Advertisement for orthosearch.org.uk
Results 1 - 20 of 87
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 162 - 162
1 Sep 2012
Lyons F Gleeson J Partap S Synnott K O'Byrne J O'Brien F
Full Access

Treatment of segmental bone loss remains a major challenge in orthopaedic surgery. This study evaluated the healing potential of a series of highly porous tissue engineering scaffolds with the current clinical gold standard. We compare healing of collagen-glycosaminoglycan (CG) and collagen micro-hydroxyapatite (CHA) scaffolds, with and without recombinant bone morphogenetic protein-2 (BMP2), with autogenous bone graft (ABG) in the healing of a 15mm rabbit radius defect, which were filled with either CG scaffold, CHA scaffold, CG-BMP2, CHA-BMP2 or ABG. Serial radiographs and micro-computed tomography (µCT) at six week radiographs demonstrated complete defect bridging with callus using CHA and CG-BMP2 while the CHA-BMP2 was already in an advanced state of healing with cortical remodeling. By sixteen weeks CHA, CG-BMP2 and ABG all had advanced healing with cortical remodeling while CHA-BMP2 had complete anatomic healing. Quantitative histomorphometry values demonstrated similarly high healing levels of healing in CHA, CG-BMP2 and ABG with highest overall values in the CHA-BMP2 group. Thus, treatment of a critical sized, weight bearing, rabbit radius defect with a CHA scaffold can result in full cortical bridging with medullary cavity development. In addition, a CHA-BMP2 combination can result in fully mature, anatomic healing. The use of an off-the-shelf CHA scaffold for direct surgical placement into a defect site may be an effective bone graft substitute in the treatment of skeletal defects. The ease of manufacture, storage and peri-operative preparation may offer an alternative to traditional strategies, as well as to more recent BMP2 devices. This study provides clear evidence that CHA scaffolds can perform as well as autogenous bone grafts and supports their use as a viable alternative. Where the use of BMP2 may be desirable, these materials provide an ideal delivery mechanism and using a very low (near physiological) dose, healing superior to autogenous graft may be achieved


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 51 - 51
1 Aug 2020
Nau T Teuschl A Redl H
Full Access

Due to unsatisfactory results and reported drawbacks of anterior cruciate ligament (ACL) reconstruction new regenerative approaches based on tissue-engineering strategies are currently under investigation. It was the purpose of this study to determine if a novel silk fiber-based ACL scaffold is able to initiate osteointegration in the femoral and tibial bone tunnels under in vivo conditions. Furthermore we tested if the osteointegration process will be improved by intraoperatively seeding the scaffolds with the autologous stromal vascular fraction, an adipose-derived, stem cell-rich isolate from knee fat pads. In this controlled laboratory study, 33 sheep underwent ACL resection and were then randomly assigned to 2 experimental groups: ACL reconstruction with a scaffold alone and ACL reconstruction with a cell-seeded scaffold. Half of the sheep in each group were randomly chosen and euthanized 6 months after surgery and the other half at 12 months. To analyze the integration of the silk-based scaffold in the femoral and tibial bone tunnels, hard tissue histology and micro-computed tomography measurements were performed. The histological workup showed that in all treatment groups, with or without the application of the autologous stromal vascular fraction, an interzone of collagen fibers had formed between bone and silk-based graft. This collagen-fiber continuity partly consisted of Sharpey fibers, comparable with tendon-bone healing known for autografts and allografts. Insertion sites were more broad based at 6 months and more concentrated on the slightly protruding, bony knoblike structures at 12 months. Histologically, no differences between the treatment groups were detectable. Analysis of micro-computed tomography measurements revealed a significantly higher tissue density for the cell-seeded scaffold group as compared with the scaffold-alone group in the tibial but not femoral bone tunnel after 12 months of implantation. The novel silk fiber-based scaffold for ACL regeneration demonstrated integration into the bone tunnels via the formation of a fibrous interzone similar to allografts and autografts. Histologically, additional cell seeding did not enhance osteointegration. No significant differences between 6 and 12 months could be detected. After 12 months, there was still a considerable amount of silk present, and a longer observation period is necessary to see if a true ligament-bone enthesis will be formed


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 88 - 88
1 Jul 2020
Sallent I Zeugolis D
Full Access

Adherent cells are known to respond to physical characteristics of their surrounding microenvironment, adapting their cytoskeleton and initiating signaling cascades specific to the type of cue encountered. Scaffolds mimicking native biophysical cues have proven to differentiate stem cells towards tissue-specific lineages and to maintain the phenotype of somatic cells for longer periods of culture time. Although the characteristic anisotropy of tendon tissue is commonly replicated in scaffolds, relevant physical cues such as tendon rigidity or mechanical loading are often neglected. The objective of this study is to use tendons' main extracellular matrix component, collagen type I, to create scaffolds with an anisotropic surface topography and controlled rigidity, in an effort to engineer functional tendon tissue equivalents, with native organization and strength. Porcine collagen type I in solution was treated with one of the following cross-linkers: glutaraldehyde, genipin or 4-arm polyethylene glycol (4SP). The resulting mixture was poured on micro-grooved (2×2×2 μm) or planar polydimethylsiloxane (PDMS) molds and dried in a laminar flow hood to obtain 5 mg/ml collagen films. Surface topography and elastic modulus of the final scaffolds were analyzed using SEM/AFM and rheometry, respectively. Human tendon cells were isolated from adult tendon tissue and cultured on micro-grooved/planar scaffolds for 4, 7 and 10 days. Cell morphology, collagen III and tenascin C expression were analyzed by immunocytochemistry. Among the different cross-linkers used, only the treatment with 4SP resulted in scaffolds with a recognizable micro-grooved surface topography. Precise control over the micro-grooved topography and the rigidity of the scaffolds was achieved by cross-linking the collagen with varying concentrations of 4SP at low pH and temperature. The elastic modulus of the scaffolds cross-linked with the highest concentration of 4SP matched the physiological values reported in developing tendons (∼15 kPa). Around eighty percent of the human tendon cells cultured on the cross-linked collagen films aligned in the direction of the anisotropy for 10 days in culture. At 4 days, tenoyctes cultured on micro-grooved substrates presented a significant higher nuclei aspect ratio than tenocytes cultured on planar substrates for all the 4SP concentrations. Synthesis, deposition and alignment of collagen III and tenascin C, two important tenogenic markers, were up regulated selectively in the rigid micro-grooved scaffolds after 7 days in culture. These results highlight the synergistic effect of matrix rigidity and cell alignment on tenogenic cell lineage commitment. Collectively, this study provides new insights into how collagen can be modulated to create scaffolds with precise imprinted topographies and controlled rigidities. Gene expression analysis and a replicate study with hBMSCs will be carried out to support the first results and to further identify the optimal biophysical conditions for tenogenic cell lineage commitment. This potentially leads to the design of smart implants that not only restore immediate tendon functionality but also provide microscopic cues that drive cellular synthesis of organized tissue-specific matrix


