Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 11 - 11
1 Jun 2012
Bassiony A
Full Access

Background. Revision THA presents significant challenges for the surgeon when the proximal femur is deficient or mechanically unreliable. The aim of this study is to assess the clinical and functional results of the use of tumor enndoprosthesis to reconstruct the proximal femur when there is massive bone loss. Patients and Methods. A prospective study was conducted involving 10 cases. The follow up of the cases ranged from 12 months to 30 months with a mean period of an average of 23months. The indications for revision surgery were aseptic loosening in 9 cases and septic loosening in one case Harris hip score was used for pre and postoperative clinical evaluation of the patients. Results. At the latest follow up the Harris Hip scores improved from a preoperative average of 16 (range, 3-47), to a postoperative average of 75.6 (range, 66-94). The complications that we encountered in the study included one case of superficial wound infection, another case developed sciatic nerve palsy postoperatively. No other complications were reported. Conclusion. Revision hip replacement in proximally compromised femurs presents a significant surgical challenge. When there is massive proximal femoral bone loss proximal fitting revision stems do not achieve adequate fixation hence the use of tumor prosthesis is indicated


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_17 | Pages 26 - 26
1 Nov 2017
Syam K Wilson-Theaker W Lokikere N Saraogi A Gambhir A Porter M Shah N
Full Access

With increasing burden of revision hip arthroplasty, one of the major challenge is the management of bone loss associated with previous multiple surgeries. Proximal femoral replacement (PFR) has already been popularised for tumour surgeries. The inherent advantages of PFR over allograft –prosthesis system, which is the other option for addressing severe bone loss include, early weight bearing and avoidance of non-union and disease transmission. Our study explores PFR as a possible solution for the management of complex hip revisions. Thirty consecutive hips (29 patients) that underwent PFR between January 2009 and December 2015 were reviewed retrospectively for their clinical and radiological outcomes. The Stanmore METS system was used in all these patients. Mean age at the index surgery (PFR) was 72.69 years (range 50–89) with number of previous hip arthroplasties ranging from 1–5. At mean follow up of 32.27 months, there were no peri-prosthetic fractures and no mechanical failure of the implants. Clearance of infection was achieved in 80% of cases. There was 1 early failure due to intra-operative perforation of femoral canal needing further revision and two were revised for deep infection. Instability was noted in 26.7% (8) of the hips, of which, 87.5% (7) needed further revision with constrained sockets. Out of these 8 hips with instability, 5 had pre-operative infection. Deep infection was noted in 20% (6) of the hips, of which, 5 were primarily revised with PFR for septic loosening. However, further surgeries were essential for only 3 patients. One patient has symptomatic aseptic acetabular loosening and 1 had asymptomatic progressive femoral side loosening (lost to follow up). Severe proximal femoral bone loss in complex revision arthroplasties has necessitated the use of PFR prosthesis. Our study supports the fact that PFR is probably a mechanically viable option for complex revisions. Significant numbers of dislocations and infections could be attributed to the poor soft tissue envelope around the hip. Further surgical techniques in the form use of dual mobility cups and silver coated PFR implants need to be explored


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 115 - 115
1 Nov 2015
Ries M
Full Access

Abductor deficiency after THA can result from proximal femoral bone loss, trochanteric avulsion, muscle destruction associated with infection, pseudotumor, ALTR to metal debris, or other causes. Whiteside has described a transfer of the tensor muscle and anterior gluteus maximus to the greater trochanter for treatment of absent abductors after THA. Transposition of the tensor muscle requires raising an anterior soft tissue flap to the lever of the interval between the tensor muscle and sartorius, which is the same interval used in an anterior approach to the hip. The muscle is transected distally and transposed posteriorly to attach to the proximal femur. This can result in soft tissue redundancy between the posterior tensor muscle and anterior gluteus maximus. This interval is separated and the anterior gluteus maximis also attached to the proximal femur. Relatively large unconstrained (36 mm heads) were not found to be effective in controlling dislocation in patients with abductor deficiency. In our practice, 11 patients with abductor deficiency were treated with Whiteside's tensor muscle transfer and an unconstrained large diameter femoral head. The mean pre-operative abductor strength was 2.2 and improved to 3.2 post-operatively. One patient sustained a dislocation four weeks after surgery which was treated with open reduction. All of the other hips have remained stable. The combination of a large head and tensor muscle transposition may be a viable alternative to use of a fully constrained component in patients with deficient abductors after THA


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 230 - 230
1 Dec 2013
Bassiony A Asal MK
Full Access

Failure of the femoral component after a primary or revision THA is commonly associated with some degree of femoral bone loss. Depending on the quantity and quality of the remaining host bone, femoral stem revision can be challenging. Twenty patients with severe proximal femoral bone loss due to prosthetic loosening were treated by Wagner cementless self-locking revision stems with a mean follow up of 24 months (range 18–36 months). The indication of revision surgery was aseptic loosening in 16 patients and septic loosening in 4 cases. At the end of the follow up the mean Harris hip score increased from 35 to 86 points. Definite radiographic evidence of bone regeneration in the bony defects was achieved within 3 months in all patients. Implantation of a Wagner cementless selflocking revision stem provided satisfactory results. The Wagner SL Revision prosthesis, firmly and rotationally stable fixed in the medullary cavity of the healthy bone distal from the original prosthetic bed, with its conical longitudinal ribs and cementless anchorage, bridges the defective prosthetic bed and hereby leads to a condition of relative mechanical stability. With time, there is active ossification in the old prosthetic bed, replacing lost bone


