For the treatment of ununited fractures, we developed
a system of delivering magnetic labelled mesenchymal stromal cells
(MSCs) using an extracorporeal magnetic device. In this study, we
transplanted ferucarbotran-labelled and luciferase-positive bone
marrow-derived MSCs into a non-healing femoral fracture rat model
in the presence of a magnetic field. The biological fate of the
transplanted MSCs was observed using luciferase-based bioluminescence
imaging and we found that the number of MSC derived photons increased
from day one to day three and thereafter decreased over time. The
magnetic cell delivery system induced the accumulation of photons at
the fracture site, while also retaining higher photon intensity
from day three to week four. Furthermore, radiological and histological
findings suggested improved callus formation and endochondral ossification.
We therefore believe that this delivery system may be a promising
option for bone regeneration.
Objectives. One commonly used
Background &
Objectives: Statins have been shown to stimulate bone formation in vivo and in vitro in rodent models1 generating interest in the possibility that they may be useful therapeutic agents for osteoporosis. The major clinical consequence of osteoporosis are fractures that occur and although there is no firm evidence, there is a perceived associated delay in fracture repair. We examined the influence of atorvastatin on fracture repair in an ovariectomised
Purpose: Severe fractures damage blood vessels and disrupt circulation at the fracture site resulting in an increased risk of poor fracture healing. Endothelial progenitor cells (EPCs) are bone-marrow derived cells with the ability to differentiate into endothelial cells and contribute to neovascularization and re-endothelialization after tissue injury and ischemia. We have previously reported that EPC therapy resulted in improved radiographic healing and histological blood vessel formation in a
Despite biomechanical well established implants and improved operation techniques we still have a too high rate of complications in orthopaedic and trauma surgery like non-union, implant loosening or implant associated infections. The development of bioactive implants could improve the clinical outcome. Growth factors are important regulators of bone metabolism. During fracture healing many growth factors or cytokines were locally released at the facture site. In several studies, different growth factors demonstrated osteoinductive and fracture stimulating properties. In vitro and in vivo studies showed a stimulating effect of Insulin-like growth factor-I (IGF-I), Transforming growth factor-A71 (TGF-A71) and Bone morphogenetic protein-2 (BMP-2) on osteo- and chondrogenetic cells. The exact effectiveness and the interaction of these growth factors during fracture healing is not known so far. Further, the local application of these factors for therapeutically use in fracture treatment is still a problem. A biodegradable poly(D,L-lactide)-coating of implants allows the local and controlled release of incorporated growth factors directly at the fracture site. The coated implant serves on the one hand for fracture stabilization and on the other hand as a drug delivery system. The coating has a high mechanical stability. The incorporated growths factors remain biologically active in the coating and were released in a sustained and controlled manner. To investigate the effect of locally released growth factors IGF-I, TGF-A71 and BMP-2 and the carrier PDLLA on fracture healing, standardised closed fracture models were developed with a close relationship to clinical situation. Further, possible local and systemic side effects were analysed. The results demonstrated a significantly higher stimulating effect of IGF-I on fracture healing compared to TGF-A71. The combined application of both growth factors showed a synergistic effect on the mechanical stability and callus remodeling compared to single treatment. The local release of BMP-2 also enhanced fracture healing significantly – comparable to combination of IGF-I and TGF-A71. However, a higher rate of mineralisation was measurable outside the fracture region using BMP-2 in a
There is an increasing concern of osteoporotic fractures in the ageing population. Low-magnitude high-frequency vibration (LMHFV) was shown to significantly enhance osteoporotic fracture healing through alteration of osteocyte lacuno-canalicular network (LCN). Dentin matrix protein 1 (DMP1) in osteocytes is known to be responsible for maintaining the LCN and mineralization. This study aimed to investigate the role of osteocyte-specific DMP1 during osteoporotic fracture healing augmented by LMHFV. A metaphyseal fracture was created in the distal femur of ovariectomy-induced osteoporotic Sprague Dawley rats. Rats were randomized to five different groups: 1) DMP1 knockdown (KD), 2) DMP1 KD + vibration (VT), 3) Scramble + VT, 4) VT, and 5) control (CT), where KD was performed by injection of short hairpin RNA (shRNA) into marrow cavity; vibration treatment was conducted at 35 Hz, 0.3 g; 20 minutes/day, five days/week). Assessments included radiography, micro-CT, dynamic histomorphometry and immunohistochemistry on DMP1, sclerostin, E11, and fibroblast growth factor 23 (FGF23). In vitro, murine long bone osteocyte-Y4 (MLO-Y4) osteocyte-like cells were randomized as in vivo groupings. DMP1 KD was performed by transfecting cells with shRNA plasmid. Assessments included immunocytochemistry on osteocyte-specific markers as above, and mineralized nodule staining.Aims
