Advertisement for orthosearch.org.uk
Results 1 - 20 of 39
Results per page:
The Bone & Joint Journal
Vol. 98-B, Issue 9 | Pages 1175 - 1179
1 Sep 2016
Olsen M Lewis PM Morrison Z McKee MD Waddell JP Schemitsch EH

Aims. One method of femoral head preservation following avascular necrosis (AVN) is core decompression and insertion of a tantalum rod. However, there may be a high failure rate associated with this procedure. The purpose of this study was to document the clinical and radiological outcomes following total hip arthroplasty (THA) subsequent to failed tantalum rod insertion. Patients and Methods. A total of 37 failed tantalum rods requiring total hip arthroplasty were identified from a prospective database. There were 21 hips in 21 patients (12 men and nine women, mean age 37 years, 18 to 53) meeting minimum two year clinical and radiographic follow-up whose THAs were carried out between November 2002 and April 2013 (mean time between tantalum rod implantation and conversion to a THA was 26 months, 6 to 72). These were matched by age and gender to individuals (12 men, nine women, mean age 40 years, 18 to 58) receiving THA for AVN without prior tantalum rod insertion. Results. There were no functional outcome differences between the two groups. Tantalum residue was identified on all post-operative radiographs in the tantalum group. Linear wear rates were comparable between groups with no evidence of catastrophic wear in either group. Conclusion. In the short term, tantalum rod implantation does not demonstrate an adverse effect on subsequent total joint replacement surgery. There is however, a high rate of retained tantalum debris on post-operative radiographs and thus there is an unknown risk of accelerated articular wear necessitating longer term study. Cite this article: Bone Joint J 2016;98-B:1175–9


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 83 - 83
23 Jun 2023
Cobb J
Full Access

The trend towards more minimal access has led to a series of instruments being developed to enable adequate access for Direct Anterior Approach (DAA) for hip arthroplasty. These include longer levers, hooks attached to the operating table and a series of special attachments to the operating table to position the leg and apply traction where necessary. The forces applied in this way may be transmitted locally, damaging muscle used as a fulcrum, or the knee and ankle joints when torque has to be applied to the femur through a boot. The arthroplasty surgeon's aim is to minimise the forces applied to both bone and soft tissue during surgery. We surmised that the forces needed for adequate access were related to the extent of the capsular and soft tissue releases, and that they could be measured and optimised. with the aim of minimising the forces applied to the tissues around the hip. Eight fresh frozen specimens from pelvis to mid tibia from four cadavers were approached using the DAA. A 6-axis force/torque sensor and 6-axis motion tracking sensor were attached to a threaded rod securely fastened to the tibial and femoral diaphysis. The torque needed to provide first extension, then external rotation, adequate for hip arthroplasty were measured as the capsular structures were divided sequentially. The Zona Orbicularis (ZO) and Ischiofemoral Ligament(IFL) contributed most of the resistance to both extension (4.0 and 3.1Nm) and external rotation torque (5.8 and 3.9Nm). The contributions of the conjoint tendon (1.5 and 2.4Nm) and piriformis (1.2 and 2.3Nm) were substantially smaller. By releasing the Zona Orbicularis and Ischiofemoral Ligament, the torque needed to deliver the femur for hip arthroplasty could be reduced to less than the torque needed to open a jar (2.9–5.5Nm)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 83 - 83
19 Aug 2024
Tarabichi S Lizcano JD Abe EA Olin B Courtney PM Parvizi J
Full Access

