Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 69 - 69
1 Oct 2020
Lawrie CM Barrack RL Nunley RM
Full Access

Introduction

Bone mineral density (BMD) is correlated with component migration and aseptic loosening after total knee arthroplasty (TKA). Older implant designs have demonstrated BMD loss up to 23% in the first 6 months after TKA, and continued to BMD decline at an average of 5% per year for as long as 2 years after TKA. The impact of component design and fixation method on BMD loss after TKA in modern implant designs has not been fully elucidated. The purpose of this study is to determine the effect of tibial tray thickness and fixation method (cemented versus cementless) on BMD loss patterns of the proximal tibia in two different modern TKA implant systems

Methods

A prospective, nonrandomized, single center study of patients undergoing primary TKA by one of two surgeons was performed with four study cohorts: cemented DePuy Attune, cementless DePuy Attune, cemented Stryker Triathlon, cementless Stryker Triathlon. Target sample size was 80, with 20 per cohort based on adhoc power analysis. Exclusion criteria included: age over 75, BMI >40, inflammatory arthritis, previous knee surgery involving the femur, tibia or tibial bone, and diagnosis of osteopenia/osteoporosis. Implant fixation type was based on surgeon intraoperative assessment of patient bone quality. Demographic data was collected preoperatively. Dual Energy X-ray Absorptiometry (DEXA) Bone Density Monitoring was performed at 6 weeks and one year postoperatively. Bone mineral density was calculated from the DEXA scans for 4 zones for the tibia relative to the keel or central peg: anterior, posterior, medial and lateral. Results were reported as BMD at 1 year postoperatively as a percentage of BMD at 6 weeks postoperatively.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 84 - 84
1 Jul 2022
Rahman A Dangas K Mellon S Murray D
Full Access

Abstract. Introduction. After remodelling, loss of bone density beside the keel of cementless UKR tibial components has been observed as a potential cause of concern. How this affects patient-reported outcomes, and further clinical implications, is unclear. This study aims to assess the effect of cementless UKR implantation on tibial bone density, and to explore its relationship to patient demographics and outcomes. Method. This prospective study assesses 115 anterior-posterior radiographs from cementless UKR postoperatively and five years after surgery. Grey values from nine regions around each keel were collected and standardised to enable inter-radiograph comparison. Change between the post-operative and 5-year radiographs (indicating bone density) was calculated, and effect on 5-year patient demographics and pain and functional outcomes was assessed. Repeat measurements were performed by two operators to assess reliability. Results. There was excellent inter-operator correlation. There was increased bone density directly below the keel (9.1% vs 3.3%: p<0.0001), and reduced density beside the keel (−5.9% vs -1.0%, p<0.0001); comparisons to adjacent regions. Overall remodelling was significantly greater in smaller tibias (p=0.006), and females (p=0.01). Remodelling was unrelated to outcomes (OKS, ICOAP-A/B, TAS), age, and BMI. Conclusion. Remodelling patterns suggest increased loading below and decreased loading adjacent to the tibial keel. Remodelling is greater in smaller tibias and females. Remodelling is not related to any patient-reported pain or function five years after surgery, suggesting that remodelling is successful in removing any mechanical source of bone pain. Therefore, clinicians viewing such remodelling patterns can ignore them as they are of no consequence