Methods
To fully verify the reliability and reproducibility of an experimental method in generating standardized micromotion for the rat femur fracture model. A modularized experimental device has been developed that allows rat models to be used instead of large animal models, with the aim of reducing systematic errors and time and money constraints on grouping. The bench test was used to determine the difference between the measured and set values of the micromotion produced by this device under different simulated loading weights. The displacement of the fixator under different loading conditions was measured by compression tests, which was used to simulate the unexpected micromotion caused by the rat’s ambulation. In vivo preliminary experiments with a small sample size were used to test the feasibility and effectiveness of the whole experimental scheme and surgical scheme.Aims
Methods
Summary Statement. This study demonstrated that Sclerostin monoclonal antibody (Scl-Ab) enhanced bone healing in the rat osteotomy model. Scl-Ab increased callus size, callus bone volume fraction, rate of callus bone formation and fracture callus strength. Introduction. Sclerostin is a protein secreted by osteocytes and is characterized as a key inhibitor of osteoblast-mediated bone formation. Previous studies demonstrated that treatment with a sclerostin monoclonal antibody (Scl-Ab) results in significantly increased bone formation, bone mass and strength in
We investigated the effect of locally administered bisphosphonate on distraction osteogenesis in a rabbit model and evaluated its systemic effect. An osteotomy on the right tibia followed by distraction for four weeks was performed on 47 immature rabbits. They were divided into seven equal groups, with each group receiving a different treatment regime. Saline and three types of dosage of alendronate (low, 0.75 μg/kg; mid, 7.5 μg/kg and high 75 μg/kg) were given by systemic injection in four groups, and saline and two dosages (low and mild) were delivered by local injection to the distraction gap in the remaining three groups. The injections were performed five times weekly during the period of distraction. After nine weeks the animals were killed and image analysis and mechanical testing were performed on the distracted right tibiae and the left tibiae which served as a control group. The local low-dose alendronate group showed a mean increase in bone mineral density of 124.3 mg/cm3 over the local saline group (analysis of variance, p <
0.05) without any adverse effect on the left control tibiae. The findings indicate that the administration of local low-dose alendronate could be an effective pharmacological means of improving bone formation in distraction osteogenesis.
We evaluated the effect of low-intensity pulsed ultrasound stimulation (LIPUS) on the remodelling of callus in a rabbit gap-healing model by bone morphometric analyses using three-dimensional quantitative micro-CT. A tibial osteotomy with a 2 mm gap was immobilised by rigid external fixation and LIPUS was applied using active translucent devices. A control group had sham inactive transducers applied. A region of interest of micro-CT was set at the centre of the osteotomy gap with a width of 1 mm. The morphometric parameters used for evaluation were the volume of mineralised callus (BV) and the volumetric bone mineral density of mineralised tissue (mBMD). The whole region of interest was measured and subdivided into three zones as follows: the periosteal callus zone (external), the medullary callus zone (endosteal) and the cortical gap zone (intercortical). The BV and mBMD were measured for each zone. In the endosteal area, there was a significant increase in the density of newly formed callus which was subsequently diminished by bone resorption that overwhelmed bone formation in this area as the intramedullary canal was restored. In the intercortical area, LIPUS was considered to enhance bone formation throughout the period of observation. These findings indicate that LIPUS could shorten the time required for remodelling and enhance the mineralisation of callus.
Small animal models of fracture repair primarily investigate
indirect fracture healing via external callus formation. We present
the first described rat model of direct fracture healing. A rat tibial osteotomy was created and fixed with compression
plating similar to that used in patients. The procedure was evaluated
in 15 cadaver rats and then Objectives
Methods