No single test has demonstrated absolute accuracy in the diagnosis of periprosthetic joint infection (PJI). Leukocyte esterase (LE) is a synovial marker that has proven utility in the diagnosis of PJI. The purpose of this prospective study was to (1) identify the optimal cutoff for the use of LE in the diagnosis of PJI and (2) determine whether performance of the LE strip test varied by infecting organism. This prospective study enrolled 1,015 patients undergoing hip or knee revision arthroplasty at a single institution from 2009 to September 2021. PJI was defined using a modified version of 2018 International Consensus Meeting (ICM) criteria that excluded LE when calculating the ICM score. Receiver operating characteristic curves were used to assess the utility of the LE strip test in the diagnosis of PJI. 973 patients were included in the analyses. 246 (25.4%) were classified as ICM-positive and 727 (74.6%) were classified as ICM-negative. An LE cutoff of “1+” (AUC 0.819, sensitivity 73.2%, specificity 90.6%) had superior accuracy to an LE cutoff of “2+” (AUC 0.713, sensitivity 43.9%, specificity 98.8%) in the overall diagnosis of PJI (p<0.001). When stratifying by organism type, an LE cutoff of “1+” had the best diagnostic utility for PJI caused by methicillin resistant Staphylococcus aureus (AUC 0.888, sensitivity 87.0%, n=23) followed by Streptococcus spp. (AUC 0.882, sensitivity 85.7%, n=28), coagulase negative Staphylococci (AUC 0.836, sensitivity 76.6%, n=47), methicillin sensitive Staphylococcus aureus (AUC 0.806, sensitivity 70.6%, n=34), culture negative (AUC 0.793, sensitivity 67.9%, n=56), and gram negative rods (AUC 0.763, sensitivity 61.9%, n=21). To our knowledge, this is the largest study evaluating the utility of the LE strip test in the diagnosis of PJI. Based on our findings, it appears that a “1+” cutoff has higher diagnostic utility than a cutoff of “2+”


Bone & Joint Research
Vol. 8, Issue 6 | Pages 246 - 252
1 Jun 2019
Liddle A Webb M Clement N Green S Liddle J German M Holland J

Objectives. Previous studies have evidenced cement-in-cement techniques as reliable in revision arthroplasty. Commonly, the original cement mantle is reshaped, aiding accurate placement of the new stem. Ultrasonic devices selectively remove cement, preserve host bone, and have lower cortical perforation rates than other techniques. As far as the authors are aware, the impact of ultrasonic devices on final cement-in-cement bonds has not been investigated. This study assessed the impact of cement removal using the Orthosonics System for Cemented Arthroplasty Revision (OSCAR; Orthosonics) on final cement-in-cement bonds. Methods. A total of 24 specimens were manufactured by pouring cement (Simplex P Bone Cement; Stryker) into stainless steel moulds, with a central rod polished to Stryker Exeter V40 specifications. After cement curing, the rods were removed and eight specimens were allocated to each of three internal surface preparation groups: 1) burr; 2) OSCAR; and 3) no treatment. Internal holes were recemented, and each specimen was cut into 5 mm discs. Shear testing of discs was completed by a technician blinded to the original grouping, recording ultimate shear strengths. Scanning electron microscopy (SEM) was completed, inspecting surfaces of shear-tested specimens. Results. The mean shear strength for OSCAR-prepared specimens (33.6 MPa) was significantly lower than for the control (46.3 MPa) and burr (45.8 MPa) groups (p < 0.001; one-way analysis of variance (ANOVA) with Tukey’s post hoc analysis). There was no significant difference in shear strengths between control and burr groups (p = 0.57). Scanning electron microscopy of OSCAR specimens revealed evidence of porosity undiscovered in previous studies. Conclusion. Results show that the cement removal technique impacts on final cement-in-cement bonds. This in vitro study demonstrates significantly weaker bonds when using OSCAR prior to recementation into an old cement mantle compared with cement prepared with a burr or no treatment. This infers that care must be taken in surgical decision-making regarding cement removal techniques used during cement-in-cement revision arthroplasty, suggesting that the risks and benefits of ultrasonic cement removal need consideration. Cite this article: A. Liddle, M. Webb, N. Clement, S. Green, J. Liddle, M. German, J. Holland. Ultrasonic cement removal in cement-in-cement revision total hip arthroplasty: What is the effect on the final cement-in-cement bond? Bone Joint Res 2019;8:246–252. DOI: 10.1302/2046-3758.86.BJR-2018-0313.R1


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 66 - 66
1 Jan 2018
Muratoglu O Suhardi V Bichara D Freiberg A Rubash H Malchau H Oral E
Full Access