Full Access

An established rabbit model was used to preliminarily investigate the effect of acellular triphase, namely bone-cartilage-tendon, scaffold (ATS) sandwiched with autologous bone mesenchymal stem cells (BMSCs) sheets on tendon-bone interface healing. Bone, fibrocartilage and tendon tissue were harvested from the rabbits and sectioned into a book-type scaffold. The scaffolds were decellularized and their characterization was presented. BMSCs were isolated and co-cultured with the scaffolds to verify their cytocompatibility. BMSCs sheets were fabricated and inserted into the book page of the scaffold to construct an autologous BMSCs-sheets/book-type ATS complex. The complex was implated in the right knee of rabbits which operated standard partial patellectomy for TBI regeneration using Imaging, histological and biomechanical examinations. The bone, fibrocartilage and tendon tissue were sectioned into a book-type scaffold before decellularization. Then we decellularized the above tissue and mostly preserved their microstructure and composition of the natural extracellular matrix, including collagen and proteoglycan. After the physicochemical and biological properties of the book-type ATS were evaluated, autologous BMSCs sheets were inserted into the book page of the scaffold to construct an autologous BMSCs-sheets/book-type ATS implants for TBI regeneration. In addition, the ATS has the advantages of non-toxicity, suitable for cell adhesion and growth as well as low immunogenicity while co-cultured with the BMSCs. At the same time, different scaffolds has the ability to induce the osteogenic, chondrogenic and tenogenic differentiation of BMSCs by immunofluorescence, reverse transcription-polymerase chain reaction and western blot analysis. To determine the efficacy of the tissue-engineered implants for TBI regeneration, we transplanted it into a rabbit patella-patellar tendon (PPT) injury model, and the rabbits were sacrificed at postoperative week 8 or 16 for the radiological, histological, and mechanical evaluation. Radiologically, Synchrotron radiation micro-computed tomography (SR-μCT) showed that BMSCs/ATS group significantly increased bone area, BV/TV, trabecular thickness and trabecular number at the healing interface as compared with other groups at postoperative week 8 or 16. Histologically, the BMSCs/ATS group showed more woven bone, and a more robust fibrocartilaginous junction with a characteristic matrix rich in proteoglycans was seen at the PPT healing interface in comparison with other groups after 8 weeks. At week 16, the healing interface in 3 groups displayed better remodeling with respect to postoperative week 8. Healing and remodeling at the PPT junction were almost complete, with a resemblance to a healthy BTI consisting of the characteristic 4 zones in all groups. At last, we used biomechanical test as functional parameters to evaluate the quality of tendon-bone healing. Biomechanical testing indicated that BMSCs/ATS group showed significantly higher failure load and stiffness than other groups at postoperative week 8 and 16. The complex composed of acellular triphase, namely bone-cartilage-tendon, scaffold (ATS) sandwiched with autologous bone mesenchymal stem cells (BMSCs) sheets can simulate the gradient structure of tendon-bone interface, inducing stem cell directional differentiation, so as to promote patella-patellar tendon interface healing effectively after injury


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 370 - 370
1 Dec 2013
Kessler O
Full Access

INTRODUCTION:. To avoid the early onset of osteoarthritis after partial meniscectomy an effective replacement of injured meniscal tissue would be desirable. The present study investigates the behaviour of a new silk derived scaffold supplied by Orthox Ltd. (Abingdon, UK) in an in vivo sheep model. METHODS:. The scaffolds where derived from silk fibres by processing into an open porous matrix. Nine sheep (4 ± 1 years) underwent partial meniscectomy at the anterior horn of the medial meniscus followed by implantation of a scaffold. The unoperated contralateral stifle joint served as control. After six months the animals were sacrificed and the joints inspected for inflammation. The Young's modulus of the tibial cartilage, meniscus and scaffold was determined by indentation or confined compression tests. All tissues were fixed in formaldehyde for histology. The data were analysed by a Wilcoxon and Mann-Whitney-U-test. RESULTS:. The sheep were free of lameness 4 days p.o. The macroscopic analysis of the genual region and of the synovial membrane showed no signs of inflammation. This was confirmed by histological sections of synovial membrane, meniscus and scaffold. In histology, amorphous material, some fibroblast-like cell clusters and connective tissue formation was visible inside the pores of the scaffold. There were no statistically significant differences between the Young's moduli of the three measuring points in the operated and unoperated stifle joints. The meniscal tissue showed a higher modulus than the scaffolds. The scaffold's modulus significantly increased after three months implantation. DISCUSSION & CONCLUSIONS:. The presented silk scaffold withstood the loads occurring during the six months implantation period. It showed promising properties concerning biocompatibility and cartilage protection and its mechanical properties started to approach those of meniscal tissue


