyte gene expression 24h following exposure revealed more than 1,500 differentially expressed genes (fold-change more than 2, false discovery rate p < 0.01). The gene expression patterns were consistent with a strong innate immune response and altered functionality of the osteocytes. Consistent patterns of host gene expression were observed between experimentally infected osteocyte-like cultures and human bone, and in PJI patient bone samples. Internalised bacteria switched to the quasi-dormant small colony variant (SCV) form over a period of 5d, and the ensuing infection appeared to reach a stable state. S. aureus infection of viable osteocytes was also identified in bone taken from PJI patients. We have demonstrated [1] that human osteocytes can become infected by S. aureus and respond robustly by producing immune mediators. The bony location of the infected osteocyte may render them refractory to clearance by immune cells, and osteocytes may therefore be an immune-privileged cell type. The phenotypic switch of S. aureus to SCV, a form less sensitive to most antibiotics and one associated with intracellular survival, suggests that infection of osteocytes may contribute to a chronic disease state. The osteocyte may therefore serve as a reservoir of bacteria for reinfection, perhaps explaining the high prevalence of infections that only become apparent after long periods of time or recur following surgical/medical treatment. Our findings also provide a biological rationale for the recognised need for aggressive bone debridement in the surgical management of PJI


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_17 | Pages 68 - 68
1 Dec 2018
Abad L Diot A Josse J Tasse J Lustig S Ferry T Laurent F Valour F
Full Access

Aim. Leading etiology of Bone and Join infections (BJI), Staphylococcus aureus (SA) is responsible for difficult-to-treat infections mainly because of three persistence factors: (i) biofilm formation, (ii) persistence within bone cells and (iii) switch to the small colony variant (SCV) phenotype. The impact of rifampin on these mechanisms gave it a prominent place in orthopedic device-associated BJI. However, resistance emergence, intolerance and drug interactions cause significant concerns. In this context, other rifamycins – namely rifapentine and rifabutin – have poorly been evaluated, particularly toward their ability to eradicate biofilm-embedded and intracellular reservoirs of SA. Method. This study aimed at comparing the intracellular activities of and SCV induction by rifampin, rifabutin and rifapentine in an in vitro model of osteoblast infection. Four concentrations were tested (0.1xMIC, MIC, 10xMIC, 100xMIC) against three SA strains (6850 and two clinical isolates involved in recurrent BJI). Results. Each rifamycin had a similar intracellular activity, decreasing by 50% the intracellular inoculum from a concentration equal to MIC. Rifabutin was more efficient at low concentrations, with a reduction of 19.9% at 0.1MIC. At all concentrations, a 1.5-fold increase in cellular viability was observed for all molecules. A dose-dependent induction of intracellular SCVs was observed, which was significantly lower for rifabutin than rifampicin at 10MIC (p<0.0001). Conclusions. Each rifamycin was efficient to eradicate intraosteoblastic SA reservoir, one bacterial phenotype in recurrent's BJI. Rifabutin was more efficient at low concentration, suggesting an important intracellular accumulation. This can be explained by its oil/water coefficient of partition 100 time superior than other rifamycins. Using rifabutin at lower concentration, limiting adverses effect and the emergence of SCVs, could be an interesting therapeutic alternative in BJI's treatment. The comparison of rifamycin ability to eradicate biofilm-embedded SA, another chronicity and relapse factor, is an ongoing work


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 312 - 312
1 May 2009
Neut D Ensing G van Horn J van der Mei H Busscher H
Full Access

