header advert
Results 1 - 20 of 22
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 26 - 26
1 May 2016
Mauck J Kebbach M Schulze C Bader R Kluess D
Full Access

Introduction. The influence of the bone mineral density (BMD) on the mechanical behavior of bones can be examined using computer tomography (CT) data and finite element (FE) simulations, because the BMD correlates with the Hounsfield scale (HU) of the CT data. Therefor the material mapping strategy, which is required to assign the HU values to the FE mesh, is of crucial importance. In this study a nodal mapping strategy was analyzed concerning its sensitivity towards FE mesh parameters and an averaging of HU values from the area around the respective nodes. Method. The FE simulation is based on CT data of a human proximal femur. Once the bone shape was reconstructed, the resulting model was meshed with quadratic tetrahedral elements in ABAQUS/CAE and all nodes were assigned an HU value from the CT data by using the respective node coordinates. In this process, the mesh density, the threshold, which could be used to exclude connective tissue and fat from the material mapping process, the considered volume around the nodes and the method of averaging were varied. The material assignment was realized by an HU value dependent, linear elastic material definition. The femur model was clamped at the level of the isthmus and a displacement of 0.5 mm was applied at the femoral head. The evaluation was based on the resulting reaction forces. Results. The sensitivity analysis demonstrated, that threshold and mesh density mainly influenced the reaction force [Fig. 1]. If a threshold was applied, the reaction force increased by about 20 % in average. A threefold increase of the mesh density led to an average gain of the results of about 24 %. For a specific mesh density the curve progressions of the respective results intersected, i.e. an alteration of the considered volume or the method of averaging barely affected the reaction force [Fig. 2, Fig. 3]. Apart from this intersection, the comparison of the small and the large average volume led to a deviation of up to 11 %. On the other hand, the examination of different methods of averaging revealed only a maximum deviation of 4 % between “mean” and “median”. Discussion. The present study indicates, that the material mapping strategy is an influential part of the modeling process, which should be validated to avoid misjudgments of the load situation. Accordingly, the use of a threshold to exclude non-bone tissue could be a helpful tool. But with the exclusion of lower HU values, the load-bearing structure gains stiffness and the reaction force in the femur rises. A finer mesh leads to a higher resolution of the bone structure and, therefore, to a higher accuracy of the results. The “equilibrium” between the different models at the intersection is caused by a more homogeneous distribution of the material property which is increased by a larger considered volume and the method “mean”


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 39 - 39
1 Dec 2013
D'Alessio J Eckhoff D Kester M
Full Access

Computational modeling has been used to simulate the natural and prosthetic kinematic and kinetic function in an attempt to compare designs and/or predict a desired motion path from a design. The levels of soft tissue can range from basic ligaments (MCL, LCL, and ACL & PCL) to more complex models. The goal of this study was to evaluate the sensitivity of the Posterior Cruciate ligament in a virtual model and its effects on the kinematic outcome in a commercially available and validated kinematics package (KneeSim, LifeModeler San Clemente, CA).

Methods:

KneeSIM is a musculoskeletal modeling environment that is built on the foundation of the ADAMS (MSC Software, Santa Ana CA), a rigid body dynamics solver to compute knee kinematics and forces during a deep knee bend. All parameters are customizable and can be altered by the user. Generic three dimensional models of cruciate retaining components of the femoral, tibial, and patellar are available with the software and were used to provide a common reference for the study. The following parameters were modified for each simulation to evaluate the sensitivity of the PCL in the model: 1) Model without PCL, 2) PCL with default properties, 3) PCL Shifted at femoral origin, 7 mm anterior, 7 mm inferior; tibial origin maintained; 4) PCL with increased stiffness properties (2x default), 5) position in the femur and tibia remained default position and 6) PCL with default properties and location, joint line shifted 4 mm superior. The standard output of tracking the flexion facet center (FFC) motion of the medial and lateral condyles was utilized (Figure 1).

Results:

Figure 2 and 3 displays the output of the six conditions tested above. Comparing the curves for the medial and lateral motion show different patterns with the lateral point having more posterior translation than the medial. After approximately 95° of flexion, all cases exhibit an anterior translation in the model. This motion was consistent for all test cases. The model showed no difference with motion either with or without the PCL and with changing the stiffness. Altering the location of the PCL on the femoral insertion had the greatest effect on motion, while shifting the joint line superior was second. The shift of the ligament insertion and changing of the joint line results in the ligament being more parallel to the tibial surface which provides resistance to anterior motion or posterior translation.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 94 - 94
1 Feb 2017
Deck J White B
Full Access

The kinematic and kinetic characteristics of the knee after TKR are known to be strongly influenced by the alignment and positioning of the implanted components. In this paper we apply a virtual multi-fiber ligament model to a rigid body model of the post-surgical knee to explore how variations in alignment and positioning affect the predicted behavior of the ligaments and contact forces. We vary the angular and translational positioning of the femoral and tibial TKR components relative to the bone. Meanwhile the proximal and distal insertion sites of the ligaments are held constant relative to the bony structures. We evaluate sensitivity of the ligament balance and peak ligament tension through the passive flexion arc in response to the variation in positioning and alignment of the TKR components. With further development, this work holds the promise of applications in surgical planning and virtual arthroplasty.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 61 - 61
1 Dec 2022
Shah A Abbas A Lex J Hauer T Abouali J Toor J
Full Access