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 122 - 122
1 Mar 2017
Zeng W Wang F Yang L
Full Access

In this study, a biomimetic triphasic scaffold was constructed to mimic the native cartilage-subchondral bone tissue structure. This scaffold contained chondral layer, calcified zone of cartilage (CZC) and subchondral bone layer. The chondral layer was type II collagen sponge, the CZC and the subchondral bone layer were derived from normal pig knee by decellularization. In order to build separate microenvironment for chondral layer and subchondral bone layer, a dual-chamber bioreactor was designed by computer aided design, manufactured by 3D printer using Poly Lactic Acid, with CZC as the barrier of these two chambers. Culture medium in these two chambers was circulated separately by peristaltic pumps. Amniotic mesenchymal stem cells were seeded in this scaffold, fluorescence labeling was used for cell tracking, total DNA content analysis was used to indicate cell proliferation, and inducing medium was used to direct stem cells differentiation. After 7 days culture, the cells regularly distributed in the scaffold, cell adhesion and proliferation was not affected. No cell migration across CZC occurred. Total DNA content analysis showed that cells in scaffold increased in a time-dependent manner. Chondrogenic and osteogenic medium could induce stem cells in these two chambers to differentiate into chondrocytes and osteocytes, respectively. Our pilot study showed that the dual-chamber culture system with biomimetic triphasic scaffold was feasible, therefore this system will be further modified and tested in vivo


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 110 - 110
1 Mar 2017
Yoo J Lee S Kim J Seo W Kim H
Full Access

Background. A cell-based tissue-engineered construct can be employed for treating meniscal lesions occurring in the non-vascularized inner two-thirds. The objective of this study was to test the hypothesis that both pre-differentiation of human bone marrow derived stromal cells (hBMSCs) into chondrogenic lineage before cell seeding and platelet-rich plasma (PRP) pretreatment on a PLGA mesh scaffold enhances the healing capacity of the meniscus with hBMSCs-seeded scaffolds in vivo. Methods. PRP of 5 donors was mixed and used for the experiments. The woven PLGA mesh scaffold (VicrylTM, Ethicon) measuring 20×8 mm (thickness, 0.2 mm) was prepared. The scaffolds were immersed into 1,000 μl of PRP and were centrifuged at 150g for 10 min. Then, the scaffold was flipped 180° and the same procedure was done for the other side. After washing, the scaffolds were soaked into 1,000 μl of DMEM media. hBMSCs from an iliac crest of 10 patients after informed consent and approval of our IRB were induced into chondrogenic differentiation with chondrogenic media containing 10 ng/ml rhTGF-ß3 in 1.2% alginate bead culture system for 7 days. Then, 2×10. 5. hBMSCs were recovered, seeded onto the scaffold, and cultured under dynamic condition. Based on the presence of pre-differentiation into chondrogenic lineage and the PRP pretreatment, 4 study groups were prepared. (no differentiation without PRP, no differentiation with PRP, chondrogenic differentiation without PRP, chondrogenic differentiation with PRP) Cell number for each cell-seeded scaffold was determined at 24 hours after seeding. Then, scaffolds were placed between human meniscal discs and were implanted subcutaneously in nude mice for 6 weeks (n=10 per group). Results. Cell attachment analysis revealed no significant difference among groups (p>0.05). The average cell number attached on the scaffold was ranged 1.1×10. 5. to 1.2×10. 5. among groups after 24 hours, so the initial cell seeding efficiency was ranged 55 to 60%. Histologic results from the 10 constructs containing hBMSCs undifferentiated and seeded onto non-PRP treated scaffolds revealed none had healed at all. Of the constructs containing hBMSCs undifferentiated and seeded onto PRP-pretreated scaffolds, three menisci healed and seven did not heal. Of the constructs containing hBMSCs pre-differentiated into chondrogenic lineage and seeded onto non-PRP treated scaffolds, six menisci healed and four did not heal. Of the constructs containing hBMSCs pre-differentiated into chondrogenic lineage and seeded onto PRP-pretreated scaffolds, seven menisci healed and three did not heal. Histological evaluation demonstrated a continuous hypercellular new fibrous tissue integrating into the native devitalized meniscus disc tissue in healed samples. The histological outcome between the groups was significant (p<0.05) (Table 1) (Figure 1). Conclusion. hBMSCs, which were differentiated into chondrogenic lineage before cell seeding and attached PRP-pretreated PLGA mesh scaffolds, demonstrated enhanced healing capacity of human meniscus in a meniscal repair mouse model. These findings demonstrate that both pre-differentiation of hBMSCs into chondogenesis and the PLGA scaffold modified by PRP pretreatment provides more biomimetic and biocompatible strategy for cell-mediated meniscal repair. Acknowledgements. This study was supported by Basic Science Research Program through the National Research Foundation of Korea (#2015-01004099)


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 46 - 46
1 Jul 2020
Adoungotchodo A Lerouge S Alinejad Y Mwale F Grant M Epure L Antoniou J
Full Access

