Aims. Achieving accurate implant positioning and restoring native hip biomechanics are key surgeon-controlled technical objectives in total hip arthroplasty (THA). The primary objective of this study was to compare the reproducibility of the planned preoperative centre of hip rotation (COR) in patients undergoing robotic arm-assisted THA versus conventional THA. Methods. This prospective randomized controlled trial (RCT) included 60 patients with symptomatic hip osteoarthritis undergoing conventional THA (CO THA) versus robotic arm-assisted THA (RO THA). Patients in both arms underwent pre- and postoperative CT scans, and a patient-specific plan was created using the robotic software. The COR, combined offset, acetabular orientation, and leg length discrepancy were measured on the pre- and postoperative CT scanogram at six weeks following surgery. Results. There were no significant differences for any of the baseline characteristics including spinopelvic mobility. The absolute error for achieving the planned horizontal COR was median 1.4 mm (interquartile range (IQR) 0.87 to 3.42) in RO THA versus 4.3 mm (IQR 3 to 6.8; p < 0.001); vertical COR mean 0.91 mm (SD 0.73) in RO THA versus 2.3 mm (SD 1.3; p < 0.001); and combined offset median 2 mm (IQR 0.97 to 5.45) in RO THA versus 3.9 mm (IQR 2 to 7.9; p = 0.019). Improved accuracy was observed with RO THA in achieving the desired acetabular component positioning (root mean square error for anteversion and inclination was 2.6 and 1.3 vs 8.9 and 5.3, repectively) and leg length (mean 0.6 mm vs 1.4 mm; p < 0.001). Patient-reported outcome measures were comparable between the two groups at baseline and one year. Participants in the RO THA group needed fewer physiotherapy sessions postoperatively (median six (IQR 4.5 to 8) vs eight (IQR 6 to 11; p = 0.005). Conclusion. This RCT suggested that
Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of our pilot study was to evaluate the feasibility of developing an AI algorithm tailored to individual spinopelvic mechanics and patient phenotype for predicting impingement. This international, multicentre prospective cohort study across two centres encompassed 157 adults undergoing primary robotic arm-assisted THA. Impingement during specific flexion and extension stances was identified using the virtual range of motion (ROM) tool of the robotic software. The primary AI model, the Light Gradient-Boosting Machine (LGBM), used tabular data to predict impingement presence, direction (flexion or extension), and type. A secondary model integrating tabular data with plain anteroposterior pelvis radiographs was evaluated to assess for any potential enhancement in prediction accuracy.Aims
Methods
In-hospital length of stay (LOS) and discharge disposition following arthroplasty could act as surrogate measures for improvement in patient pathways, and have major cost saving implications for healthcare providers. With the ever-growing adoption of robotic technology in arthroplasty, we wished to evaluate its impact on LOS. The objectives of this study were to compare LOS and discharge disposition following robotic-arm assisted (RO THA) versus conventional technique Total Hip Arthroplasty (CO THA). This large-scale, single institution study included patients of any age undergoing primary THA (N = 1,732) for any cause between May 2019 and January 2023. Data extracted included patient demographics, LOS, need for Post Anaesthesia Care Unit (PACU) admission, anaesthesia type, readmission within 30 days and discharge dispositions. Univariate and multivariate logistic regression models were also employed to identify factors and patient characteristics related to delayed discharge. The median LOS in the RO THA group was 54 hours (34, 78) versus 60 (51, 100) in the CO THA group, p<0.001. Discharge disposition was comparable between the two groups. In the multivariate model, age, need for PACU admission, ASA score > 2, female gender, general anaesthesia and utilisation of the conventional technique were significantly associated with LOS > 2 days. Our study showed that
Introduction. The purpose of this study was to determine if better outcomes occur with use of
Outpatient total hip arthroplasty (THA) has remained controversial and challenging. Traditional hospital stays following total joint arthroplasty were substantial and resulted in increased rates of morbidity, significant pain, and severe restriction in mobility. Advancements in the surgical approach, anesthetic regimens, and the initiation of rapid rehabilitation protocols have had an impact on the length of recovery following elective THA. Still, very few studies have specifically outlined outpatient hip arthroplasty and, thus far, none have addressed the use of robotic-arm navigation in outpatient THA. This article describes in detail the technique used to perform outpatient THA with the use of