The gold standard for PJI treatment comprises the use of antibiotic-loaded bone cement spacers, which are limited in their load bearing capacity[1]. Thus, developing an antibiotic-eluting UHMWPE bearing surface can improve the mechanical properties of spacers and improve the quality of life of PJI patients. In this study, we incorporated vancomycin into UHMWPE to investigate its elution characteristics, mechanical properties and its efficacy against an acute PJI in an animal model. Vancomycin hydrochloride was incorporated into UHMWPE (2 to 14%) by blending and consolidation. We studied drug elution with blocks in PBS and UV-Vis spectroscopy at 280 nm. We determined the tensile mechanical properties and impact strength [3]. We implanted osteochondral plugs in rabbits using either control UHMWPE, bone cement (40g) containing vancomycin (1g) and tobramycin (3.6g) or vancomycin-eluting UHMWPE (n=5) plugs in the patellofemoral groove of rabbits. All rabbits received a beaded titanium rod in the tibial canal. All groups received two doses of 5×10. 7. cfu of bioluminescent S. aureus in the distal tibial canal prior to insertion of the rod and the articular space after closure of the joint capsule. No intravenous antibiotics were used. Bioluminescence signal was measured when the rabbits expired, or at 21-day post-op. Hardware, polyethylene implants, and joint tissues were sonicated to further quantify live bacteria via plate seeding. Vancomycin elution increased with increasing drug loading. Vancomycin elution above MIC for 3 weeks and optimized mechanical properties were obtained at 6–7 wt% vancomycin loading in UHMWPE. In our lapine acute infection model using bioluminescent S. aureus, knees treated with UHMWPE without antibiotics and bone cement containing vancomycin and tobramycin had significantly higher bioluminescence compared to those treated with vancomycin-eluting UHMWPE. These results suggest that an antibiotic-eluting UHMWPE spacer with acceptable properties as a bearing surface could be used to treat periprosthetic joint infection in lieu of bone cement spacers and this could allow safer load bearing and a higher quality of life for the patients during treatment. In addition, this presents a safer alternative in cases where the second stage surgery for the implantation of new components is hindered


Bone & Joint Research
Vol. 13, Issue 6 | Pages 272 - 278
5 Jun 2024
Niki Y Huber G Behzadi K Morlock MM

Aims

Periprosthetic fracture and implant loosening are two of the major reasons for revision surgery of cementless implants. Optimal implant fixation with minimal bone damage is challenging in this procedure. This pilot study investigates whether vibratory implant insertion is gentler compared to consecutive single blows for acetabular component implantation in a surrogate polyurethane (PU) model.

Methods

Acetabular components (cups) were implanted into 1 mm nominal under-sized cavities in PU foams (15 and 30 per cubic foot (PCF)) using a vibratory implant insertion device and an automated impaction device for single blows. The impaction force, remaining polar gap, and lever-out moment were measured and compared between the impaction methods.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_12 | Pages 4 - 4
1 Jun 2017
Liddle A German M Green S Townsend A Webb M Holland J
Full Access

Numerous studies have evidenced cement-in-cement techniques as reliable in revision arthroplasty. The original cement mantle is commonly reshaped to aid accurate placement of the new stem. Ultrasonic devices selectively remove cement, preserve host bone and have lower cortical perforation rates than other techniques. As far as the authors are aware, their impact on final cement-cement bonds has not been investigated. This study assessed the impact of cement removal using OSCAR (Orthosonics System for Cemented Arthroplasty Revision, ORTHOSONICS) on final cement-cement bonds. Twenty-four specimens were manufactured by pouring cement (Simplex P Bone Cement, Stryker) into stainless-steel moulds with a central rod polished to Stryker Exeter V40 specifications. After cement curing, rods were removed and eight specimens allocated to each of three internal surface preparation groups: 1) burr; 2) OSCAR; or 3) no treatment. Internal holes were re-cemented, then each specimen was cut into 5mm discs. Shear testing of discs was completed by a technician blinded to original grouping (Instron 5567, UK), recording ultimate shear strengths. The mean shear strength for OSCAR-prepared specimens (17 MPa, 99% CI 14.9 to 18.6, SD=4.0) was significantly lower than that measured for the control (23 MPa, 99% CI 22.5 to 23.7, SD=1.4) and burr (23 MPa, 99% CI 22.1 to 23.7, SD=1.9) groups (P<0.001, one-way ANOVA with Tukey's post-hoc analysis). There was no significant difference between control and burr groups (P>0.05). Results show that cement removal technique impacts on final cement-cement bonds. This in vitro study shows a significantly weaker bond when using OSCAR prior to re-cementation into an old cement mantle, compared to cement prepared with a burr or no treatment. These results have implications for surgical practice and decision-making about specific cement removal techniques used during cement-in-cement revision arthroplasty, suggesting that the risks and benefits of ultrasonic cement removal need careful consideration


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 3 - 3
1 Oct 2019
Wright TM Wach A Romero JA Padgett DE
Full Access

