Reports of improved functional outcome of Metal on Metal Hip
Abstract. Objectives. Patella resurfacing in primary total knee arthroplasty (TKA) remains a contentious issue. Australian rates of patellar resurfacing are 66.6%, significantly higher compared to UK rates of 8–15% and Swedish rates of 2%.
A cadaver study using six pairs of lower limbs was conducted to investigate the accuracy of computer navigation and standard instrumentation for the placement of the Birmingham Hip
Positioning of the hip resurfacing is crucial for its long term survival and is critical in young patients for some reasons; manly increase the wear in the components and change the load distribution. THR have increased in the last years, mainly in young patients between 45 to 59 years old. The resurfacing solution is indicated for young patients with good bone quality. A long term solution is required for these patients to prevent hip revision. The resurfacing prosthesis Birmingham Hip
The renewed interest in the clinically proven low wear of the metal-on-metal bearing combined with the capacity of inserting a thin walled cementless acetabular component has fostered the reintroduction of hip resurfacing. As in other forms of conservative hip surgery, i.e. pelvic osteotomies and impingement surgery, patient selection will help minimize complications and the need for early reoperation. Patient Selection and Hip
The treatment of osteonecrosis of the femoral head (ONFH) in young and active patients remains a challenge. The purpose of this study was to determine and compare the clinical and radiographic results of the two different hip resurfacing systems; hemi-resurfacing and metal-on-metal total hip resurfacing in patients with ONFH. This study was a retrospective review of 20 patients with 30 hips who had ONFH and underwent hemi-resurfacing or total hip resurfacing between November 2002 and February 2006. We mainly performed hemi-resurfacing for early stage ONFH, and total hip resurfacing for advanced stages. Fifteen hips in 11 patients had a hemi-resurfacing component (Conserve, Wright Medical Co) with a mean age at operation of 50 years and an average follow-up of 5.5 years. Fifteen hips in 10 patients had a metal-on-metal total hip resurfacing component (Birmingham hip resurfacing, Smith & Nephew Co.) with a mean age at operation of 40 years and an average follow-up years.Introduction
Methods
Although hip replacement and resurfacing procedures both aim to restore mobility, improve joint function, and relieve pain, it is unclear how each differ in terms of gait mechanics and if they are affected by varying walking speeds. We compared limb symmetry and ground reaction force (GRF) profiles between bilateral total hip arthroplasty patients (THA), bilateral hip resurfacing arthroplasty patients (HRA), and healthy control participants (CON) during level-treadmill walking at different speeds. Bilateral THA and bilateral HRA patients (nTHA = 15; nHRA = 15; postoperative 12–18 months), and age-, mass-, and height-matched CON participants (nCON = 20) underwent gait analysis on an instrumented treadmill. Walking trials started at 4 km/h and increased in 0.5 km/h increments until top walking speed (TWS) was achieved. Gait symmetry index (SI = 0% for symmetry) was assessed between limbs during weight-acceptance, mid-stance and push-off phases of gait; and vertical GRFs were captured for the normalised stance phase using statistical parametric mapping (SPM; CI = 95%).Abstract
Objectives
Methods
Current use of hard biomaterials such as cobalt-chrome alloys or ceramics to articulate against the relatively soft, compliant native cartilage surface reduces the joint contact area by up to two thirds. This gives rise to high and abnormal loading conditions which promotes degradation and erosion of the mating cartilage leading to pain, stiffness, and loss of function. Biomimetic soft lubrication strategies have been developed by grafting hydrophilic polymers onto substrates to form a gel-type surface. Surface grafted gels mimic the natural mechanisms of friction dissipation in synovial joints, showing a promising potential for use in hemiarthroplasty. This project aims to develop implant surfaces with properties tailored to match articular cartilage to retain and promote natural joint function ahead of total joint replacement. Four different types of monomers were grafted in a one-step photopolymerisation procedure onto polished PEEK substrates. The functionalised surfaces were investigated using surface wettability, FTIR, and simplified 2D-tribometry tests against glass and animal cartilage specimens to assess their lubricity and mechanical properties for hemiarthroplasty articulations.Abstract
Objectives
Methods