Introduction. Isolated lateral compartment osteoarthritis (OA) occurs in 5–10% of knees with OA [1, 2]. Lateral unicompartmental knee arthroplasty (LUKA) emerged as a treatment to this disease in the early 80s but challenging surgical technique has limited the prevalence of this treatment option [1–3]. A robotic-arm assisted surgical technique (MAKO Surgical Corp.) has emerged as a way to achieve precise implant positioning which can potentially improve surgical outcomes. Objectives. The purpose of this study was to evaluate short term outcomes for patients that received LUKA using a novel robotic-arm assisted surgical technique. Methods. Thirty-seven (37) patients (12 male, 25 female - mean age 63.7 years) with lateral OA received a robotic-arm assisted LUKA between July 2011 and September 2013 from 3 surgeons. All patients were evaluated by an independent surgeon not involved in the treatment of these patients at an average follow-up of 15.9 months (8–27). Range of motion and limb alignment was compared pre- and post-operatively. Results. Lateral UKA using
Background. Intraoperative balancing of total knee arthroplasty (TKA) can be accomplished by either more prevalent but less predictable soft tissue releases, implant realignment through adjustments of bone resection or a combination of both. Robotic TKA allows for quantifiable precision performing bone resections for implant realignment within acceptable final component and limb alignments. Objective. To provide a direct comparison of patient reported outcomes between implant realignment and traditional ligamentous release for soft tissue balancing in TKA. Methods. IRB approved retrospective single surgeon cohort study of prospectively collected operative and clinical data of consecutive patients that underwent TKA with a single radius design utilizing kinematic sensors to assess final balance with or without robotic assistance allowing for a minimum of 12 months clinical follow up. Operative reports were reviewed to characterize the balancing strategy. In surgical cases using robotic assistance, pre-operative plan changes that altered implant placement were included in the implant realignment group. Any patient that underwent both implant realignment and soft tissue releases was analyzed separately. Kinematic sensor data was utilized to quantify ultimate balance to assure that each cohort had equivalent balance. Patient reported outcome data consisting of Knee Society- Knee Scores (KS-KS), Knee Society- Function Scores (KS-FS), and Forgotten Joint Scores (FJS) were prospectively collected during clinical follow up. Results. 182 TKA were included in the study. 3-Month clinical follow up was available for 174/182 knees (91%), 1-Year clinical follow up was available for 167/182 knees (92%) and kinematic sensor data was available for 169/182 knees (93%). Kinetic sensor data showed that on average all of the balancing subgroups achieved clinically equivalent balance. Use of
Background. Discrepancies in patient outcomes after total knee arthroplasty have encouraged the development of different treatment options including early preventive interventions. In addition, improvements in surgical techniques and instrumentation have increased the accuracy of the surgeries. In this case study, we review the first robotic-arm assisted modular tricompartmental knee arthroplasty in which bone and soft tissues are conserved by employing a precise planning and execution technique. Materials and Methods. A 63 year old Caucasian female with a Body Mass Index (BMI) of 27 presented to the surgeon (SK) with knee pain and a varus mechanical alignment. The patient received modular tri-unicompartmental arthroplasty performed with
Introduction:. Unicompartmental knee arthroplasty (UKA) has been proven to be an effective treatment for degenerative joint disease confined to a single tibiofemoral compartment. Recently, UKAs have been performed with
Postoperative length of stay (LOS) and discharge dispositions following arthroplasty can be used as surrogate measurements for improvements in patients’ pathways and costs. With the increasing use of robotic technology in arthroplasty, it is important to assess its impact on LOS. The aim of this study was to identify factors associated with decreased LOS following robotic arm-assisted total hip arthroplasty (RO THA) compared with the conventional technique (CO THA). This large-scale, single-institution study included 1,607 patients of any age who underwent 1,732 primary THAs for any indication between May 2019 and January 2023. The data which were collected included the demographics of the patients, LOS, type of anaesthetic, the need for treatment in a post-anaesthesia care unit (PACU), readmission within 30 days, and discharge disposition. Univariate and multivariate logistic regression models were used to identify factors and the characteristics of patients which were associated with delayed discharge.Aims
Methods
