Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 95 - 95
1 Jan 2016
O'Neill CK Molloy D Patterson C Beverland D
Full Access

Background. The current orthopaedic literature demonstrates a clear relationship between acetabular component positioning, polyethylene wear and risk of dislocation following Total Hip Arthroplasty (THA). Problems with edge loading, stripe wear and squeaking are also associated with higher acetabular inclination angles, particularly in hard-on-hard bearing implants. The important parameters of acetabular component positioning are depth, height, version and inclination. Acetabular component depth, height and version can be controlled with intra-operative reference to the transverse acetabular ligament. Control of acetabular component inclination, particularly in the lateral decubitus position, is more difficult and remains a challenge for the Orthopaedic Surgeon. Lewinnek et al described a ‘safe zone’ of acetabular component orientation: Radiological acetabular inclination of 40 ± 10° and radiological anteversion of 15 ± 10°. Accurate implantation of the acetabular component within the ‘safe zone’ of radiological inclination is dependent on operative inclination, operative version and pelvic position. Traditionally during surgery, the acetabular component has been inserted with an operative inclination of 45°. This assumes that patient positioning is correct and does not take into account the impact of operative anteversion or patient malpositioning. However, precise patient positioning in order to orientate acetabular components using this method cannot always be relied upon. Hill et al demonstrated a mean 6.9° difference between photographically simulated radiological inclination and the post-operative radiological inclination. The most likely explanation was felt to be adduction of the uppermost hemipelvis in the lateral decubitus position. The study changed the practice of the senior author, with target operative inclination now 35° rather than 40° as before, aiming to achieve a post-operative radiological inclination of 42° ± 5°. Aim. To determine which of the following three techniques of acetabular component implantation most accurately obtains a desired operative inclination of 35 degrees:. Freehand. Modified (35°) Mechanical Alignment Guide, or. Digital inclinometer assisted. Methods. 270 patients undergoing primary uncemented THA were randomised to one of the three methods of acetabular component implantation. Target operative inclination for all three techniques was 35°. Operative inclination was measured intra-operatively using both a digital inclinometer and stereophotogrammetric system. For both the freehand and Mechanical Alignment Guide implantation techniques, the surgeon was blinded to intra-operative digital inclinometer readings. Results. The freehand implantation technique had an operative inclination range of 25.2 – 43.2° (Mean 32.9°, SD 2.90°). The modified (35°) Mechanical Alignment Guide implantation technique had an operative inclination range of 29.3 – 39.3° (Mean 33.7°, SD 1.89°). The digital inclinometer assisted technique had an operative inclination range of 27.5 – 37.5° (Mean 34.0°, SD 1.57°). Mean unsigned deviation from target 35° operative inclination was 2.92° (SD 2.03) for the freehand implantation technique, 1.83° (SD 1.41) for the modified (35°) Mechanical Alignment Guide implantation technique and 1.28° (SD 1.33) for the digital inclinometer assisted technique. Conclusions. When aiming for 35° of operative inclination, the digital inclinometer technique appears more accurate than either the freehand or Mechanical Alignment Guide techniques. In order to improve accuracy of acetabular component orientation during Total Hip Arthroplasty, the surgeon should consider using such a technique