Accurate analysis of the patellar resurfacing is essential to better understand the etiology of patella-femoral problems and dissatisfaction following total knee arthroplasty (TKA). In the current published literature patellar resurfacing is analysed using 2D radiographs. With use of radiographs there is potential for error due to differences in limb positioning, projection, anatomic variability and difficulties in appreciating the cement-bone interface. So, we have developed a CT Scan based 3D modelled technique for accurate evaluation of patellar resurfacing. This technique for analyses of patellar resurfacing is based on the pre-operative and pos-operative CT Scan data of the patients who underwent TKA with patellar resurfacing. In the first step, accurately landmarked 3D models of pre-op patellae were created from pre-operative CT Scan data in ScanIP software. This model was imported in Geomagic design software and computational model of post-op patella was created. This was further analysed to determine the inclination of the patellar resection plane, patellar button positioning and articular volumetric restoration of the patella. Reliability and reproducibility of the technique was tested by comparing 3 sets of 10 measurements done by 2 independent investigators on 30 computational models of patellae derived from the data of randomly chosen 30 TKA patients.Abstract
Background
Methods
Patients undergoing hip resurfacing arthroplasty (HRA) is typically reserved for highly active patients. Patient Reported Outcome Measures (PROMs) such as the Oxford Hip Score (OHS) are reported to have ceiling effects, which may limit physicians' ability to measure health gain in these patients. The Metabolic Equivalent of Task (MET) index is a validated compendium assigning energy expenditure to a wide range of activities; for example, a slow walk expends 2.9 kcal/kg/hour, golf expends 4.0 kcal/kg/hour, while moderate lacrosse typically expends 8.1 kcal/kg/hour. We hypothesized that for patients with high OHS (47–48) after HRA, the MET index could better discriminate between high-performing individuals. We evaluated 97 consecutive HRA patients performed by a single surgeon. They prospectively completed an online Oxford Hip Score. They also listed three activities which they had performed independently in the preceding 2 weeks with a Likert-scale slider denoting intensity of effort. Matched data-sets were obtained from 51 patients, from which 23 had OHS of 47–48 at 6-months. Their activity with the highest MET index was selected for analysis. The 23 patients' OHS improved from 29.3 ± 7.0 preoperatively to 47.6 ± 0.5 after 6-months, while their MET indices improved from 8.5 ± 3.7 to 12.9 ± 3.5 kcal/kg/hr. The activities performed by these high-performance individuals ranged from the lowest, pilates (8.05 kcal/kg/hour), to highest, running at 22km/hr (23 kcal/kg/hour). 45% of patients undergoing HRA in this cohort had OHS of 47 and 48 at 6-months after surgery. Unlike the OHS, the MET index described variation in physical activity in these high-performance individuals, and did so on an objective measurable scale.
Hip resurfacing arthroplasty (HRA) became a popular procedure in the early 90s because of the improved wear characteristic, preserving nature of the procedure and the optimal stability and range of motion. Concerns raised since 2004 when metal ions were seen in blood and urine of patients with a MoM implant. Design of the prosthesis, acetabular component malpositioning, contact-patch-to-rim distance (CPR) and a reduced joint size all seem to play a role in elevated metal ion concentrations. Little is known about the influence of physical activity (PA) on metal ion concentrations. Implant wear is thought to be a function of use and thus of patient activity levels. Wear of polyethylene acetabular bearings was positively correlated with patient's activity in previous studies. It is hypothesized that daily habitual physical activity of patients with a unilateral resurfacing prosthesis, measured by an activity monitor, is associated with habitual physical activity. A prospective, explorative study was conducted. Only patients with a unilateral hip resurfacing prosthesis and a follow-up of 10 ± 1 years were included. Metal ion concentrations were determined using ICP-MS. Habitual physical activity of subjects was measured in daily living using an acceleration-based activity monitor. Outcome consisted of quantitative and qualitative activity parameters. In total, 16 patients were included. 12 males (75%) and 4 females (25%) with a median age at surgery of 55.5 ± 9.7 years [43.0 – 67.9] and median follow-up of 9.9 ± 1.0 years [9.1 – 10.9]. The median cobalt and chromium ion concentrations were 25 ± 13 and 38 ± 28 nmol/L. A significant relationship, when adjusting for age at surgery, BMI, cup size and cup inclination, between sit-stand transfers (p = .034) and high intensity peaks (p = .001) with cobalt ion concentrations were found (linear regression analysis). This study showed that a high number of sit-stand transfers and a high number of high intensity peaks is significantly correlated with high metal ion concentrations, but results should be interpreted with care. For patients it seems save to engage in activities with low intensity peaks like walking or cycling without triggering critical wear or metal ions being able to achieve important general health benefits and quality of life, although the quality (high intensity peaks) of physical activity and behaviour of patients (sit-stand-transfers) seem to influence metal ion concentrations.