Knee arthroscopy with meniscectomy is the third most common Orthopaedic surgery performed after TKA and THA, comprising up to 16.6% of all procedures. The efficiency of Orthopaedic care delivery with respect to waiting times and systemic costs is extremely concerning. Canadian Orthopaedic patients experience the longest wait times of any G7 country, yet perioperative surgical care constitutes a significant portion of a hospital's budget. In-Office Needle Arthroscopy (IONA) is an emerging technology that has been primarily studied as a diagnostic tool. Recent evidence shows that it is a cost-effective alternative to hospital- and community-based MRI with comparable accuracy. Recent procedure guides detailing IONA medial meniscectomy suggest a potential node for OR diversion. Given the high case volume of knee arthroscopy as well as the potential amenability to be diverted away from the OR to the office setting, IONA has the potential to generate considerable improvements in healthcare system efficiency with respect to throughput and cost savings. As such, the purpose of this study is to investigate the cost savings and impact on waiting times on a mid-sized Canadian community hospital if IONA is offered as an alternative to traditional operating room (OR) arthroscopy for medial meniscal tears. In order to develop a comprehensive understanding and accurate representation of the quantifiable operations involved in the current state for medial meniscus tear care, process mapping was performed that describes the journey of a patient from when they present with knee pain to their general practitioner until case resolution. This technique was then repeated to create a second process map describing the hypothetical proposed state whereby OR diversion may be conducted utilizing IONA. Once the respective process maps for each state were determined, each process map was translated into a Dupont decision tree. In order to accurately determine the total number of patients which would be eligible for this care pathway at our institution, the OR booking scheduling for arthroscopy and meniscectomy/repair over a four year time period (2016-2020) were reviewed. A sensitivity analysis was performed to examine the effect of the number of patients who select IONA over meniscectomy and the number of revision meniscectomies after IONA on 1) the profit and profit margin determined by the MCS-Dupont financial model and 2) the throughput (percentage and number) determined by the MCS-throughput model. Based on historic data at our institution, an average of 198 patients (SD 31) underwent either a meniscectomy or repair from years 2016-2020. Revenue for both states was similar (p = .22), with the current state revenue being $ 248,555.99 (standard deviation $ 39,005.43) and proposed state of $ 249,223.86 (SD $ 39,188.73). However, the reduction in expenses was significant (p < .0001) at 5.15%, with expenses in the current state being $ 281,415.23 (SD $ 44,157.80) and proposed state of $ 266,912.68 (SD $ 42,093.19), representing $14,502.95 in savings. Accordingly, profit improvement was also significant (p < .0001) at 46.2%, with current state profit being $ (32,859.24) (SD $ 5,153.49) and proposed state being $ (17,678.82) (SD $ 2,921.28). The addition of IONA into the care pathway of the proposed state produced an average improvement in throughput of 42 patients (SD 7), representing a 21.2% reduction in the number of patients that require an OR procedure. Financial sensitivity analysis revealed that the proposed state profit was higher than the current state profit if as few as 10% of patients select IONA, with the maximum revision rate needing to remain below 40% to achieve improved profits. The most important finding from this study is that IONA is a cost-effective alternative to traditional surgical arthroscopy for medial meniscus meniscectomy. Importantly, IONA can also be used as a diagnostic procedure. It is shown to be a cost-effective alternative to MRI with similar diagnostic accuracy. The role of IONA as a joint diagnostic-therapeutic tool could positively impact MRI waiting times and MRI/MRA costs, and further reduce indirect costs to society. Given the well-established benefit of early meniscus treatment, accelerating both diagnosis and therapy is bound to result in positive effects


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 5 - 5
23 Feb 2023
Jadresic MC Baker J
Full Access

Numerous prediction tools are available for estimating postoperative risk following spine surgery. External validation studies have shown mixed results. We present the development, validation, and comparative evaluation of novel tool (NZSpine) for modelling risk of complications within 30 days of spine surgery. Data was gathered retrospectively from medical records of patients who underwent spine surgery at Waikato Hospital between January 2019 and December 2020 (n = 488). Variables were selected a priori based on previous evidence and clinical judgement. Postoperative adverse events were classified objectively using the Comprehensive Complication Index. Models were constructed for the occurrence of any complication and significant complications (based on CCI >26). Performance and clinical utility of the novel model was compared against SpineSage (. https://depts.washington.edu/spinersk/. ), an extant online tool which we have shown in unpublished work to be valid in our local population. Overall complication rate was 34%. In the multivariate model, higher age, increased surgical invasiveness and the presence of preoperative anemia were most strongly predictive of any postoperative complication (OR = 1.03, 1.09, 2.1 respectively, p <0.001), whereas the occurrence of a major postoperative complication (CCI >26) was most strongly associated with the presence of respiratory disease (OR = 2.82, p <0.001). Internal validation using the bootstrapped models showed the model was robust, with an AUC of 0.73. Using sensitivity analysis, 80% of the model's predictions were correct. By comparison SpineSage had an AUC of 0.71, and in decision curve analysis the novel model showed greater expected benefit at all thresholds of risk. NZSpine is a novel risk assessment tool for patients undergoing acute and elective spine surgery and may help inform clinicians and patients of their prognosis. Use of an objective tool may help to provide uniformity between DHBs when completing the “clinician assessment of risk” section of the national prioritization tool


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 86 - 86
1 Dec 2022
Lex J Abbas A Oitment C Wolfstadt J Wong PKC Abouali J Yee AJM Kreder H Larouche J Toor J
Full Access

