Aims. No predictive model has been published to forecast operating time for total knee arthroplasty (TKA). The aims of this study were to design and validate a predictive model to estimate operating time for
Aims.
Aims. The aims of this study were: 1) to describe extended restricted kinematic alignment (E-rKA), a novel alignment strategy during
Aims.
Aims. Unicompartmental knee arthroplasty (UKA) and total knee arthroplasty (TKA) have both been shown to be effective treatments for osteoarthritis (OA) of the knee. Many studies have compared the outcomes of the two treatments, but less so with the use of robotics, or individualized TKA alignment techniques. Functional alignment (FA) is a novel technique for performing a TKA and shares many principles with UKA. Our aim was to compare outcomes from a case-matched series of robotic-assisted UKAs and robotic-assisted TKAs performed using FA. Methods. From a prospectively collected database between April 2015 and December 2019, patients who underwent a robotic-assisted medial UKA (RA-UKA) were case-matched with patients who had undergone a FA
Objectives. The use of the haptically bounded saw blades in
Aims. The aim was to assess whether
Aims. The aim of this study was to report patient and clinical outcomes following
Aims. Patient dissatisfaction following primary total knee arthroplasty (TKA) with manual jig-based instruments has been reported to be as high as 30%.
Robot-assisted total knee arthroplasty (RA-TKA) is theoretically more accurate for component positioning than TKA performed with mechanical instruments (M-TKA). Furthermore, the ability to quantify soft tissue laxity and adjust the plan prior to bone resection should reduce variability in polyethylene thickness. This study was performed to compare accuracy to plan for component positioning and polyethylene thickness in RA-TKA versus M-TKA. 199 consecutive primary TKAs (96 C-TKA and 103 RA-TKA) performed by a single surgeon were reviewed. Full-length standing and knee radiographs were obtained pre and post-operatively. For M-TKA, measured resection technique was used. Planned coronal plane femoral and tibial component alignment, and overall limb alignment were all 0° to the mechanical axis; tibial posterior slope was 2°; and polyethylene thickness was 9mm. For RA-TKA, individual component position was adjusted to assist balance the gaps but planned coronal plane alignment for the femoral and tibial components and overall limb alignment had to remain 0+/− 3°; planned tibial posterior slope was 1.5°. Planned values and polyethylene thickness for RA-TKA were obtained from the final intra-operative plan. Mean deviations from plan for each parameter were compared between groups (ΔFemur, ΔTibia, ΔPS, and polyethylene thickness) as were distal femoral recut and tourniquet time.Introduction
Methods
Robotic assisted Total Knee Arthroplasty (rTKA), provides surgeons with preoperative planning and real-time data allowing for continuous assessment of ligamentous tension and range-of-motion. Using this technology, soft tissue protection, reduced early post-operative pain and improved patient satisfaction have been shown. These advances have the potential to enhance surgical outcomes and may also reduce episode-of-care (EOC) costs for patients, payers, and hospitals. The purpose of this study was to compare robotic assisted vs. manual total knee arthroplasty: 1) 90-day episode-of-care (EOC) costs; 2) index costs; 3) lengths-of-stay (LOS); 4) discharge disposition; and 5) readmission rates. TKA procedures were identified using the Medicare 100% Standard Analytic Files including; Inpatient, Outpatient, Skilled Nursing (SNF) and Home Health. Members included patients with rTKA or manual TKA (mTKA) between 1/1/2016-3/31/2017. To account for potential baseline differences, propensity score matching (PSM) was performed in a 1-to-5 ratio, robotic to manual based on age, sex, race, geographic division, and comorbidities. After PSM, 519 rTKA and 2,595 mTKA were identified and included for analysis. Ninety-day episode-of-care cost, index cost, LOS, discharge disposition and readmission rates were assessed.Introduction
Methods
Functional alignment (FA) in total knee arthroplasty (TKA) aims to achieve balanced gaps by adjusting implant positioning while minimizing changes to constitutional joint line obliquity (JLO). Although FA uses kinematic alignment (KA) as a starting point, the final implant positions can vary significantly between these two approaches. This study used the Coronal Plane Alignment of the Knee (CPAK) classification to compare differences between KA and final FA positions. A retrospective analysis compared pre-resection and post-implantation alignments in 2,116 robotic-assisted FA TKAs. The lateral distal femoral angle (LDFA) and medial proximal tibial angle (MPTA) were measured to determine the arithmetic hip-knee-ankle angle (aHKA = MPTA – LDFA), JLO (JLO = MPTA + LDFA), and CPAK type. The primary outcome was the proportion of knees that varied ≤ 2° for aHKA and ≤ 3° for JLO from their KA to FA positions, and direction and magnitude of those changes per CPAK phenotype. Secondary outcomes included proportion of knees that maintained their CPAK phenotype, and differences between sexes.Aims
Methods
Introduction.