Intervertebral disc (IVD) degeneration plays a major role in low back pain which is the leading cause of disability. Current treatments in severe cases require surgical intervention often leading to adjacent segment degeneration. Injectable hydrogels have received much attention in recent years as scaffolds for seeding cells to replenish disc cellularity and restore disc properties and function. However, they generally present poor mechanical properties. In this study, we investigated several novel thermosensitive chitosan hydrogels for their ability to mimic the mechanical properties of the nucleus pulposus (NP) while being able to sustain the viability of NP cells, and retain proteoglycans. CH hydrogels were prepared by mixing the acidic chitosan solution (2% w/v) with various combinations of three gelling agents: sodium hydrogen carbonate (SHC) and/or beta-glycerophosphate (BGP) and/or phosphate buffer (PB) (either BGP0.4M, SHC0.075M-BGP0.1M, SHC0.075M-PB0.02M or SHC0.075M-PB0.04M). The gelation speed was assessed by following rheological properties within 1h at 37°C (strain 5% and 1Hz). The mechanical properties were characterized and compared with that of human NP tissues. Elastic properties of the hydrogels were studied by evaluating the secant modulus in unconfined compression. Equilibrium modulus was also measured, using an incremental stress-relaxation test 24h after gelation in unconfined compression (5% strain at 5%/s followed by 5min relaxation, five steps). Cells from bovine IVD were encapsulated in CH-based gels and maintained in culture for 14 days. Cytocompatibility was assessed by measuring cell viability, metabolism and DNA content. Glycosaminoglycan (GAG) synthesis (retained in the gel and released) was determined using DMMB assay. Finally injectability was tested using human cadaveric discs. Unconfined compression confirmed drastically enhanced mechanical properties compared to conventional CH-BGP hydrogels (secant Young modulus of 105 kPa for SHC0.075PB0.02 versus 3–6 kPa for BGP0.04). More importantly, SHC0.075PB0.02 and SHC0.075BGP0.1 hydrogels exhibited mechanical properties very similar to NP tissue. For instance, equilibrium modulus was 5.2±0.6 KPa for SHC0.075PB0.02 and 8±0.8 KPa for SHC0.075BGP0.1 compared to 6.1±1.7 KPa for human NP tissue. Rheological properties and gelation time (G′=G″ after less than 15 s at 37°C, and rapid increase of G') of these hydrogels also appear to be adapted to this application. Cell survival was greater than 80% in SHC0.075BGP0.1 and SHC0.075PB0.02 hydrogels. Cells encapsulated in the new formulations also showed significantly higher metabolic activity and DNA content after 14 days of incubation compared to cells encapsulated in BGP0.4 hydrogel. Cells encapsulated in SHC0.075BGP0.1 and SHC0.075PB0.02 produced significantly higher amounts of glycosaminoglycans (GAG) compared to cells encapsulated in SHC0.075PB0.04 and BGP0.4 hydrogels. The total amount of GAG was higher in SHC0.075BGP0.1 hydrogel compared to SHC0.075PB0.02. Interestingly, both the SHC0.075BGP0.1 and SHC0.075PB0.02 hydrogels retained similar amounts of GAG. Injectability through a 25G syringe, filling of nuclear clefts and good retention in human degenerated discs was demonstrated for SHC0.075PB0.02 hydrogel. SHC0.075BGP0.1 appears to be a particularly promising injectable scaffold for IVD repair by providing suitable structural environment for cell survival, ECM production and mechanical properties very similar to that of NP tissue


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 93 - 93
1 May 2016
Uboldi F Ferrua P Parente A Pasqualotto S Usellini E Berruto M
Full Access

Purpose. To assess the reliability of a biomimetic osteochondral scaffold Maioregen (Finceramica Faenza SpA, Faenza, Italt) as a salvage and joint-preserving procedure in the treatment of late stages of osteonecrosis of the knee. Methods. Nine active patients aged under 65 year presenting with clinical and radiological signs of SPONK were treated with a biomimetic osteochondral scaffold. All patients were clinically evaluated preoperatively and yearly with a minimum follow-up of 2 years. Subjective IKDC and Lysholm Knee Scale were used to assess clinical outcome. Pre-operative and post-operative pain was quantified with VAS scale. Activity level were evaluated pre-operatively and at follow-up according to Tegner Activity Scale. Results. Subjective IKDC (35 ± 14.5 to 75.7 ± 20) and Lysholm Knee Scale (49.7 ± 17.9 to 86.6 ± 12.7) significantly improved from pre-operative evaluation (p < .01). VAS decreased from a mean pre-operative value of 6.3 ± 2.5 to 1.6 ± 2.7 at 2 years follow-up. Tegner Activity Scale doesn't show significant differences between pre-operative values and those obtained at two-year follow up. Two of nine patients returned to be symptomatic after 18 months from the implants and progressed to condylar collapse, despite the joint-preserving treatment, and underwent a total knee arthroplasty. Conclusions. Biomimetic scaffold can be a valid option in surgical treatment of SPONK in young active patients. Use of this surgical technique, originally developed for OCD, gives good clinical results at a mid-term follow up also in treatment of osteonecrosis and could postpone or even spare joint replacement procedures


