Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVII | Pages 36 - 36
1 Jun 2012
Wang Y Bunger C Zhang Y Wu C Hansen E
Full Access

Introduction

How translation of different parts of spine responds to selective thoracic fusion has not been well investigated. Furthermore, how posterior pedicle-screw-only constructs affect spontaneous lumbar curve correction (SLCC) remains unknown. In a retrospective study, we aimed to investigate the balance change after selective thoracic fusion in Lenke 1C type adolescent idiopathic scoliosis (AIS) treated with posterior pedicle-screw-only constructs.

Methods

All AIS cases, surgically treated between 2002 and 2008 in our institute, were reviewed. Inclusion criteria were: patients with Lenke 1C scoliosis treated with posterior pedicle-screw-only constructs; the lowest instrumented vertebra (LIV) ended at L1 level or above; and a minimum 2-year radiographic follow-up. Standing anteroposterior (AP) and lateral digital radiographs from different timepoints (preoperative, immediately postoperative, 3 months postoperative, and final follow-up) were reviewed. In each standing AP radiograph, centre sacral vertical line (CSVL) was drawn first, followed by measurement of the translation (deviation from the CSVL) of some key vertebrae, such as the LIV, LIV+1 (the first vertebra below LIV), LIV+2 (the second vertebra below LIV), LIV+3 (the third vertebra below LIV), lumbar apical vertebra, thoracic apical vertebra, and T1. Additionally, the Cobb angles of major thoracic and lumbar curve were measured at different timepoints, and the correction rate was calculated. Furthermore, clinical photos of patients' back appearance were taken preoperatively and postoperatively.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 8 | Pages 1084 - 1087
1 Aug 2011
Tauchi R Imagama S Kanemura T Yoshihara H Sato K Deguchi M Kamiya M Ishiguro N

We reviewed seven children with torticollis due to refractory atlanto-axial rotatory fixation who were treated in a halo vest. Pre-operative three-dimensional CT and sagittal CT imaging showed deformity of the superior articular process of C2 in all patients. The mean duration of halo vest treatment was 67 days (46 to 91). The mean follow-up was 34 months (8 to 73); at the latest review six patients demonstrated remodelling of the deformed articular process. The other child, who had a more severe deformity, required C1-2 fusion.

We suggest that patients with atlanto-axial rotatory fixation who do not respond to conservative treatment and who have deformity of the superior articular process of C2 should undergo manipulative reduction and halo-vest fixation for two to three months to induce remodelling of the deformed superior articular process before C1-2 fusion is considered.