Focal knee resurfacing implants (FKRIs) are typically intended to treat focal cartilage defects in middle-aged patients. All currently available FKRIs are (partly) composed of metal, which potentially leads to degeneration of the opposing articulating cartilage and hampers follow-up using magnetic resonance imaging (MRI). The purpose of this study was to investigate the in vivo osseointegration process of a novel non-degradable thermoplastic polycarbonate-urethane (TPU) osteochondral implant. Bi-layered implants measuring 6 mm in diameter, with a double-curvature to match the approximate curvature of the goat medial femoral condyle were fabricated. TPU implants were composed of an articulating Bionate® II 80A top layer, and a Bionate® 75D bottom layer (DSM Biomedical, Geleen, the Netherlands) which is intended to osseointegrate. A biphasic calcium phosphate coating formulation, optimized during a prior in vitro study, was applied to half of the TPU implants, while the other half was left uncoated. Bi-layered metal implants (articulating cobalt-chromium top layer and titanium bottom layer) were used as positive control implants. Eight implants per group were implanted bilaterally in the medial femoral condyle of the stifle joints in 12 Dutch milk goats. 18F-sodium fluoride (18F-NaF) positron emission tomography-computed tomography (PET-CT) scanning was performed at 3 and 12 weeks postoperatively, and the corrected maximum standard uptake values (cSUVmax) was calculated to assess the peri-implant bone metabolism. After sacrifice 12 weeks postoperatively, bone histomorphometric analysis was performed to assess the bone-to-implant contact area (BIC). Student's T-test was used in case of normal distribution and the Mann-Whitney-U-test was used in case of abnormal distribution for comparison of BIC and cSUVmax. The BIC value of 10.27 ± 4.50% (mean ± SD) for the BCP-coated TPU implants was significantly (P=0.03) higher than the 4.50 ± 2.61% for the uncoated TPU implants. The uncoated TPU implants scored significantly (P=0.04) lower than the BIC of 12.81 ± 7.55% for the metal implants, whereas there was no significant difference between BCP-coated TPU implants and the metal implants (P=0.68). There was a strong correlation between the cSUVmax values and the BIC values at 12 weeks (Pearson's R=0.74, P=0.001). The cSUVmax values significantly decreased between 3 and 12 weeks for the metal implants (p=0.04). BCP-coated TPU implants followed a similar trend but did not reach statistical significance (p=0.07). cSUVmax in the uncoated TPU implants did not show a significant difference between the time-points (p=0.31). Osseointegration of BCP-coated TPU implants did not significantly differ from metal implants. 18F-NaF PET-CT is a feasible modality to assess osseointegration patterns and showed a similar trend between the BCP-coated and metal implants. Hence, an implant fully composed of TPU may avoid the typical metal-related drawbacks of currently available FKRIs. Long-term follow-up studies are advocated to address the effects of the implant to the opposing cartilage, and are therefore warranted.