Bone marrow-derived mesenchymal stromal stem cells (BMSCs) are a promising cell source for treating articular cartilage defects. Quality of cartilaginous repair tissue following BMSC transplantation has been shown to correlate with functional outcome. Therefore, tissue-engineering variables, such as cell expansion environment and seeding density of scaffolds, are currently under investigation. The objectives of this study were to demonstrate chondrogenic differentiation of BMSCs seeded within a collagen I scaffold following isolation and expansion in two-dimensional (2D) and three-dimensional (3D) environments, and assess the impact of seeding density on in vitro chondrogenesis. It was hypothesised that both expansion protocols would produce BMSCs capable of hyaline-like chondrogenesis with an optimal seeding density of 10 million cells/cm3. Ovine BMSCs were isolated in a 2D environment by plastic adherence, expanded to passage two in flasks containing expansion medium, and seeded within collagen I scaffolds (6 mm diameter, 3.5 mm thickness and 0.115 ± 0.020 mm pore size; Integra LifeSciences Corp.) at densities of 50, 10, 5, 1, and 0.5 million BMSCs/cm3. For 3D isolation and expansion, bone marrow aspirates containing known quantities of mononucleated cells (BMNCs) were seeded on scaffolds at 50, 10, 5, 1, and 0.5 million BMNCs/cm3 and cultured in expansion medium for an equivalent duration to 2D expansion. All cell-scaffold constructs were differentiated in vitro in chondrogenic medium containing transforming growth factor-beta three for 21 days and assessed with RT-qPCR, safranin O staining, histological scoring using the Bern Score, collagen immunofluorescence, and glycosaminoglycan (GAG) quantification. Two dimensional-expanded BMSCs seeded at all densities were capable of proteoglycan production and displayed increased expressions of aggrecan and collagen II mRNA relative to pre-differentiation controls. Collagen II deposition was apparent in scaffolds seeded at 0.5–10 million BMSCs/cm3. Chondrogenesis of 2D-expanded BMSCs was most pronounced in scaffolds seeded at 5–10 million BMSCs/cm3 based on aggrecan and collagen II mRNA, safranin O staining, Bern Score, total GAG, and GAG/DNA. For 3D-expanded BMSC-seeded scaffolds, increased aggrecan and collagen II mRNA expressions relative to controls were noted with all densities. Proteoglycan deposition was present in scaffolds seeded at 0.5–50 million BMNCs/cm3, while collagen II deposition occurred in scaffolds seeded at 10–50 million BMNCs/cm3. The highest levels of aggrecan and collagen II mRNA, Bern Score, total GAG, and GAG/DNA occurred with seeding at 50 million BMNCs/cm3. Within a collagen I scaffold, 2D- and 3D-expanded BMSCs are capable of hyaline-like chondrogenesis with optimal cell seeding densities of 5–10 million BMSCs/cm3 and 50 million BMNCs/cm3, respectively. Accordingly, these densities could be considered when seeding collagen I scaffolds in BMSC transplantation protocols


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 280 - 280
1 Dec 2013
De Caro F Berruto M Delcogliano M Carimati G Ziveri G Uboldi F Ferrua P De Biase C Delcogliano A
Full Access

Background:. Different surgical approaches have been proposed for the treatment of chondral lesions. However surgical management of osteochondral defects of the knee joint involving subchondral bone are still under debate. Purpose:. The aim of this prospective non-randomized uncontrolled clinical investigation is to confirm the effectiveness of a commercially available biomimetic osteochondral scaffold in regenerating cartilage and subchondral bone of severe osteochondral lesions of the knee joint with one step surgery. Methods:. The biomimetic scaffold has a multilayer structure consisting of a combination of type I collagen and type I collagen/hydroxyapatite, mimicking the osteochondral connective tissue of the knee joint. From 2009 to 2011, sixty-one patients affected by grade III or IV osteochondral lesions of the knee, according to Outerbridge Classification, were admitted to three centers and received the biomimetic scaffold. Four-nine patients were evaluated using the International Knee Documentation Committee (IKDC), Tegner and VAS scores, and MRI at 1-, 2- and 3-year follow-ups. Biopsies were carried out in 5 patients at an average time of 19.2 months to histologically evaluate the quality of the newly-formed tissue. Results:. All patients tolerated the surgery well; no major adverse events were observed in the early postoperative period. Clinical evaluation of the 49 patients showed a statistically significant improvement in all scores at 1- 2- and 3-year follow-ups as compared to preoperative baseline scores. Improvement in the scores and functional recovery seemed to reach a plateau after 2 years; no significant improvement was seen between the 2- and the 3-year follow-up. Conclusions:. A synthetic biomimetic scaffold used in one-step surgery for the treatment of severe osteochondral knee lesions significantly improved symptoms and joint function, as demonstrated by subjective and objective scoring system evaluation. Furthermore, the athletic subpopulation exhibited a significantly better outcome than the non-athletic subpopulation


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 184 - 184
1 Jun 2012
Patella S Kon E Martino AD Filardo G Zaffagnini S D'Orazio L Matteo BD Marcacci M
Full Access

INTRODUCTION. The menisci play a fundamental biomechanical role in the knee and also help in the maintaining of the articular homeostasis; thus, either a lesion or the complete absence of the menisci can invalidate the physiological function of the knee causing important damages, even at long term. Unfortunately, meniscal tears are often found during the ordinary orthopaedic practice while the regenerative potential of this kind of tissue is very low and limited to its peripheral-vascularized part; this is why the majority of these common arthroscopic findings are not reparable and often the surgeon is almost forced to perform a partial, subtotal or even total meniscectomy, regardless of the well-known consequences of this kind of surgery. MATERIALS AND METHODS. Recently a porous, biodegradable scaffold made of an aliphatic polyurethane (Actifit(tm),Orteq Ltd) has been developed for the arthroscopic treatment of partial and irreparable meniscal tears; thanks to its particular structure, this scaffold facilitates the regeneration of the removed meniscal part, preventing the potential cartilage damage due to its complete or partial lack. We performed a prospective clinical study on 17 patients affected by a massive loss of meniscal substance either medial or lateral associated with intraarticular or global knee pain and/or swelling. We analyzed the patient both clinically and by using the International Knee Document Committee's (IKDC) Subjective and Objective Knee Evaluation Form. We also assessed the sport activity resumption by comparing the Tegner score at the time of the very first visit with the presurgery and prelesional ones. Finally, we also organized a control MRI at 6 and 12 months after surgery. DISCUSSION. Our preliminary results are encouraging and they confirm the clinical experiences of other study groups. Apparently, the properties of this scaffold help in vessels formation and tissue regeneration potentially allowing the restoration of the surgically removed portion and preventing, or delaying at least, both chondral and articular degeneration. We also performed some biopsy associated arthroscopic “second-looks” that reinforced the already good clinical results; the biopsies also confirmed the new tissue ingrowth into the biomaterial, potentially leading to the replacement of the previously removed damaged tissue. CONCLUSIONS. Preliminary results suggest that this surgical procedure can be considered a really promising method for the treatment of both inveterate and symptomatic meniscal tears; however, other randomized studies with a longer follow-up should be done to confirm its reliability and potentialities


