Please check your email for the verification action. You may continue to use the site and you are now logged in, but you will not be able to return to the site in future until you confirm your email address.
Background. Simply stated, carbon reinforced carbon (C/C) may be considered as fibre reinforced pyrocarbon. Pyrocarbon is used e.g. in finger joints and artificial heart valves. Aim of the present study was to evaluate if C/C could broaden the field of orthopaedic applications compared to pyrocarbon. Technically, C/C is used e.g. for brakes of F-1 race cars. Methods. The mechanical strength of the C/C material was characterised by a biaxial flexural bending test according ISO 6474-1. Three C/C shoulder heads articulating against vitamin E stabilised, highly cross-linked UHMWPE (E-XLPE) underwent a shoulder simulator study up to 106 cycles. The Coefficient of Friction (CoF) of C/C disks (Ra: 0.045 μm) against cartilage was analysed by a reciprocal cartilage wear tester. The test was conducted in cell culture medium for 4 h and 12 h using bovine cartilage. All test data is compared to the corresponding test results with Al2O3 ceramic. Conclusions. The strength of C/C is 30 % lower than that of Al2O3 ceramic. Its wear rate measured in the shoulder simulator against E-XLPE is in tendency higher than that of ceramic heads. The CoF against cartilage is double compared to the same test with Al2O3. - C/C seems to have limited a potential as material for orthopaedic application. However, more investigations and optimisation of the C/C type and quality are necessary. Level of evidence. Laboratory test on material samples. Study financed by Mathys Ltd Bettlach