Metal-on-metal hip implants can produce adverse tissue reactions to wear debris. Increased metal ion concentrations in the blood are measured as a proxy to wear and the complications it can trigger. Many studies have examined various factors influencing the metal ion concentrations. This is the first study to investigate the effect of physical activity level, as objectively measured in daily life, on blood ion levels, expecting higher concentrations for higher patient activity. Thirty-three patients (13F/20M, 55.8 ± 6.2 years at surgery) with a unilateral resurfacing hip prosthesis were included. At last follow-up (6.8 ± 1.5 years) cobalt and chromium concentrations in the blood were determined by inductively coupled plasma mass spectrometry. Physical activity was measured during 4 successive days using a 3D-acceleration-based activity monitor. Data was analysed using validated algorithms, producing quantitative and qualitative parameters. Acetabular cup position was measured radiographically. Correlations were tested with Pearson's r'.Background
Methods
Focal resurfacing can treat localised articular damage of the knee not appropriate for arthroplasty or biological repair. Independent results on these implants are limited. We previously published early results showing significantly improved Knee Injury & Osteoarthritis Outcome Score (KOOS4) without complication or re-operation, demonstrating this system gives good analgesia and functional improvement in selected patients. We present long-term follow-up of these patients. We prospectively evaluated medium- to long-term results in patients with localised, full-thickness articular cartilage defects of the knee undergoing HemiCAP resurfacing. All procedures were performed by one consultant surgeon. Post-operative rehabilitation was standardised. Outcome measures were KOOS4 score, visual analogue score (VAS), Kellgren and Lawrence arthritis grade, and re-operation rates.Background
Methods
Management of the patellofemoral surface in total knee arthroplasty (TKA) remains a topic of debate. Incidence of anterior knee pain and incidence of repeat operation have been the focus of several recent meta-analyses, however there is little recent data regarding patients” subjective ability to kneel effectively after TKA. The purpose of this study was to compare patient reported outcomes, including reported ability to kneel, after total knee arthroplasty with and without patellar resurfacing. Retrospective chart review of 84 consecutive patients who underwent primary TKA with patella resurfacing (56 knees) or without patella resurfacing (28 knees) having a minimum of 2.5 year follow up was performed. Oxford knee scores (OKS), visual analog pain scores (VAS), and questionnaires regarding ability to kneel were evaluated from both groups. Inability to kneel was defined as patients reporting inability or extreme difficulty with kneeling. Shapiro-Wilk test was used to determine normality of data. Mann Whitney U test was used to compare the OKS and VAS between groups. Chi square test was used to compare kneeling ability between groups. Statistical analysis was performed with SPSS version 23 (IBM, Aramonk, NY).Introduction
Methods
The use of hip resurfacing arthroplasty (HRA) has largely regressed due to the fear of metal-on-metal bearings. However committed HRA users continue to assert the functional advantages that a geometry retaining implant would have on a patient”s hip. Currently worldwide, HRA is only recommended to men who demand an active lifestyle. Despite this precarious indication, it is not clear to what extent HRA has on higher activity function. The aim of this study was to determine the functional extent to which could be achieved with HRA. The primary objective is to assess the loading pattern change for patients implanted with HRA at high walking speeds and inclinations. The second objective is to compare their loading features to a healthy group to determine if a normal gait pattern could be achieved. Between 2012 and 2016, a total of 28 prospective unilateral HRA patients were analysed on an instrumented treadmill from a single centre. All 28 patient patients had a uniform implant type and had no other lower limb operations or disease. Perioperative plain orthogonal radiographs were used to measure hip length and global hip offset change. A healthy control group (n=35) were analysed to compare. All HRA patients gait characteristics were assessed at incrementally higher speeds and inclinations to determine the extent of improvement HRA has on a challenging activity. A Student t-test along with a multivariate analysis was done with significance set at α=0.05. Weight and height variance was accounted with Hof normalisation. The HRA and control group were reasonably matched for age (57 vs 55yrs), BMI (27 vs 25) and height (175 vs 170cm) respectively. Hip measurements revealed less than 5mm change for all cases. The mean time from initial preoperative gait assessment to postoperative assessment was 30 months (24–48months). The mean top walking speed for controls was 1.97m/s and postoperatively 2.1 m/sec for the HRA group. The significant (p<0.001) loading change during flat walking can be seen with restoration of symmetry. Walking at an inclination demonstrated a marked change during weight acceptance (p<0.001) and a loading pattern returning to near normal. This prospective study found HRA patients walking faster than age matched controls. They demonstrated a significant change in their loading pattern, by significantly shifting load from the unaffected side to the implanted side. Uphill walking, an activity which requires more hip flexion, demonstrated a change in stance phase which was near normal. This small comparative study confirms near physiological function can be achieved with HRA at higher activity levels.