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 127 - 127
1 May 2016
Wernle J Dharia M
Full Access

Introduction. Porous scaffolds for bone ingrowth have numerous applications, including correcting deformities in the foot and ankle. Various materials and shapes may be selected for bridging an osteotomy in a corrective procedure. This research explores the performance of commercially pure Titanium (CPTi) and Tantalum (Ta) porous scaffold materials for use in foot and ankle applications under simplified compression loading. Methods. Finite element analysis was performed to evaluate von Mises stress in 3 porous implant designs: 1) a CPTi foot and ankle implant (Fig 1) 2) a similar Ta implant (wedge angle = 5°) and 3) a similar Ta implant with an increased wedge angle of 20°. Properties were assigned per reported material and density specifications. Clinically relevant axial compressive load of 2.5X BW (2154 N) was applied through fixtures which conform to ASTM F2077–11. Compressive yield and fatigue strength was evaluated per ASTM F2077–11 to compare CPTi performance in design 1 to the Ta performance of design 3. Results. FEA results indicate peak stresses at fixture contact locations. Similar designs (CPTi design 1 and Ta design 2) resulted in similar von Mises stresses (Fig 1). Increasing the wedge angle (Ta design 3) increased stress by 15%. The static compressive yield strength of CPTi design 1 (20,560 N) was similar to the Ta design 3 (20,902 N), with yield manifesting as barreling and crushing of the components (Fig 2a). However, the fatigue strength of CPTi (6,000 N) was 40% lower than the Ta design 3 (9,500 N) (Fig 3). In both cases fracture initiated from regions of highest stress predicted in FEA. Fracture progression was not instantaneous and was characterized by an accumulation of damage (Fig 2b–c) leading to gross component fracture and loss of implant integrity. Discussion. FEA is a useful tool to determine stress variations and can be used to identify worst case within a material: in this case, a larger implant wedge angle leads to higher stresses. Additionally, FEA accurately predicted fracture initiation location. However, material selection plays a large role in porous implant performance: although FEA predicted higher stresses in a Ta component with a greater wedge angle than a similar sized CPTi component, static compressive strengths were nearly identical, and the Ta component had 58% higher fatigue strength. When selecting a material or geometry for an implant application, both FEA and static testing allow for rapid evaluation of designs. However, caution should be used in interpreting the results: the ultimate performance of an implant in-vivo will depend on its ability to maintain integrity over a long period of time, and should be characterized by dynamic testing


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 83 - 83
1 Jan 2016
Uboldi FM Ferrua P Pasqualotto S Carimati G Zedde P Berruto M
Full Access

INTRODUCTION. Osteochondral lesions of the knee are relatively common both in young and senior population. The very disabling clinical symptoms, in association to the scarce regenerative capacity of the articular cartilage and the increased risk of developing a secondary osteoarthritis make an effective treatment mandatory. MATERIALS AND METHODS. From December 2008 to January 2013, 34 patients (35 knees), 24 males and 10 females (mean age 36.2 years range 14–66) underwent implant of Maioregen® (Finceramica Faenza S.P.A, Italy) biomimetic osteochondral scaffold. In 17 cases the osteochondral lesion was cause by an osteochondritis dissecans (acute or sequela), in 13 cases by a spontaneous osteonecrosis and in 4 cases the etiology was traumatic. Patients were evaluated with subjective IKDC and Tegner Lysholm scores, VAS and Tegner Activity Scale before surgery and at regular follow up (mean follow up 38.4 months, range 13 months max 63 months). RESULTS. Both Lysholm and IKDC Subjective scores significantly increased from 57.5 and 48.2 before surgery to 89.7 and 76.3 at 1 year follow up. Mean VAS scale score decreased from 6.3 to 2 at 1 year follow up. At 3 years follow up 20 evaluated patients showed an increment on both scales (Lysholm 92.38, IKDC 84.7). Only 4 patients were evaluated at 5 years follow up with mean subjective IKDC 92.5, Lysholm 98.75 and VAS 1. DISCUSSION. Maioregen ® biomimetic osteochondral scaffold showed very good results as surgical treatment option in treating ICRS grade 3–4 osteochondral lesions whatever the etiology. In particular, the implant showed good results also in treatment of osteonecrosis and could provide an alternative to unicompartimental arthroplasty in young and active patients


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 94 - 94
1 May 2016
Uboldi F Ferrua P Pasqualotto S Carimati G Usellini E Berruto M
Full Access

Purpose. Osteochondral lesions of the knee are relatively common both in young and senior population. The very disabling clinical symptoms, in association to the scarce regenerative capacity of the articular cartilage and the increased risk of developing a secondary osteoarthritis make an effective treatment mandatory. Methods and Materials. From December 2008 to January 2013, 34 patients (35 knees), 24 males and 10 females (mean age 36.2 years range 14–66) underwent implant of Maioregen® (Finceramica Faenza S.P.A, Italy) biomimetic tri-layer osteochondral scaffold. In 17 cases the osteochondral lesion was cause by an osteochondritis dissecans (acute or sequela), in 13 cases by a spontaneous osteonecrosis and in 4 cases the etiology was traumatic. Patients were evaluated with subjective IKDC and Tegner Lysholm scores, VAS and Tegner Activity Scale before surgery and at regular follow up (mean follow up 38.4 months, range 13 months max 63 months). Results. Both Lysholm and IKDC Subjective scores significantly increased from 57.5 and 48.2 before surgery to 89.7 and 76.3 at 1 year follow up. Mean VAS scale score decreased from 6.3 to 2 at 1 year follow up. At 3 years follow up 20 evaluated patients showed an increment on both scales (Lysholm 92.38, IKDC 84.7). Only 4 patients were evaluated at 5 years follow up with mean subjective IKDC 92.5, Lysholm 98.75 and VAS 1. Conclusion. Maioregen® biomimetic osteochondral scaffold showed very good results as surgical treatment option in treating ICRS grade 3–4 osteochondral lesions whatever the etiology. In particular, the implant showed good results also in treatment of osteonecrosis and could provide an alternative to unicompartimental arthroplasty in young and active patients