Introduction. MDM implants can enhance stability in total hip replacement (THR), but complications include malseated liners and corrosion between the cobalt-chrome liner and titanium acetabular shell increased systemic metal ion levels. The liner-shell junction has the potential for fretting corrosion, and the corrosion could be exacerbated in malseated liners. We determined the potential for fretting corrosion in malseated versus well-seated liners using a mechanical electrochemical corrosion chamber. Methods. Four pristine MDM liners and shells were tested. Two liners were well-seated into their shells; two were canted at 6°. The liner-shell couples were assembled with a 2kN force after wetting the surfaces to promote a crevice environment conducive to corrosion. Couples were fixed in an electrochemical chamber at 40° inclination/20° anteversion to the load axis. The chamber was filled with phosphate buffered saline and setup as a three-electrode configuration: the shell as the working, a saturated calomel electrode as the reference, and a carbon rod as the counter electrode. A potentiostat held the system at −50mV throughout testing. After equilibration, couples underwent cyclic loading of increasing magnitudes from 100 to 3400N at 3 Hz. Fretting current was measured throughout, and the onset load for fretting was determined from the increase in average current. Results. Well-seated liners showed lower fretting current values at all peak compressive loads greater than 800 N (p<0.05). Canted liners demonstrated a fretting onset load of 2400 N, and fretting currents at greater than 2400 N were larger than those at lower peak compressive loads (p<0.05). Conclusion. The clinical consequences of MDM liner malseating remain unknown, but our results demonstrate earlier fretting current onset at lower peak loads when compared to well-seated liners. The onset loads were consistent with physiologic loads for daily activities. Our findings are significant given the potential for metallosis and adverse local tissue reactions. For any tables or figures, please contact the authors directly


Bone & Joint Open
Vol. 3, Issue 6 | Pages 475 - 484
13 Jun 2022
Jang SJ Vigdorchik JM Windsor EW Schwarzkopf R Mayman DJ Sculco PK

Aims

Navigation devices are designed to improve a surgeon’s accuracy in positioning the acetabular and femoral components in total hip arthroplasty (THA). The purpose of this study was to both evaluate the accuracy of an optical computer-assisted surgery (CAS) navigation system and determine whether preoperative spinopelvic mobility (categorized as hypermobile, normal, or stiff) increased the risk of acetabular component placement error.

Methods

A total of 356 patients undergoing primary THA were prospectively enrolled from November 2016 to March 2018. Clinically relevant error using the CAS system was defined as a difference of > 5° between CAS and 3D radiological reconstruction measurements for acetabular component inclination and anteversion. Univariate and multiple logistic regression analyses were conducted to determine whether hypermobile (Δsacral slope(SS)stand-sit > 30°), or stiff (SSstand-sit < 10°) spinopelvic mobility contributed to increased error rates.


Bone & Joint Open
Vol. 5, Issue 10 | Pages 858 - 867
11 Oct 2024
Yamate S Hamai S Konishi T Nakao Y Kawahara S Hara D Motomura G Nakashima Y

Aims

The aim of this study was to evaluate the suitability of the tapered cone stem in total hip arthroplasty (THA) in patients with excessive femoral anteversion and after femoral osteotomy.

Methods

We included patients who underwent THA using Wagner Cone due to proximal femur anatomical abnormalities between August 2014 and January 2019 at a single institution. We investigated implant survival time using the endpoint of dislocation and revision, and compared the prevalence of prosthetic impingements between the Wagner Cone, a tapered cone stem, and the Taperloc, a tapered wedge stem, through simulation. We also collected Oxford Hip Score (OHS), visual analogue scale (VAS) satisfaction, and VAS pain by postal survey in August 2023 and explored variables associated with those scores.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 590 - 597
20 Sep 2023
Uemura K Otake Y Takashima K Hamada H Imagama T Takao M Sakai T Sato Y Okada S Sugano N

Aims

This study aimed to develop and validate a fully automated system that quantifies proximal femoral bone mineral density (BMD) from CT images.

Methods

The study analyzed 978 pairs of hip CT and dual-energy X-ray absorptiometry (DXA) measurements of the proximal femur (DXA-BMD) collected from three institutions. From the CT images, the femur and a calibration phantom were automatically segmented using previously trained deep-learning models. The Hounsfield units of each voxel were converted into density (mg/cm3). Then, a deep-learning model trained by manual landmark selection of 315 cases was developed to select the landmarks at the proximal femur to rotate the CT volume to the neutral position. Finally, the CT volume of the femur was projected onto the coronal plane, and the areal BMD of the proximal femur (CT-aBMD) was quantified. CT-aBMD correlated to DXA-BMD, and a receiver operating characteristic (ROC) analysis quantified the accuracy in diagnosing osteoporosis.