It has been established that a dedicated orthopaedic trauma room (DOTR) provides significant clinical and organizational benefits to the management of trauma patients. After-hours care is associated with surgeon fatigue, a high risk of patient complications, and increased costs related to staffing. However, hesitation due to concerns of the associated opportunity cost at the hospital leadership level is a major barrier to wide-spread adoption. The primary aim of this study is to determine the impact of dedicated orthopaedic trauma room (DOTR) implementation on operating room efficiency. Secondly, we sought to evaluate the associated financial impact of the DOTR, with respect to both after-hours care costs as well as the opportunity cost of displaced elective cases. This was a retrospective cost-analysis study performed at a single academic-affiliated community hospital in Toronto, Canada. All patients that underwent the most frequently performed orthopedic trauma procedures (hip hemiarthroplasty, open reduction internal fixation of the ankle, femur, elbow and distal radius), over a four-year period from 2016-2019 were included. Patient data acquired for two-years prior and two-years after the implementation of a DOTR were compared, adjusting for the number of cases performed. Surgical duration and number of day-time and after-hours cases was recorded pre- and post-implementation. Cost savings of performing trauma cases during daytime and the opportunity cost of displacing elective cases by performing cases during the day was calculated. A sensitivity analysis accounting for varying overtime costs and hospital elective case profit was also performed. 1960 orthopaedic cases were examined pre- and post-DOTR. All procedures had reduced total operative time post-DOTR. After accounting for the total number of each procedure performed, the mean weighted reduction was 31.4% and the mean time saved was 29.6 minutes per surgery. The number of daytime surgical hours increased 21%, while nighttime hours decreased by 37.8%. Overtime staffing costs were reduced by $24,976 alongside increase in opportunity costs of $22,500. This resulted in a net profit of $2,476. Our results support the premise that DOTRs improve operating room efficiency and can be cost efficient. Through the regular scheduling of a DOTR at a single hospital in Canada, the number of surgeries occurring during daytime hours increased while the number of after-hours cases decreased. The same surgeries were also completed nearly one-third faster (30 minutes per case) on average. Our study also specifically addresses the hesitation regarding potential loss of profit from elective surgeries. Notably, the savings partially stem from decreased OR time as well as decreased nurse overtime. Widespread implementation can improve patient care while still remaining financially favourable


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 49 - 49
1 Dec 2022
Khalik HA Wood T Tushinski D Gazendam A Petruccelli D Bali K
Full Access

Primary hip and knee joint replacements in Canada have been estimated to cost over $1.4 billion dollars annually, with revision surgery costing $177 million. The most common cause of revision arthroplasty surgery in Canada is infection. Periprosthetic joint infections (PJIs) are a devastating though preventable complication following arthroplasty. Though variably used, antibiotic laden bone cement (ALBC) has been demonstrated to decrease PJIs following primary total knee arthroplasty (TKA). Unfortunately, ALBC is costlier than regular bone cement (RBC). Therefore, the aim of this study was to determine if the routine use of ALBC in primary TKA surgery is a cost-effective practice from the perspective of the Canadian healthcare system. A decision tree was constructed using a decision analysis software (TreeAge Software, Williamstown, Massachusetts) to a two-year time horizon comparing primary TKA with either ALBC or RBC from the perspective of a single-payer healthcare system. All costs were in 2020 Canadian dollars. Health utilities were in the form of quality adjusted life years (QALYs). Model inputs for cost were derived from regional and national databases. Health utilities and probability parameters were derived from the latest literature. One-way deterministic sensitivity analysis was performed on all model parameters. The primary outcome of this analysis was an incremental cost-effectiveness ratio (ICER) with a willingness-to-pay (WTP) threshold of $50,000 per QALY. Primary TKA with ALBC (TKA-ALBC) was found to be more cost-effective compared to primary TKA with RBC (TKA-RBC). More specifically, TKA-ALBC dominated TKA-RBC as it was less costly on the long term ($11,160 vs. $11,118), while providing the same QALY (1.66). The ICER of this cost-utility analysis (CUA) was $-11,049.72 per QALY, much less than the WTP threshold of $50,000 per QALY. The model was sensitive to costs of ALBC-TKA as well as the probability of PJI following ALBC-TKA and RBC-TKA. ALBC ceased to be cost effective once the cost of ALBC was greater than $223.08 CAD per bag of cement. The routine use of ALBC in primary TKA is a cost-effective practice in the context of the Canadian healthcare system as long as the cost of ALBC is maintained at a reasonable price and the published studies to-date keep supporting the efficacy of ALBC in decreasing PJI following primary TKA. Further, this analysis is very conservative, and ALBC is likely much more cost-effective than presented. This is due to this model's revision surgery cost parameter being based on the average cost of all revision TKA surgery in Canada, regardless of etiology. Considering many PJIs require two-stage revisions, the cost parameter used in this analysis for revision surgery is an underestimate of true cost. Ultimately, this is the first cost-effectiveness study evaluating this topic from the perspective of the Canadian healthcare system and can inform future national guidelines on the subject matter


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 62 - 62
1 Dec 2021
Wang Q Goswami K Xu C Tan T Clarkson S Parvizi J
Full Access

Aim. Whether laminar airflow (LAF) in the operating room (OR) is effective for decreasing periprosthetic joint infection (PJI) following total joint arthroplasty (TJA) remains a clinically significant yet controversial issue. This study investigated the association between operating room ventilation systems and the risk of PJI in TJA patients. Method. We performed a retrospective observational study on consecutive patients undergoing primary total knee arthroplasty (TKA) and total hip arthroplasty (THA) from January 2013-September 2017 in two surgical facilities within a single institution, with a minimum 1-year follow-up. All procedures were performed by five board-certified arthroplasty surgeons. The operating rooms at the facilities were equipped with LAF and turbulent ventilation systems, respectively. Patient characteristics were extracted from clinical records. PJI was defined according to Musculoskeletal Infection Society criteria within 1-year of the index arthroplasty. A multivariate logistic regression model was performed to explore the association between LAF and risk of 1-year PJI, and then a sensitivity analysis using propensity score matching (PSM) was performed to further validate the findings. Results. A total of 6,972 patients (2,797 TKA, 4,175 THA) were included. The incidence of PJI within 1 year for patients from the facility without laminar flow was similar at 0·4% to that of patients from the facility with laminar flow at 0·5%. In the multivariate logistic regression analysis, after all confounding factors were taken into account, the use of LAF was not significantly associated with reduction of the risk of PJI. After propensity score matching, there was no significant difference in the incidence of PJI within 1 year for patients between the two sites. Conclusions. The use of LAF in the operating room was not associated with a reduced incidence of PJI following primary TJA. With an appropriate perioperative protocol for infection prevention, LAF does not seem to play a protective role in PJI prevention