Adequate osseointegration of knee resurfacing implants for the treatment of focal cartilage defects is an important prerequisite for good clinical outcomes. Inadequate initial fixation and sustained micromotion may lead to osteolysis and ultimately implant failure. PET/CT with the bone seeking tracer 18F-sodium fluoride (18F-NaF) allows for localisation and quantification of abnormalities in bone metabolism. 18F-NaF PET/CT has been shown to correlate with loosening of implants in the hip and spine. Here, we asses osseointegration of the knee resurfacing implants using micro-computed tomography (µCT) and correlate µCT parameters to 18F-NaF uptake on PET/CT scans taken 3 and 12 weeks after surgery. We hypothesize that 18F-NaF uptake at 12 weeks and its relative decrease between 3 and 12 weeks correlates with osseointegration at 12 weeks postoperatively. Polymer implants with Young”s moduli approximately equal to- and below the Young's modulus of bone, with- and without surface modification were used in this study next to a control metal implant. Five different osteochondral implants were implanted bilaterally in critically-sized osteochondral defects in 16 goats. At 3 and 12 weeks postoperatively, a 10-minute static PET/CT-scan (Philips, Gemini TF PET/CT) was made 60 minutes after intravenous injection of 18F-NaF. Image processing resulted in an overall bone metabolism parameter, i.e. standardized uptake value (SUV). A cylindrical region of interest was drawn around each implant to obtain the maximum SUV (SUVmax). Bone quality parameters were quantified in a cylinder surrounding the implant using µCT after sacrifice as a measure for osseointegration. The in vivo 18F-NaF PET/CT uptake parameters were correlated to the bone quality parameters.INTRODUCTION
METHODS
Hip resurfacing has resurged in the last decade due to a renewed interest in metal on metal bearing. One of the proposed advantages is ease of revision of the femoral component. Short term functional results after femoral revision are similar to those after conventional total hip replacement. Survival and function after revision of the acetabular component only or of both components have not been reported. We aimed to assess hip function and implant survival after revision of the acetabular component for failed Birmingham hip resurfacing (BHR). The Oswestry Outcome Centre collected data prospectively on 5000 patients who underwent hip resurfacing between 1997 and 2002. Of these, 182 hips were revised: 42% had revision of the femoral component only, 8% revision of the acetabular component only, and 50% revision of both components. This study analyzed patients who had revision of the acetabular component, either in isolation or in combination with the femoral component.Background
Methods
Hip resurfacing has become a popular procedure for young active patients with osteonecrosis of the femoral head. However, it is not yet clear exactly how much osteonecrosis would permit this procedure and how much would be a contraindication. The aim of the present study was to analyze the resurfaced femoral head using finite element models and, in particular, to examine the influence of the extent of osteonecrosis and metaphysical stem shaft angles within the femoral head. We evaluated biomechanical changes at various extents of necrosis and implant alignments, using the finite element analysis method. We established three patterns of necrosis by depth from the surface of femoral head and five stem angles. Extension of necrosis as a quarter of femoral head diameter is type A, from a half is type B, and three-fourths is type C. We set five types of different stem angles from 125 to 145 degrees for the axis of femoral shaft. For these models, we evaluated biomechanical changes associated with the extent of necrosis and the stem alignment.Introduction
Methods
Femoral neck fractures remain the leading cause of early failure after metal-on-metal hip resurfacing. Although its' exact pathomechanism has yet to be fully elucidated, current retrieval analysis has shown that either an osteonecrotic event and/or significant surgical trauma to the femoral head neck junction are the leading causes. It is most likely that no single factor like patient selection and/or femoral component orientation can fully avoid their occurrence. As in osteonecrosis of the native hip joint, a certain cell injury threshold may have to be reached in order for femoral neck fracture to occur. These insults are not limited to the surgical approach, but also include femoral head preparation, neck notching, and cement penetration. Although some have argued that the posterior approach does not represent an increased risk fracture for ON after hip resurfacing because of the so-called intraosseous blood supply to the femoral head, to date, the current body of literature on femoral head blood flow in the presence of arthritis has confirmed the critical role of the extraosseous blood supply from the ascending branch of the medial circumflex, as well as the lack of any substantial intraosseous blood supply. Conversely, anterior hip dislocation of both the native hip joint as well as the arthritic hip preserves femoral head vascularity. The blood supply can be compromised by either sacrificing the main branch of the ascending medial femoral circumflex artery or damaging the retinacular vessels at the femoral head-neck junction. Thus an approach which preserves head vascularity, while minimizing soft tissue disruption would certainly be favorable for hip resurfacing. This presentation will review the current state of knowledge on vascularity of the femoral head as well as surgical techniques enhancing its preservation.