Unicompartmental knee arthroplasty (UKA) has a higher risk of revision than total knee arthroplasty, particularly for low volume surgeons. The recent introduction of robotic-arm assisted systems has allowed for increased accuracy, however new systems typically have learning curves. The objective of this study was to determine the learning curve of a robotic-arm assisted system for UKA. Methods A total of 152 consecutive robotic-arm assisted primary medial UKA were performed by five surgeons between 2017 and 2021. Operative times, implant positioning, reoperations and patient-reported outcome measures (PROMS; Oxford Knee Score, EuroQol-5D, and Forgotten Joint Score) were recorded. There was a learning curve of 11 cases with the system that was associated with increased operative time (13 minutes, p<0.01) and improved insert sizing over time (p=0.03). There was no difference in implant survival (98.2%) between learning and proficiency phases (p = 0.15), and no difference in survivorship between ‘high’ and ‘low’ usage surgeons (p = 0.23) at 36 months. There were no differences in PROMS related to the learning curve. This suggested that the learning curve did not lead to early adverse effects in this patient cohort. The introduction of a robotic-arm assisted UKA system led to learning curves for operative time and implant sizing, but there was no effect on patient outcomes at early follow- up. The short learning curve was independent of UKA usage and indicated that robotic-arm assisted UKA may be particularly useful for low-usage surgeons.
Accurate cup placement in total hip arthroplasty (THA) for the patients with developmental dysplasia of the hip (DDH) is one of the challenges due to distinctive bone deformity. Robotic-arm assisted system have been developed to improve the accuracy of implant placement. This study aimed to compare the accuracy of robotic-arm assisted (Robo-THA), CT-based navigated (Navi-THA), and manual (M-THA) cup position and orientation in THA for DDH. A total of 285 patients (335 hips) including 202 M-THAs, 45 Navi-THAs, and 88 Robo-THA were analyzed. The choice of procedure followed the patient's preferences. Horizontal and vertical center of rotation (HCOR and VCOR) were measured for cup position, and radiographic inclination (RI) and anteversion (RA) were measured for cup orientation. The propensity score-matching was performed among three groups to compare the absolute error from the preoperative target position and angle. Navi-THA showed significantly smaller absolute errors than M-THA in RI (3.6° and 5.4°) and RA (3.8° and 6.0°), however, there were no significant differences between them in HCOR (2.5 mm and 3.0 mm) or VCOR (2.2 mm and 2.6 mm). In contrast, Robo-THA showed significantly smaller absolute errors of cup position than both M-THA and Navi-THA (HCOR: 1.7 mm and 2.9 mm, vs. M-THA, 1.6 mm and 2.5 mm vs. Navi-THA, VCOR:1.7 mm and 2.4 mm, vs. M-THA, 1.4 mm and 2.2 mm vs. Navi-THA). Robo-THA also showed significantly smaller absolute errors of cup orientation than both M-THA and Navi-THA (RI: 1.4° and 5.7°, vs. M-THA, 1.5° and 3.6°, vs. Navi-THA, RA: 1.9° and 5.8° vs. M-THA, 2.1° and 3.8° vs. Navi-THA). Robotic-arm assisted system showed more accurate cup position and orientation compared to manual and CT-based navigation in THA for DDH. CT-based navigation increased the accuracy of cup orientation compared to manual procedures, but not cup position.
Excellent outcomes have been reported following CT-based robotic arm-assisted total hip arthroplasty (rTHA) compared with manual THA; however, its superiority over CT-based navigation THA (nTHA) remains unclear. This study aimed to determine whether a CT-based robotic arm-assisted system helps surgeons perform accurate cup placement, minimizes leg length, and offsets discrepancies more than a CT-based navigation system. We studied 60 hips from 54 patients who underwent rTHA between April 2021 and August 2023, and 45 hips from 44 patients who underwent nTHA between January 2020 and March 2021 with the same target cup orientation at the Department of Orthopedic Surgery at Ozu Memorial Hospital, Japan. After propensity score matching, each group had 37 hips. Postoperative acetabular component position and orientation were measured using the planning module of the CT-based navigation system. Postoperative leg length and offset discrepancies were evaluated using postoperative CT in patients who have unilateral hip osteoarthritis.Aims
Methods
Around the world, the emergence of robotic technology has improved surgical precision and accuracy in total knee arthroplasty (TKA). This territory-wide study compares the results of various robotic TKA (R-TKA) systems with those of conventional TKA (C-TKA) and computer-navigated TKA (N-TKA). This is a retrospective study utilizing territory-wide data from the Clinical Data Analysis and Reporting System (CDARS). All patients who underwent primary TKA in all 47 public hospitals in Hong Kong between January 2021 and December 2023 were analyzed. Primary outcomes were the percentage use of various robotic and navigation platforms. Secondary outcomes were: 1) mean length of stay (LOS); 2) 30-day emergency department (ED) attendance rate; 3) 90-day ED attendance rate; 4) 90-day reoperation rate; 5) 90-day mortality rate; and 6) surgical time.Aims
Methods