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 8 - 8
1 Dec 2016
Slobogean G Osterhoff G O'Hara N D'Cruz J Sprague S Bansback N Evaniew N
Full Access

There is ongoing debate regarding the optimal surgical treatment of complex proximal humeral fractures in elderly patients. The aim of this study was to evaluate the cost-effectiveness of reverse total shoulder arthroplasty (RTSA) compared to hemiarthroplasty (HA) in the management of these fractures. A cost–utility analysis using decision tree and Markov modelling based on data from the published literature was conducted. A single-payer perspective with a lifetime time horizon was adopted. A willingness to pay threshold of CAD $50,000 was used. The incremental cost-effectiveness ratio (ICER) was used as the study's primary outcome measure. In comparison to HA, the incremental cost per QALY gained for RTSA was $13,679. One-way sensitivity analysis revealed the model to be sensitive to the RTSA implant cost and the RTSA procedural costs. Two-way sensitivity analysis suggested RTSA could also be cost-effective within the first two years of surgery with an early complication rate as high as 25% (if RTSA implant cost was approximately $3,000); or conversely, RTSA implant cost could be as high as $8,500 if its early complication rates were 5%. The ICER of $13,679 is well below the WTP threshold of $50,000 and probabilistic sensitivity analysis demonstrated that 92.6% of model simulations favoured RTSA. Our economic analysis found that RTSA for the treatment of complex proximal humeral fractures in the elderly is the preferred economic strategy when compared to HA. The ICER of RTSA is well-below standard willingness to pay thresholds, and its estimate of cost-effectiveness is similar to other highly successful orthopaedic strategies such as total hip arthroplasty for the treatment of hip arthritis


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 118 - 118
1 Jan 2016
Kocagoz S Underwood RJ Baykal D MacDonald D Day J Kurtz S
Full Access

Introduction. In total joint replacement devices, material loss from the taper junctions is a clinical concern. Previous studies of explanted orthopedic devices have relied on visual scoring methods to quantify the fretting-corrosion damage on the component interfaces. Previous research has shown that visual fretting-corrosion evaluation is correlated to the volume of material loss [1], but scoring is semi-qualitative and does not provide a quantitative measure of the amount of material removed from the surface. The purpose of this study was to develop and validate a quantitative method for measuring the volume of material lost from the surfaces of explanted devices at the taper-trunnion junction. Methods. 10 new exemplar taper adapter sleeves (Ceramtec, Plochingen, Germany) were used for method validation. By using exemplar devices we were able to create clinically realistic taper damage in a controlled and repeatable manner using machining tools. Taper surfaces were measured before and after in vitro material removal using a roundness machine (Talyrond 585, Taylor Hobson, UK). Axial traces were measured on each taper surface using a diamond stylus. The mass of artificially removed material was also measured gravimetrically using a microgram balance (Sartorius, CPA225D, accuracy = ± 0.00003g). Surface profiles were analyzed using a custom MatLab script and Talymap software was used to provide 3D visualizations of the pattern of material loss. Calculated volumetric material loss was compared to the gravimetric value. A sensitivity analysis was conducted to determine the optimum number of traces to characterize the material loss from taper junctions. Results. Our calculations of material loss predicted over 99% of the variation in gravimetric material loss (Figure 1, r2 = 0.9962). Examples of the pattern of material removal from explanted components resembled the patterns reported in explants (Figure 2). The sensitivity analysis showed that a minimum of 24 axial profiles are required for measurements to stay within 2% of the volume calculated with 144 traces for cases with an axisymmetric wear pattern. Discussion. We have developed and validated a quantitative method for the material loss from taper junctions in orthopedic devices. Our sensitivity analysis showed that a minimum of 24 profiles are required to calculate volumetric material loss accurately, however a further sensitivity analysis is required to establish the minimum number of profiles required to accurately characterize “asymmetric” wear patterns. The measurement of 24 profiles takes approximately 20 minutes. The validation thus far has comprised material loss in an axisymmetric pattern. Work is underway to validate the evaluation of tapers with an asymmetric wear pattern. The axisymmetric and asymmetric patterns are realistic representations of wear patterns seen in explanted taper surfaces. This validated method of estimating material loss from taper junctions will be used in our ongoing research program to understand the mechanisms of fretting-corrosion in retrieved orthopaedic tapers


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 69 - 69
1 Apr 2018
Chawla H Nwachukwu B van der List J Eggman A Pearle A Ghomrawi H
Full Access