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 183 - 183
1 Jun 2012
Patella S Kon E Filardo G Martino AD D'Orazio L Matteo BD Zaffagnini S Marcacci M
Full Access

INTRODUCTION. Osteochondral defects are still a challenge for the orthopaedic surgeon, since most of the current surgical techniques lead to fibrocartilage formation and poor subchondral regeneration, often associated to joint stiffness and/or pain. Thinking of the ideal osteochondral graft from both the surgical an commercial point of view, it should be an off-the-shelf product; this is the research direction and the explanation for the new biomaterials recently proposed to repair osteochondral defect inducing an “in situ” cartilage regeneration starting from the time of the implantation into the defect site. For the clinical pilot study we performed, a newly developed nanostructured biomimetic scaffold was used to treat chondral and osteochondral lesions of the knee; its safety and manageability, as much as the surgical procedure reproducibility and the clinical outcome, were evaluated in order to test its intrinsic potential without any cells colture aid. MATERIALS AND METHODS. A new osteochondral scaffold was obtained by enucleating equine collagen type 1 fibrils with hydroxyapatite nanoparticles in 3 different layers with 3 different gradient ratios at physiological conditions. 30 patients (9F, 21M, mean age 29,3yy) affected by either chondral or osteochondral lesions of the knee (8 medial femoral condyles, 5 lateral femoral condyles, 12 patellae, 8 femoral throcleas) underwent the scaffold implantation from January to July 2007. The sizes of the lesions were in between 2 and 6 squared cm. All patients and their clinical outcome were analyzed prospectively at 6, 12, 24 and 36 months using the Cartilage standard Evaluation Form as proposed by ICRS and an high resolution MRI. RESULTS. We observed a statistically significant scores improvement and function recovery comparing the pre-operative to the follow-up parameters evaluated. Moreover, we noticed a better improvement from 12 to 24mm follow up while the good results gained at 2yy were confirmed at 3yy follow up evaluation. The MOCART scoring scale was used to analyze the MRIs. In 80% of cases we obtained a complete filling of the cartilage defect and in some patients we even appreciated articular surface congruency. In this series we report 1 failure followed by a re-operation with different technique. CONCLUSIONS. This new minimally invasive one-step surgical approach to osteochondral defects seems to be an easy and effective procedure. The results obtained are very encouraging and this procedure show satisfactory outcomes even in big osteochondral defects


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 212 - 212
1 Sep 2012
Tayton E Purcell M Briscoe A Kalra S Aarvold A Smith J Fahmy S Shakesheff K Howdle S Dunlop D Oreffo R
Full Access

Aims. Disease transmission, availability and economic costs of allograft have resulted in significant efforts into finding an allograft alternative for use in impaction bone grafting (IBG). Biotechnology offers the combination of skeletal stem cells (SSC) with biodegradable polymers as a potential solution. Recently polymers have been identified with both structural strength and SSC compatibility that offer the potential for clinical translation. The aim of this study was to assess whether increasing the porosity of one such polymer via super critical CO. 2. fluid foaming (SCF) enhanced the mechanical and cellular compatibility characteristics for use as an osteogenic alternative to allograft in IBG. Methods. High molecular weight PLA scaffolds were produced via traditional (solid block) and SCF (porous) techniques, and the differences characterised using scanning electron microscopy (SEM). The polymers were milled, impacted, and mechanical comparison between traditional vs SCD created scaffolds and allograft controls was made using a custom shear testing rig, as well as a novel agitation test to assess cohesion. Cellular compatibility tests for cell number, viability and osteogenic differentiation using WST-1 assays, fluorostaining and ALP assays were determined following 14 day culture with SSC's. Results. SEM showed increased porosity of the SCF produced PLA scaffolds, with pores between 50–100µm. Shear testing showed the SCF polymer exceeded the shear strength of allograft controls (P< 0.001). Agitation testing showed greater cohesion between the particles of the SCF polymer (P< 0.05). Cellular studies showed increased cell number, viability and osteogenic differentiation on the SCF polymer compared to traditional polymer (P< 0.05) and allograft (P< 0.001). Conclusions. The use of supercritical C0. 2. to generate PLA scaffolds significantly improves the cellular compatibility and cohesion compared to traditional non-porous PLA, without substantial loss of mechanical shear strength. The improved characteristics are critical for clinical translation as a potential osteogenic composite for use in IBG