Aims. The surgical target for optimal implant positioning in
Aims. Total knee arthroplasty (TKA) using functional alignment aims to implant the components with minimal compromise of the soft-tissue envelope by restoring the plane and obliquity of the non-arthritic joint. The objective of this study was to determine the effect of TKA with functional alignment on mediolateral soft-tissue balance as assessed using intraoperative sensor-guided technology. Methods. This prospective study included 30 consecutive patients undergoing
Aims. The aim of this study was to analyze the true costs associated with preoperative CT scans performed for
Introduction. Active robotics for total knee Arthroplasty (TKA) uses a CAD-CAM approach to plan the correct size and placement of implants and to surgically achieve planned limb alignment. The TSolution One Total Knee Application (THINK Surgical Inc., Fremont, CA) is an open-implant platform, CT-based active robotic surgical system. A multi-center, prospective, non-randomized clinical trial was performed to evaluate the safety and effectiveness of
The primary aim was to assess whether robotic total knee arthroplasty (rTKA) had a greater early knee-specific outcome when compared to manual TKA (mTKA). Secondary aims were to assess whether rTKA was associated with improved expectation fulfilment, health-related quality of life (HRQoL), and patient satisfaction when compared to mTKA. A randomized controlled trial was undertaken, and patients were randomized to either mTKA or rTKA. The primary objective was functional improvement at six months. Overall, 100 patients were randomized, 50 to each group, of whom 46 rTKA and 41 mTKA patients were available for review at six months following surgery. There were no differences between the two groups.Aims
Methods
Sagittal plane imbalance (SPI), or asymmetry between extension and flexion gaps, is an important issue in total knee arthroplasty (TKA). The purpose of this study was to compare SPI between kinematic alignment (KA), mechanical alignment (MA), and functional alignment (FA) strategies. In 137 robotic-assisted TKAs, extension and flexion stressed gap laxities and bone resections were measured. The primary outcome was the proportion and magnitude of medial and lateral SPI (gap differential > 2.0 mm) for KA, MA, and FA. Secondary outcomes were the proportion of knees with severe (> 4.0 mm) SPI, and resection thicknesses for each technique, with KA as reference.Aims
Methods
It is unknown whether gap laxities measured in robotic arm-assisted total knee arthroplasty (TKA) correlate to load sensor measurements. The aim of this study was to determine whether symmetry of the maximum medial and lateral gaps in extension and flexion was predictive of knee balance in extension and flexion respectively using different maximum thresholds of intercompartmental load difference (ICLD) to define balance. A prospective cohort study of 165 patients undergoing functionally-aligned TKA was performed (176 TKAs). With trial components in situ, medial and lateral extension and flexion gaps were measured using robotic navigation while applying valgus and varus forces. The ICLD between medial and lateral compartments was measured in extension and flexion with the load sensor. The null hypothesis was that stressed gap symmetry would not correlate directly with sensor-defined soft tissue balance.Aims
Methods