Purpose. Patellofemoral arthroplasty (PFA) has experienced significant improvements in implant survivorship with second-generation designs. This has renewed interest in PFA as an alternative to total knee arthroplasty (TKA) for younger, active patients with isolated patellofemoral osteoarthritis (PF OA). The decision to select PFA over TKA balances the clinical benefits of sparing healthy knee compartments and ligaments against the risk of downstream conversion arthroplasty. We analyzed the cost-effectiveness of PFA versus TKA for the surgical management of isolated PF OA. Methods. We used a Markov transition-state model (Figure 1) to compare cost-effectiveness between PFA and TKA. Cohorts were aged 60 (base case) and 50 years. Lifetime costs (2015 USD), quality-adjusted life year (QALY) gains and incremental cost-effectiveness ratio (ICER) were calculated from a healthcare payer perspective. Annual revision rates were derived from the United Kingdom National Joint Registry and validated against the highest quality literature available. Deterministic and probabilistic sensitivity analysis was performed for all parameters against a $50,000/QALY willingness-to-pay. Results for the 50 year-old cohort were similar to those of the base case simulation. Results. PFA was more expensive ($49,811 versus $46,632) but more effective (14.3 QALYs versus 13.3 QALYs) over a lifetime horizon (Figures 2 and 3). The ICER associated with the additional effectiveness of PFA was $3,097. The model was mainly sensitive to utility values and implant survivorship, with PFA remaining cost-effective provided that its utility exceeds that of TKA by at least 1.0%. PFA achieved dominance (lower cost and higher utility) at an annual revision rate of 1.63%, representing a 24.5% decrease from baseline. The results were not sensitive to costs of rehabilitation, perioperative complications or inpatient hospitalization. Multivariate probabilistic sensitivity analysis showed PFA to be cost-effective from a healthcare payer perspective in 96.2% of simulations. Conclusions. Recent improvements in implant survivorship rates makes PFA an economically beneficial joint-preserving procedure in younger patients, potentially delaying TKA until implant failure or tibiofemoral OA progression. The present study quantifies the minimum required marginal benefit for PFA to be cost-effective compared to TKA (1.0%) and identifies survivorship targets for PFA to become both less expensive and more effective. These cost-effectiveness benchmarks may be used to assess clinical outcomes of PFA from an economic standpoint within the United States healthcare system as updated clinical data becomes available. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 81 - 81
1 Aug 2020
Nitikman M Daneshvar P Mwaturura T Kilb B
Full Access

In the setting of traumatic elbow injuries involving coronoid fractures, the relative size of the coronoid fragment has been shown to relate to the stability of the joint. Currently, the challenge lies in accurately classifying the amount of bone loss in coronoid fractures. In comminuted fractures, bone loss is difficult to measure with plain radiographs or computed tomography. The purpose of this study is to describe a novel radiographic measure, the Coronoid Opening Angle (COA), on lateral elbow radiographs. We demonstrate the relationship of the COA to coronoid height and describe how this measure can be used to estimate bone loss and potentially predict elbow instability following coronoid fracture. Radiographs were drawn from a regional database in a consecutive fashion. Candidate radiographs were excluded on the basis of radiographic evidence of degenerative changes, previous surgery or injury, bony deformity, and inadequate lateral view of the elbow. The COA was measured as the angle between the long axis of the ulna at the level of the trochlear notch, and the tip of coronoid, from a common origin at the posterior cortex of the olecranon. Images were reviewed by a fellowship trained upper extremity surgeon, an upper extremity fellow, and a junior resident. Normal COA, coronoid height, and calculated COA at varying amounts of bone loss were calculated by three reviewers. A sensitivity analysis was performed to determine how the COA can most effectively predict bone loss at varying coronoid heights. Intraclass correlation coefficient (ICC) was calculated for 39 subjects. Seventy-two subjects were included for analysis (M=40, F=32). The normal coronoid opening angle is 33.19 degrees [32.2 – 34.2]. Coronoid height is 18.8 mm [18.1 – 19.6]. Extrapolating this baseline data, the COA at 20%, 33%, and 50% of coronoid bone loss was calculated to be 27.5, 23.5, and 18 degrees, respectively. ICC was found to be 0.90 or higher. Cutoff values were determined to maximize the sensitivity of the COA. A cutoff value of 21 degrees has a 92% sensitivity in detecting a minimum of 50% bone loss. The COA with similar sensitivity in predicting 20% and 33% bone loss are 32 and 27 degrees. The coronoid opening angle is a novel technique that can be used on a lateral elbow radiograph to predict the minimum coronoid bone loss. This can be used to guide clinical decision making and potentially predict instability. Future research will aim to validate this tool in the clinical setting in predicting instability


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 68 - 68
1 Dec 2013
Gray C Wu C Baldwin K Lee G
Full Access

Introduction. Infection following total knee arthroplasty (TKA) is a catastrophic complication. In the United States, for chronic, first time infected TKA, the gold standard remains a 2-stage reimplantation (2SR) procedure, with reported success rates approaching 90%. However, there is a lack of consensus on the treatment of subsequent reinfections. Question. The purpose of this study was to use published data on infected TKA to develop a decision tree analysis to determine the treatment method likely to yield the highest quality of life for a patient following a failed 2SR. Methods. We performed a systematic review of the English literature to determine the expected success rates and functional outcomes of a 2SR procedure, chronic suppression, arthrodesis, and amputation for treatment of infected TKA. Utility and disutility tolls were derived for each treatment option and a decision tree analysis (Figure) was conducted using TreeAgePro 2012 (Williamstown, Massachussetts). The efficacy of each of the treatment nodes was calculated based on prior published methods for each study. These values were subsequently varied to perform a sensitivity analysis. Results. Initial search yielded 204 papers; 18 studies met inclusion criteria. The composite success rate for 2SR was 79.1% (range 33.3%–100%). The utility and disutility toll (cost for treatment) for 2SR were 0.473 and 0.20, respectively; the toll for undergoing chronic suppression was set at 0.05; the utility for arthrodesis was 0.740 and for amputation 0.423. In all iterations of the decision tree analysis with varying sensitivities, knee arthrodesis emerged as the treatment most likely to yield the highest expected quality of life following a failed 2SR for infection. Discussion. Our study found that 2SR is successful at a lower rate than that traditionally cited. We also describe, for the first time, the typical rate at which salvage procedures are utilized after a failed 2SR. Finally, our study suggests that a successful fusion optimizes the patient's expected quality of life after a first failed 2SR. This outcome held up through sensitivity analysis. Conclusion. Based on best available evidence, knee arthrodesis should be strongly considered as the treatment of choice for patients who have persistent infected TKA following a failed 2-stage reimplantation procedure


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 106 - 106
1 Feb 2017
Dunbar N Banks S
Full Access