Copal bone cement loaded with gentamicin and clindamicin was developed recently as a response to the emerging occurrence of gentamicin-resistant strains in periprothetic infections. The objective of this study was to compare the in vitro antibiotic release and antimicrobial efficacy of gentamicin/clindamicin-loaded Copal bone cement and gentamicin-loaded Palacos R-G bone cement, as well as biofilm formation on these cements. In order to determine antibiotic release, cement blocks were placed in phosphate buffer and aliquots were taken at designated times for measurement of antibiotic release. In addition, the bone cement discs were pressed on agar to study the effects of antibiotic release on bacterial growth. Biofilm formation on the different bone cements was also investigated after 1 and 7 days using plate counting and confocal laser scanning microscopy (CLSM). Experiments were done with a gentamicin-sensitive S. aureus and a gentamicin-resistant CNS. Antibiotic release after 672 h from Copal bone cement was more extensive (65% of the clindamycin and 41% of the gentamicin incorporated) than from Palacos R-G (4% of the gentamicin incorporated). The higher antibiotic release from Copal resulted in a stronger and more prolonged inhibition of bacterial growth on agar. Plate counting and CLSM of biofilms grown on the bone cements showed that antibiotic release reduced bacterial viability, most notably close to the cement surface. Moreover, the gentamicin-sensitive S. aureus formed gentamicin-resistant small colony variants on Palacos R-G, and therefore, Copal was much more effective in decreasing biofilm formation than Palacos R-G. Biofilm formation on bone cement could be more effectively reduced by incorporation of a second antibiotic, next to gentamicin. Antibiotic release from the cements had a stronger effect on bacteria close to the cement than on bacteria at the outer surface of the bio-film. Clinically, bone cement with two antibiotics may be more effective than cement loaded with only gentamicin. The clinical efficacy of antibiotic loaded bone cements in combination with systemic antibiotics can be explained because antibiotics released from cements kill predominantly the bacteria in the bottom of the biofilm, whereas systemic antibiotics can only deal with bacteria at the outer surface of the biofilm


The Bone & Joint Journal
Vol. 104-B, Issue 5 | Pages 575 - 580
2 May 2022
Hamad C Chowdhry M Sindeldecker D Bernthal NM Stoodley P McPherson EJ

Periprosthetic joint infection (PJI) is a difficult complication requiring a comprehensive eradication protocol. Cure rates have essentially stalled in the last two decades, using methods of antimicrobial cement joint spacers and parenteral antimicrobial agents. Functional spacers with higher-dose antimicrobial-loaded cement and antimicrobial-loaded calcium sulphate beads have emphasized local antimicrobial delivery on the premise that high-dose local antimicrobial delivery will enhance eradication. However, with increasing antimicrobial pressures, microbiota have responded with adaptive mechanisms beyond traditional antimicrobial resistance genes. In this review we describe adaptive resistance mechanisms that are relevant to the treatment of PJI. Some mechanisms are well known, but others are new. The objective of this review is to inform clinicians of the known adaptive resistance mechanisms of microbes relevant to PJI. We also discuss the implications of these adaptive mechanisms in the future treatment of PJI.

Cite this article: Bone Joint J 2022;104-B(5):575–580.


Bone & Joint Research
Vol. 11, Issue 5 | Pages 327 - 341
23 May 2022
Alagboso FI Mannala GK Walter N Docheva D Brochhausen C Alt V Rupp M

Aims

Bone regeneration during treatment of staphylococcal bone infection is challenging due to the ability of Staphylococcus aureus to invade and persist within osteoblasts. Here, we sought to determine whether the metabolic and extracellular organic matrix formation and mineralization ability of S. aureus-infected human osteoblasts can be restored after rifampicin (RMP) therapy.

Methods

The human osteoblast-like Saos-2 cells infected with S. aureus EDCC 5055 strain and treated with 8 µg/ml RMP underwent osteogenic stimulation for up to 21 days. Test groups were Saos-2 cells + S. aureus and Saos-2 cells + S. aureus + 8 µg/ml RMP, and control groups were uninfected untreated Saos-2 cells and uninfected Saos-2 cells + 8 µg/ml RMP.


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 31 - 36
1 Jan 2016
Whiteside LA Roy ME Nayfeh TA

Bactericidal levels of antibiotics are difficult to achieve in infected total joint arthroplasty when intravenous antibiotics or antibiotic-loaded cement spacers are used, but intra-articular (IA) delivery of antibiotics has been effective in several studies. This paper describes a protocol for IA delivery of antibiotics in infected knee arthroplasty, and summarises the results of a pharmacokinetic study and two clinical follow-up studies of especially difficult groups: methicillin-resistant Staphylococcus aureus and failed two-stage revision. In the pharmacokinetic study, the mean synovial vancomycin peak level was 9242 (3956 to 32 150; sd 7608 μg/mL) among the 11 patients studied. Serum trough level ranged from 4.2 to 25.2 μg/mL (mean, 12.3 μg/mL; average of 9.6% of the joint trough value), which exceeded minimal inhibitory concentration. The success rate exceeded 95% in the two clinical groups. IA delivery of antibiotics is shown to be safe and effective, and is now the first option for treatment of infected total joint arthroplasty in our institution.

Cite this article: Bone Joint J 2016;98-B(1 Suppl A):31–6.