Robotic arm-assisted surgery offers accurate and reproducible guidance in component positioning and assessment of soft-tissue tensioning during knee arthroplasty, but the feasibility and early outcomes when using this technology for revision surgery remain unknown. The objective of this study was to compare the outcomes of robotic arm-assisted revision of unicompartmental knee arthroplasty (UKA) to total knee arthroplasty (TKA) versus primary robotic arm-assisted TKA at short-term follow-up. This prospective study included 16 patients undergoing robotic arm-assisted revision of UKA to TKA versus 35 matched patients receiving robotic arm-assisted primary TKA. In all study patients, the following data were recorded: operating time, polyethylene liner size, change in haemoglobin concentration (g/dl), length of inpatient stay, postoperative complications, and hip-knee-ankle (HKA) alignment. All procedures were performed using the principles of functional alignment. At most recent follow-up, range of motion (ROM), Forgotten Joint Score (FJS), and Oxford Knee Score (OKS) were collected. Mean follow-up time was 21 months (6 to 36).Aims
Methods
The purpose of this study was to compare the radiological outcomes of manual versus robotic-assisted medial unicompartmental knee arthroplasty (UKA). Postoperative radiological outcomes from 86 consecutive robotic-assisted UKAs (RAUKA group) from a single academic centre were retrospectively reviewed and compared to 253 manual UKAs (MUKA group) drawn from a prior study at our institution. Femoral coronal and sagittal angles (FCA, FSA), tibial coronal and sagittal angles (TCA, TSA), and implant overhang were radiologically measured to identify outliers.Aims
Methods
The purpose of this multicentre observational study was to investigate the association between intraoperative component positioning and soft-tissue balancing on short-term clinical outcomes in patients undergoing robotic-arm assisted unicompartmental knee arthroplasty (UKA). Between 2013 and 2016, 363 patients (395 knees) underwent robotic-arm assisted UKAs at two centres. Pre- and postoperatively, patients were administered Knee Injury and Osteoarthritis Score (KOOS) and Forgotten Joint Score-12 (FJS-12). Results were stratified as “good” and “bad” if KOOS/FJS-12 were more than or equal to 80. Intraoperative, post-implantation robotic data relative to CT-based components placement were collected and classified. Postoperative complications were recorded.Aims
Patients and Methods
Limited evidence is available on mid-term outcomes of robotic-arm assisted (RA) partial knee arthroplasty (PKA). Therefore, the purpose of this study was to evaluate mid-term survivorship, modes of failure, and patient-reported outcomes of RA PKA. A retrospective review of patients who underwent RA PKA between June 2007 and August 2016 was performed. Patients received a fixed-bearing medial or lateral unicompartmental knee arthroplasty (UKA), patellofemoral arthroplasty (PFA), or bicompartmental knee arthroplasty (BiKA; PFA plus medial UKA). All patients completed a questionnaire regarding revision surgery, reoperations, and level of satisfaction. Knee Injury and Osteoarthritis Outcome Scores (KOOS) were assessed using the KOOS for Joint Replacement Junior survey.Aims
Methods
The objectives of this study were to compare postoperative pain, analgesia requirements, inpatient functional rehabilitation, time to hospital discharge, and complications in patients undergoing conventional jig-based unicompartmental knee arthroplasty (UKA) This prospective cohort study included 146 patients with symptomatic medial compartment knee osteoarthritis undergoing primary UKA performed by a single surgeon. This included 73 consecutive patients undergoing conventional jig-based mobile bearing UKA, followed by 73 consecutive patients receiving robotic-arm assisted fixed bearing UKA. All surgical procedures were performed using the standard medial parapatellar approach for UKA, and all patients underwent the same postoperative rehabilitation programme. Postoperative pain scores on the numerical rating scale and opiate analgesia consumption were recorded until discharge. Time to attainment of predefined functional rehabilitation outcomes, hospital discharge, and postoperative complications were recorded by independent observers.Aims
Patients and Methods
The primary aim of this study was to determine the surgical team’s
learning curve for introducing robotic-arm assisted unicompartmental
knee arthroplasty (UKA) into routine surgical practice. The secondary
objective was to compare accuracy of implant positioning in conventional
jig-based UKA versus robotic-arm assisted UKA. This prospective single-surgeon cohort study included 60 consecutive
conventional jig-based UKAs compared with 60 consecutive robotic-arm
assisted UKAs for medial compartment knee osteoarthritis. Patients
undergoing conventional UKA and robotic-arm assisted UKA were well-matched
for baseline characteristics including a mean age of 65.5 years
(Aims
Patients and Methods