Intraoperative planning of knee replacement components, targeting a desired functional outcome, requires a calibrated patient-specific model of the patient's soft-tissue anatomy and mechanics. Previously, a surgical technique was demonstrated for measuring knee joint kinematics and kinetics consistent with modern navigation systems in conjunction with the development of a patient-customizable knee model. A data efficient approach for the model calibration task was achieved utilizing the sensitivity of the model to simulated clinical hand manipulations of the knee joint requiring 85% less computations. For this numerical investigation a simplified knee joint model, based on the OpenKnee repository, consisting of bone (rigid), cruciate ligaments (single-bundle, nonlinear spring), collateral ligaments (multiple nonlinear springs), articular cartilage (rigid, pressure-over-closure relationship), and combined capsule/meniscus (linear springs) was created using a custom Matlab (MathWorks)-Abaqus (Dassault Systèmes) implicit finite element modeling framework (Figure 1). A sensitivity analysis was performed by applying constant loading along the anterior-posterior, medial-lateral, varus-valgus, and internal-external directions (30 N for forces and 3 Nm for moments) while perturbing each customizable parameter positively and negatively by 1 mm at 0, 25, 50, 75 and 100 degrees of flexion. A constant load of 150 N was maintained in compression. The change in static endpoint position was measured relative to the respective position without perturbation. Sensitivity results were then arranged by load direction and principal component analysis was subsequently performed (Table 1). First a single optimization task was simulated including all model parameters and all loading sequences with the goal of minimizing the kinematic differences between the reference model and a perturbed model (Figure 2). Second, a piecewise optimization task was designed using only the sensitive parameters for a spanning set of loads for the same perturbed model. Parameters 3 and 4 were tuned using internal and external endpoints. Then parameters 1 and 5 were tuned using the anterior endpoints. Similarly, parameters 2 and 7 were tuned using the posterior endpoints. Finally, parameter 8 was tuned using the varus endpoints. All loadings were observed to be insensitive to parameter 6 (ACL-Y). The number of model evaluations required were 2520 and 390 for the single and piecewise optimizations, respectively. The single simulation task recovered all parameters within 0.57 mm on average compared to 0.64 mm on average for the piecewise task. Kinematic errors due to the calibration technique were within 0.001 mm and 0.18 deg compared to 0.001 mm and 0.04 deg. Computational cost for the optimization task required to calibrate a patient-specific knee model was reduced while maintaining clinically relevant accuracy. This model reduction approach will further enable the rapid adoption of the technology for intraoperative planning of knee replacement components based on targeted functional outcomes


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 67 - 67
1 Mar 2017
Vasarhelyi E Weeks C Graves S Kelly L Marsh J
Full Access

Background. The management of the patella during primary total knee arthroplasty (TKA) is controversial. Despite the majority of patients reporting excellent outcomes following TKA, a common complaint is anterior knee pain. Resurfacing of the patella at the time of initial surgery has been proposed as a means of preventing anterior knee pain, however current evidence, including four recent meta-analyses, has failed to show clear superiority of patellar resurfacing. Therefore, the purpose of this study was to estimate the cost-effectiveness of patellar resurfacing compared to non-resurfacing in TKA. Methods. We conducted a cost-effectiveness analysis using a decision analytic model to represent a hypothetical patient cohort undergoing primary TKA. Each patient will receive a TKA either with the Patella Resurfaced or Not Resurfaced. Following surgery, patients can transition to one of three chronic health states: 1) Well Post-operative, 2) Patellofemoral Pain (PFP), or 3) Serious Adverse Event (AE), which we have defined as any event requiring Revision TKA, including: loosening/lysis, infection, instability, or fracture (Figure 1). We obtained revision rates following TKA for both resurfaced and unresurfaced cohorts using data from the 2014 Australian Registry. This data was chosen due to similarities between Australian and North American practice patterns and patient demographics, as well as the availability of longer term follow up data, up to 14 years postoperative. Our effectiveness outcome for the model was the quality-adjusted life year (QALY). We used utility scores obtained from the literature to calculate QALYs for each health state. Direct procedure costs were obtained from our institution's case costing department, and the billing fees for each procedure. We estimated cost-effectiveness from a Canadian publicly funded health care system perspective. All costs and quality of life outcomes were discounted at a rate of 5%. All costs are presented in 2015 Canadian dollars. Results. Our cost-effectiveness analysis suggests that TKA with patella resurfacing is a dominant procedure. Patients who receive primary TKA with non-resurfaced patella had higher associated costs over the first 14 years postoperative ($16,182 vs $15,720), and slightly lower quality of life (5.37 QALYs vs 6.01 QALYs). The revision rate for patellar resurfacing was 1.3%. If the rate of secondary resurfacing procedures is 0.5% or less, there is no difference in costs between the two procedures. Discussion. Our results suggest that, up to 14 years postoperative, resurfacing the patella in primary TKA is cost-effective compared to primary TKA without patellar resurfacing, due to the higher revision rate in this cohort of patients for secondary resurfacing. Our sensitivity analysis suggests that, among surgical practices that do not routinely perform secondary resurfacing procedures (estimated rate at our institution is 0.3%) there is no significant difference in costs. Although our results suggest that patella resurfacing results in higher quality of life, our model is limited by the availability and validity of utility outcome estimates reported in the literature for the long term follow up of patients following TKA with or without patella resurfacing and secondary resurfacing procedures


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 31 - 31
1 May 2016
Barlow B Mclawhorn A Westrich G
Full Access