The Bone & Joint Journal
Vol. 104-B, Issue 2 | Pages 200 - 205
1 Feb 2022
Orita K Goto K Kuroda Y Kawai T Okuzu Y Matsuda S

Aims

The aim of this study was to evaluate the performance of first-generation annealed highly cross-linked polyethylene (HXLPE) in cementless total hip arthroplasty (THA).

Methods

We retrospectively evaluated 29 patients (35 hips) who underwent THA between December 2000 and February 2002. The survival rate was estimated using the Kaplan-Meier method. Hip joint function was evaluated using the Japanese Orthopaedic Association (JOA) score. Two-dimensional polyethylene wear was estimated using Martell’s Hip Analysis Suite. We calculated the wear rates between years 1 and 5, 5 and 10, 10 and 15, and 15 and final follow-up.


The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 92 - 94
1 Nov 2013
Gehrke T Gebauer M Kendoff D

Femoral revision after cemented total hip replacement (THR) might include technical difficulties, following essential cement removal, which might lead to further loss of bone and consequently inadequate fixation of the subsequent revision stem. . Femoral impaction allografting has been widely used in revision surgery for the acetabulum, and subsequently for the femur. In combination with a primary cemented stem, impaction grafting allows for femoral bone restoration through incorporation and remodelling of the impacted morsellized bone graft by the host skeleton. Cavitary bone defects affecting meta-physis and diaphysis leading to a wide femoral shaft, are ideal indications for this technique. Cancellous allograft bone chips of 1 mm to 2 mm size are used, and tapered into the canal with rods of increasing diameters. To impact the bone chips into the femoral canal a prosthesis dummy of the same dimensions of the definitive cemented stem is driven into the femur to ensure that the chips are very firmly impacted. Finally, a standard stem is cemented into the neo-medullary canal using bone cement. . To date several studies have shown favourable results with this technique, with some excellent long-term results reported in independent clinical centres worldwide. Cite this article: Bone Joint J 2013;95-B, Supple A:92–4


Bone & Joint Open
Vol. 2, Issue 11 | Pages 1004 - 1016
26 Nov 2021
Wight CM Whyne CM Bogoch ER Zdero R Chapman RM van Citters DW Walsh WR Schemitsch E

Aims

This study investigates head-neck taper corrosion with varying head size in a novel hip simulator instrumented to measure corrosion related electrical activity under torsional loads.

Methods

In all, six 28 mm and six 36 mm titanium stem-cobalt chrome head pairs with polyethylene sockets were tested in a novel instrumented hip simulator. Samples were tested using simulated gait data with incremental increasing loads to determine corrosion onset load and electrochemical activity. Half of each head size group were then cycled with simulated gait and the other half with gait compression only. Damage was measured by area and maximum linear wear depth.


Aims

Vitamin E-infused highly crosslinked polyethylene (VEPE) has been introduced into total hip arthroplasty (THA) with the aim of further improving the wear characteristics of moderately and highly crosslinked polyethylenes (ModXLPE and HXLPE). There are few studies analyzing the outcomes of vitamin E-infused components in cemented arthroplasty, though early acetabular component migration has been reported. The aim of this study was to measure five-year polyethylene wear and acetabular component stability of a cemented VEPE acetabular component compared with a ModXLPE cemented acetabular component.

Methods

In a prospective randomized controlled trial (RCT), we assessed polyethylene wear and acetabular component stability (primary outcome) with radiostereometric analysis (RSA) in 68 patients with reverse hybrid THA at five years follow-up. Patients were randomized to either a VEPE or a ModXLPE cemented acetabular component.


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 20 - 26
1 Jul 2020
Romero J Wach A Silberberg S Chiu Y Westrich G Wright TM Padgett DE

Aims

This combined clinical and in vitro study aimed to determine the incidence of liner malseating in modular dual mobility (MDM) constructs in primary total hip arthroplasties (THAs) from a large volume arthroplasty centre, and determine whether malseating increases the potential for fretting and corrosion at the modular metal interface in malseated MDM constructs using a simulated corrosion chamber.