Full Access

Purpose. The prevalence of focal chondral lesions reported inthe literature during knee arhroscopy can be as high as 63%. Of these, more than half are either grade III or grade IV lesions (Outerbridge). Full thickness cartilage lesions ranging from 2cm2 to 10cm2 are the most challenging to treat. To goal of this study was to evaluate clinical outcomes of pain, function and quality of life, along with radiological outcomes of cartilage repair using microfracture, autologous minced cartilage and polymeric scaffold. Method. A cohort of thirty-eight patients with Outerbridge grade III or IV cartilage injuries larger than 2cm2 in the knee's femoral condyle, trochlea or patella were prospectively folowed since 2008. They were all treated with microfracture, fresh minced autologous cartilage grafting and a polymeric scaffold technique through mini-arthrotomy of the knee. Autografts and scaffolds were secured to subchondral bone using fibrin glue and tran-sosseous resorbable sutures. Patients were evaluated pre and postoperatively using VAS scores for pain, WOMAC and IKDC scores for knee function and SF-36 questionnaire for quality of life. Clinical evaluations were done by physical examination, and imaging was done using X-Rays, MRI and arthro-CT. Results. Mean follow-up time was14.64.6 months. Mean age was 48.39.3 years old. Pre-op lesions averaged 3.51.5 cm2. VAS pain scores were significantly reduced after surgery (7,62 to 2,52.3, p<. 0001). Improvement in knee function using IKDC score improved from 26,717.5 to 55,415.3, p<. 001). In addition, WOMAC total scores showed significant reduction from 55,520.3 to 27,517.6. SF-36 quality of life Physical Component Summary improved from 26,411.4 to 45,812.3, p<. 01; Mental Component Summary improved from 41,916.8 to 49,411.2, p<. 048). Imaging results indicate sustained cartilage thickness from 6 to 18 months. One patient was an early failure due to scaffold loosening, and two patients had no clinical improvement and no significant cartilage regeneration on MRI and Arthro-CT imaging at 6 months post-op. Conclusion. The combination of microfractures, fresh minced autologous cartilage grafting and polymeric scaffold fixation seems to be an effective treatment option for post-traumatic and focal cartilage lesions of the knee in the short term. A longer-term follow-up to evaluate the sustainability of these results is ongoing. Shortcomings of this study are its short term, the lack of second look arthroscopies and cartilage biopsies to evaluate cartilage microstructure, and the absence of a gold standard treatment for full-thickness cartilage lesions larger than 2cm2 that could be used as a control


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 85 - 85
23 Feb 2023
Flynn S Lemoine M Boland F O'Brien F O'Byrne J
Full Access

Restoration a joint's articular surface following degenerative or traumatic pathology to the osteochondral unit pose a significant challenge. Recent advances have shown the utility of collagen-based scaffolds in the regeneration of osteochondral tissue. To provide these collagen scaffolds with the appropriate superstructure novel techniques in 3D printing have been investigated. This study investigates the use of polyɛ-caprolactone (PCL) collagen scaffolds in a porcine cadaveric model to establish the stability of the biomaterial once implanted. This study was performed in a porcine cadaveric knee model. 8mm defects were created in the medial femoral trochlea and repaired with a PCL collagen scaffold. Scaffolds were secured by one of three designs; Press Fit (PF), Press Fit with Rings (PFR), Press Fit with Fibrin Glue (PFFG). Mobilisation was simulated by mounting the pig legs on a continuous passive motion (CPM) machine for either 50 or 500 cycles. Biomechanical tensile testing was performed to examine the force required to displace the scaffold. 18 legs were used (6 PF, 6 PFR, 6 PFFG). Fixation remained intact in 17 of the cohort (94%). None of the PF or PFFG scaffolds displaced after CPM cycling. Mean peak forces required to displace the scaffold were highest in the PFFG group (3.173 Newtons, Standard deviation = 1.392N). The lowest peak forces were observed in the PFR group (0.871N, SD = 0.412N), while mean peak force observed in the PF group was 2.436N (SD = 0.768). There was a significant difference between PFFG and PFR (p = 0.005). There was no statistical significance in the relationship between the other groups. PCL reinforcement of collagen scaffolds provide an innovative solution for improving stiffness of the construct, allowing easier handling for the surgeon. Increasing the stiffness of the scaffold also allows press fit solutions for reliable fixation. Press fit PCL collagen scaffolds with and without fibrin glue provide dependable stability. Tensile testing provides an objective analysis of scaffold fixation. Further investigation of PCL collagen scaffolds in a live animal model to establish quality of osteochondral tissue regeneration are required


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 98 - 98
23 Feb 2023
Woodfield T Shum J Tredinnick S Gadomski B Fernandez J McGilvray K Seim H Nelson B Puttlitz C Easley J Hooper G
Full Access

Introduction: The mechanobiology and response of bone formation to strain under physiological loading is well established, however investigation into exceedingly soft scaffolds relative to cancellous bone is limited. In this study we designed and 3D printed mechanically-optimised low-stiffness implants, targeting specific strain ranges inducing bone formation and assessed their biological performance in a pre-clinical in vivo load-bearing tibial tuberosity advancement (TTA) model. The TTA model provides an attractive pre-clinical framework to investigate implant osseointegration within an uneven loading environment due to the dominating patellar tendon force. A knee finite element model from ovine CT data was developed to determine physiological target strains from simulated TTA surgery. We 3D printed low-stiffness Ti wedge osteotomy implants with homogeneous stiffness of 0.8 GPa (Ti1), 0.6 GPa (Ti2) and a locally-optimised design with a 0.3 GPa cortex and soft 0.1 GPa core (Ti3), for implantation in a 12-week ovine tibial advancement osteotomy (9mm). We quantitatively assessed bone fusion, bone area, mineral apposition rate and bone formation rate. Optimised Ti3 implants exhibited evenly high strains throughout, despite uneven wedge osteotomy loading. We demonstrated that higher strains above 3.75%, led to greater bone formation. Histomorphometry showed uniform bone ingrowthin optimised Ti3 compared to homogeneous designs (Ti1 and Ti2), and greater bone-implant contact. The greatest bone formation scores were seen in Ti3, followed by Ti2 and Ti1. Results from our study indicate lower stiffness and higher strain ranges than normally achieved in Ti scaffolds stimulate early bone formation. By accounting for loading environments through rational design, implants can be optimised to improve uniform osseointegration. Design and 3D printing of exceedingly soft titanium orthopaedic implants enhance strain induced bone formation and have significant importance in future implant design for knee, hip arthroplasty and treatment of large load-bearing bone defects