Introduction. Postoperative dislocation remains a vexing problem for patients and surgeons following total hip arthroplasty (THA). It is the commonest reason for revision THA in the US. Dual mobility (DM) THA implants markedly decrease the risk of THA instability. However, DM implants are more expensive than those used for conventional THA. The purpose of this study was to perform a cost-effectiveness analysis of DM implants compared to conventional bearing couples for unilateral primary THA using a computer model-based evaluation. Methods. A state-transition Markov computer simulation model was developed to compare the cost-utility of dual mobility versus conventional THA for hip osteoarthritis from a societal perspective (Figure 1). The model was populated with health outcomes and probabilities from registry and published data. Health outcomes were expressed as quality-adjusted life years (QALYs). Direct costs were derived from the literature and from administrative claims data, and indirect costs reflected estimated lost wages. All costs were expressed in 2013 US dollars. Health and cost outcomes were discounted by 3% annually. The base case modeled a 65-year-old patient undergoing THA for unilateral hip osteoarthritis. A lifetime time horizon was analyzed. The primary outcome was the incremental cost-effectiveness ratio (ICER). The willingness-to-pay threshold was set at $100,000/QALY. Threshold, one-way, two-way, and probabilistic sensitivity analyses were performed to assess model uncertainty. Results. DM THA exhibited absolute dominance over conventional THA with lower accrued costs (US$45,960 versus $47,103) and higher accrued utility (12.08 QALY versus 11.84 QALY). The ICER was -$4,771/QALY, suggesting that DM THA is cost-saving compared to conventional THA. The cost threshold at which dual mobility implants were cost-ineffective was $25,000 (Figure 2), and the threshold at which DM implants ceased being cost-saving was $12,845. Sensitivity analyses demonstrated that the probability of intraprosthetic dislocation, primary THA utility, and age at index THA most influenced model results. In the probabilistic sensitivity analysis, 90% of model iterations resulted in cost savings for DM THA (Figure 3). Discussion. Dual mobility components showed clear cost-utility advantages over conventional THA components, and DM implants are cost-saving for primary unilateral THA from a societal perspecitve. Model results suggest that DM THA need not be limited to only high-risk patients, although patient age and risk of dislocation are important determinants of its cost-utility


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 18 - 18
1 May 2016
Halloran J Colbrunn R Anderson C
Full Access

INTRODUCTION. Understanding the relationship between knee specific tissue behavior and joint contact mechanics remains an area of focus. Seminal work from 1990's established the possibility to optimize tissue properties for recreation of laxity driven kinematics (Mommersteeg et al., 1996). Yet, the uniqueness and validity of such predictions could be strengthened, especially as they relate to joint contact conditions. Understanding this interplay has implications for the long term performance of joint replacements. Development of instrumented knee implants, highlighted by a single use tibial insert trial with embedded sensor technology (VERASENSE, Orthosensor Inc.), may offer an avenue to establish the relationship between tissue state and joint mechanics. Utilization of related data also has the potential to confirm computational predictions, where both rigid body motions and associated reactions are explicitly accounted for. Hence, the goal of this work was to evaluate an approach for optimization of ligament properties using joint mechanics data from an instrumented implant during laxity style testing. Such a framework could be used to inform joint balancing techniques, improve long term implant performance, and alternatively, qualify factors that may lead to poor outcomes. METHODS. Experimentation was performed on a 52 year old male, left, cadaveric specimen. Joint arthroplasty was performed using standard practice by an experienced orthopedic surgeon. To mimic passive intraoperative loading, laxity loading at 10°, 45° and 90° flexion, which consisted of discrete application of anterior-posterior (± 100N), varus-valgus (± 5 Nm) and internal-external (± 3 Nm) loads at each angle, was performed using a simVITROTM robotic musculoskeletal simulator (Cleveland Clinic, Cleveland, OH). Experimental results included relative tibiofemoral kinematics and sensor measured metrics (Fig 1). The finite element model was developed from specimen-specific MRIs and solved using Abaqus/Explicit. The model included the rigid bones, appropriately placed implants and relevant soft-tissue structures (Fig. 1). Ligament stiffness values were adopted from the literature and included a 6% strain toe region. Sets of nonlinear springs, defined using MR imaging, comprised each ligament/bundle. Optimization was performed, which minimized the root mean squared difference between VERASENSE measured tibiofemoral mechanics and the model predicted values. Ligament slack lengths were the control variables and the objective included each loading state and all contact metrics (θ, AFD, ML, and LL). RESULTS AND DISCUSSION. The model successfully recreated joint kinematics with average errors of 4° for rotations and 3 mm for translations, across all flexion angles (Fig 2). Though a systematic offset in θ was observed, model versus experiment contact locations were also in good agreement. Reaction forces were generally over-predicted by the model, but retained the overall trend (Fig 2). Sensitivity analysis also supported this finding. In light of the larger focus of this project, testing also included systematic removal of key tissues followed by repeat testing, as evaluated across numerous specimens. Overall, the presented framework represents a promising step towards establishing simulation based tools able to support exploratory studies as well as the clinical decision making process. Future work will evaluate efficacy across numerous specimens and assess sensitivity to key modeling and experimental parameters. To view tables/figures, please contact authors directly


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 185 - 185
1 Sep 2012
Slobogean GP Marra C Sanders DW
Full Access

Purpose. A recent multicentre randomized control trial (RCT) failed to demonstrate superior quality of life at one year following open reduction and internal fixation (ORIF) compared to nonoperative treatment for unstable isolated fibular fractures. We sought to determine the cost-effectiveness of ORIF compared to non-operative management of unstable fibular fractures. Method. A decision tree was used to model the results of a multicentre trial comparing ORIF versus nonoperative treatment for isolated fibular fractures. A single payer, governmental perspective was used for the analysis. Utilities (a measure of preference for a health state) were obtained from the subjects Short-Form-6D scores and used to calculated Quality Adjusted Life Years (QALYs). Probabilities for each strategy were taken from the one-year trial endpoint. Costs were obtained from the Ontario Case Costing Initiative. Sensitivity analysis was performed for all model variables to determine when ORIF is a cost-effective treatment (incremental cost per QALY gained < $75,000). Results. Nonoperative management was the preferred treatment during the one-year time-horizon. The nonoperative treatment strategy had an average cost of $2,099 $885 for an average gain of 0.717 0.064 QALYs. ORIF had an average cost of $6,455 $3,589 for an average gain of 0.734 0.051 QALYs. The incremental cost effectiveness ratio for the ORIF treatment was $256,235 per QALY. ORIF becomes the preferred treatment at extreme values for its costs (< $1,450) and its effectiveness (QALY > 0.81). Conclusion. From a single-payer, governmental perspective open reduction and internal fixation does not appear to be cost-effective; however, if operative fixation decreases the lifetime incidence of post-traumatic ankle arthrosis or a broader societal perspective with a higher willingness to pay threshold is adopted, then the economic attractiveness of ORIF would improve