Methods

For the clinical arm of the study, observers independently reviewed postoperative radiographs of 551 primary THAs using MDM constructs from a single manufacturer over a three-year period, to identify the incidence of MDM liner-shell malseating. Multivariable logistic regression analysis was performed to identify risk factors including age, sex, body mass index (BMI), cup design, cup size, and the MDM case volume of the surgeon. For the in vitro arm, six pristine MDM implants with cobalt-chrome liners were tested in a simulated corrosion chamber. Three were well-seated and three were malseated with 6° of canting. The liner-shell couples underwent cyclic loading of increasing magnitudes. Fretting current was measured throughout testing and the onset of fretting load was determined by analyzing the increase in average current.


Bone & Joint Research
Vol. 9, Issue 7 | Pages 386 - 393
1 Jul 2020
Doyle R van Arkel RJ Muirhead-Allwood S Jeffers JRT

Aims

Cementless acetabular components rely on press-fit fixation for initial stability. In certain cases, initial stability is more difficult to obtain (such as during revision). No current study evaluates how a surgeon’s impaction technique (mallet mass, mallet velocity, and number of strikes) may affect component fixation. This study seeks to answer the following research questions: 1) how does impaction technique affect a) bone strain generation and deterioration (and hence implant stability) and b) seating in different density bones?; and 2) can an impaction technique be recommended to minimize risk of implant loosening while ensuring seating of the acetabular component?

Methods

A custom drop tower was used to simulate surgical strikes seating acetabular components into synthetic bone. Strike velocity and drop mass were varied. Synthetic bone strain was measured using strain gauges and stability was assessed via push-out tests. Polar gap was measured using optical trackers.


The Bone & Joint Journal
Vol. 101-B, Issue 7 | Pages 760 - 767
1 Jul 2019
Galea VP Rojanasopondist P Laursen M Muratoglu OK Malchau H Bragdon C

Aims

Vitamin E-diffused, highly crosslinked polyethylene (VEPE) and porous titanium-coated (PTC) shells were introduced in total hip arthroplasty (THA) to reduce the risk of aseptic loosening. The purpose of this study was: 1) to compare the wear properties of VEPE to moderately crosslinked polyethylene; 2) to assess the stability of PTC shells; and 3) to report their clinical outcomes at seven years.

Patients and Methods

A total of 89 patients were enrolled into a prospective study. All patients received a PTC shell and were randomized to receive a VEPE liner (n = 44) or a moderately crosslinked polyethylene (ModXLPE) liner (n = 45). Radiostereometric analysis (RSA) was used to measure polyethylene wear and component migration. Differences in wear were assessed while adjusting for body mass index, activity level, acetabular inclination, anteversion, and head size. Plain radiographs were assessed for radiolucency and patient-reported outcome measures (PROMs) were administered at each follow-up.


Bone & Joint Research
Vol. 8, Issue 10 | Pages 451 - 458
1 Oct 2019
Kuroda Y Tanaka T Miyagawa T Kawai T Goto K Tanaka S Matsuda S Akiyama H

Objectives

Using a simple classification method, we aimed to estimate the collapse rate due to osteonecrosis of the femoral head (ONFH) in order to develop treatment guidelines for joint-preserving surgeries.

Methods

We retrospectively analyzed 505 hips from 310 patients (141 men, 169 women; mean age 45.5 years (sd 14.9; 15 to 86)) diagnosed with ONFH and classified them using the Japanese Investigation Committee (JIC) classification. The JIC system includes four visualized types based on the location and size of osteonecrotic lesions on weightbearing surfaces (types A, B, C1, and C2) and the stage of ONFH. The collapse rate due to ONFH was calculated using Kaplan–Meier survival analysis, with radiological collapse/arthroplasty as endpoints.


The Bone & Joint Journal
Vol. 99-B, Issue 5 | Pages 577 - 584
1 May 2017
Nebergall AK Greene ME Laursen MB Nielsen PT Malchau H Troelsen A

Aims

The objective of this five-year prospective, blinded, randomised controlled trial (RCT) was to compare femoral head penetration into a vitamin E diffused highly cross-linked polyethylene (HXLPE) liner with penetration into a medium cross-linked polyethylene control liner using radiostereometric analysis.

Patients and Methods

Patients scheduled for total hip arthroplasty (THA) were randomised to receive either the study E1 (32 patients) or the control ArComXL polyethylene (35 patients). The median age (range) of the overall cohort was 66 years (40 to 76).