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 18 - 18
1 Aug 2013
Asseln M Zimmermann F Eschweiler J Radermacher K
Full Access

Currently, standard total knee arthroplasty (TKA) procedures focus on axial and rotational alignment of the prosthesis components and ligament balancing. Even though TKA has been constantly improved, TKA patients still experience a significantly poorer functional outcome than total hip arthroplasty patients. Among others, complications can occur when knee kinematics (active/passive) after TKA do not correspond with the physiological conditions. We hypothesised that the Q-angle has a substantial impact on active joint kinematics and should be taken into account in TKA. The Q-angle can be influenced by the position of the tibial tuberosity (TT). A pathological position of the TT is commonly related to patellofemoral pain and knee instability. A clinically well accepted surgical treatment is the TT medialisation which causes a change in the orientation of the patella tendon and thus alters the biomechanics of the knee. If active and passive knee kinematics differs, this aspect should be considered for implant design and positioning. Therefore we investigated the sensitivity of active knee kinematics related to the position of the TT by using a complex multi-body model with a dynamic simulation of an entire gait cycle. The validated model has been implemented in the multi-body simulation software AnyBody and was adapted for the present issue. The knee joint is represented by articulating surfaces of a standard prosthesis and contains 6 degrees of freedom. Intra-articular passive structures are implemented and the muscular apparatus consists of 159 muscles per leg. As input parameter for the sensitivity analysis, the TT was translated medially 9 mm and laterally 15 mm from the initial position in equidistant steps of 3 mm. The Q-angle was about 10° in the initial position, which lies in the physiological range. It changed approximately 2.5° with a gradual shift of 3 mm, confirming the impact of the individual TT position on active knee kinematics. The tibiofemoral kinematics, particularly the internal/external rotation of the tibia was significantly affected. Lateralisation of the TT decreased the external rotation of the tibia, whereas a medialisation caused an increase. During contralateral toe off the external rotation was +7.5° for a medial transfer of 9 mm and −1.4° for a lateral transfer of 15 mm, respectively. The differences in external rotation were almost zero for low flexion angles, correlating with the activation pattern of the quadriceps muscle: the higher the activation of the quadriceps, the greater were the changes in kinematics. In conclusion, knee kinematics are strongly affected by the Q-angle which is directly associated with the position of the TT. As active kinematics may show significant differences to passive kinematics, intraoperative ligament balancing may result in a suboptimal ligament situation during active motion. Since the Q-angle varies widely between gender and patients, the individual situation should be considered. The optimisation of the model and further experimental validation is one aspect of our ongoing work


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 592 - 592
1 Dec 2013
Wright T Gunsallus K Lipman J Hotchkiss R Figgie MP
Full Access

Implant designs for hip and knee arthroplasty have undergone a continual improvement process, but development of implants for total elbow arthroplasty (TEA) have lagged behind despite the marked mechanical burden placed on these implants. TEA is not as durable with failure rates approaching thirty percent at five years. The Coonrad-Morrey (Zimmer, Warsaw, IN), a linked design, remains the standard-bearer, employing polyethylene bushings through which a metal axle passes. A common failure mode is bushing wear and deformation, causing decreased joint function as the bushing-axle constraint decreases and osteolysis secondary to release of large volumes of wear debris. Improving upon this poor performance requires determining which factors most influence failure, so that failure can be avoided through design improvements. The approach integrates clinical observations of failed TEAs with implant retrieval analysis, followed by measurements of loads across the elbow for use in stress analyses to assess the performance of previous designs, and, finally, new design approaches to improve performance. Examination of the clinical failures of more than seventy Coonrad-Morrey TEAs revealed patterns of decreased constraint and stem loosening. Implant retrieval analysis from more than thirty of these cases showed excessive bushing deformation and wear and burnishing of the fixation stems consistent with varus moments across the joint. To determine loads across the elbow, motion analysis data were collected from eight TEA patients performing various activities of daily living. The kinematic data were input into a computational model to calculate contact forces on the total elbow replacement. The motion that produced the maximum contact force was a feeding motion with the humerus in 90° of abduction. For this motion, the joint reaction forces and moments at the point of maximum contact were determined from a computational model. We applied these loads to numerical models of the articulating bushings and axle of the Coonrad-Morrey to examine polyethylene strains as measures of damage and wear. Strain patterns in response to the large varus moment applied to the elbow during feeding activities showed extensive plastic deformation in the locations at which deformation and wear damage were observed in our retrieved implants (Fig. 1). Finally, we examined a new semi-constrained design concept intended to meet two goals: transfer contact loads away from the center of the joint, thus allowing contact to provide a larger internal moment to resist the large external varus moment; and reduce polyethylene strains by utilizing curved contacting surfaces on both the axle and the bushings (Fig. 2). After a sensitivity analysis to determine optimal dimensional choices (e.g., bushing and axle radii), we compared the resulting polyethylene strains between the Coonrad-Morrey and new design at locations that experienced the largest strains (Fig. 3). Substantial decreases were achieved, suggesting far less deformation and wear, which should relate to marked improvements in performance. Currently, we are incorporating this new design concept, along with alterations in stem design achieved from examination of load transfer at the fixation interfaces based on the same loading conditions, to achieve an implant system intended to improve the performance of TEA