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 108 - 108
1 Aug 2017
Ries M
Full Access

Abductor deficiency after THA can result from proximal femoral bone loss, trochanteric avulsion, muscle destruction associated with infection, pseudotumor, ALTR to metal debris, or other causes. Constrained acetabular components are indicated to control instability after THA with deficient abductors. However, the added implant constraint also results in greater stresses at the modular liner-locking mechanism of the constrained component and bone-implant fixation interface, which can contribute to mechanical failure of the constrained implant or mechanical loosening. Use of large heads has been effective in reducing the rate of dislocation after primary THA. However, relatively large (36mm) heads were not found to be effective in controlling dislocation in patients with abductor deficiency. Dual mobility implants which can provide considerably larger head diameters than 36mm may offer an advantage in improving stability in patients with abductor deficiency. However the utility of these devices in controlling instability after THA with deficient abductors has not been established. Whiteside has described a transfer of the tensor muscle and anterior gluteus maximus to the greater trochanter for treatment of absent abductors after THA. Transposition of the tensor muscle requires raising an anterior soft tissue flap to the lever of the interval between the tensor muscle and sartorius, which is the same interval used in an anterior approach to the hip. The muscle is transected distally and transposed posteriorly to attach to the proximal femur. This can result in soft tissue redundancy between the posterior tensor muscle and anterior gluteus maximus. This interval is separated and the anterior gluteus maximus also attached to the proximal femur. The transposed tensor muscle provides muscle coverage over the greater trochanter, which may be beneficial in controlling lateral hip pain. In our practice, 11 patients were treated with Whiteside's tensor muscle transfer. Six patients had absent abductors, one had an avulsed greater trochanter, and four intact but weak abductors. One patient had a muscle transposition alone, one had an ORIF of the greater trochanter and muscle transposition, two had a muscle transposition and head/liner exchange, three had a muscle transposition and cup revision, two had a femoral revision and liner exchange with muscle transposition, and two had a muscle transposition with both component revision. None of the patients had constrained components. The mean pre-operative abductor strength was 2.2 (0/5 in four patients 3/5 in four patients, and 4/5 in three patients). Pre-operative lateral hip pain was none or mild in two patients, moderate in three, and severe in six patients. Mean post-operative abductor strength was 3.2 (2/5 in four patients, 3/5 in three, 4/5 in two, 5/5 in two patients). Post-operative lateral hip pain was none in five and mild in six patients. One patient sustained a dislocation four weeks after surgery which was treated with open reduction. All of the other hips have remained stable. Treatment of patients with hip instability and abductor deficiency has generally required use of a constrained acetabular component. In our experience, transfer of the tensor muscle and anterior gluteus maximus to the greater trochanter can improve abductor strength by one grade and also reduce lateral hip pain. The combination of a large head and tensor muscle transposition may be a viable alternative to use of a fully constrained component in patients with deficient abductors after THA. However, the need for implant constraint should also be individualised and based on factors such as the viability of the transposed muscle, patient compliance with post-operative activity restrictions, femoral head/neck ratio, and cup position


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 173 - 173
1 Sep 2012
Rogers B Garbedian S Kuchinad R MacDonald M Backstein D Safir O Gross A
Full Access

Introduction. Revision hip arthroplasty with massive proximal femoral bone loss remains challenging. Whilst several surgical techniques have been described, few have reported long term supporting data. A proximal femoral allograft (PFA) may be used to reconstitute bone stock in the multiply revised femur with segmental bone loss of greater than 8 cm. This study reports the outcome of largest case series of PFA used in revision hip arthroplasty. Methods. Data was prospectively collected from a consecutive series of 69 revision hip cases incorporating PFA and retrospective analyzed. Allografts of greater than 8 cm in length (average 14cm) implanted to replace deficient bone stock during revision hip surgery between 1984 and 2000 were included. The average age at surgery was 56 years (range 32–84) with a minimum follow up of 10 years and a mean of 15.8 years (range). Results. From the original cohort four patients had died with the original PFA, 21 (30.4%) patients required further surgery with 14 (20.3%) of these needing revisions of the femoral component. The mean time to femoral revision was 9.5 years and Kaplan-Meier survivorship analysis demonstrates a 79.9% PFA survivorship at 20 years. Discussion. Proximal femoral allograft affords long lasting reconstruction of the femoral component in revision hip surgery. We advocate PFA as an attractive option in the reconstruction of the hip in the presence of significant segmental bone loss in younger patients


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 525 - 525
1 Dec 2013
Scott D
Full Access

Introduction:. Significant proximal femoral remodeling occurs after total hip arthroplasty (THA), with regions of bone loss, and regions of hypertrophy. This study compared three implants for changes in femoral bone mineral density over 2 years following primary uncemented hip arthroplasty with a conventional stem (THA), a novel femoral neck-sparing short hip stem (NS-THA), and resurfacing hip arthroplasty (RHA). Methods:. Seventy-one patients participated in this non-randomized, prospective study. All patients had a diagnosis of osteoarthritis and underwent primary uncemented hip arthroplasty. Dual Energy XRay Absorptomitry (DXA) scans were performed at preoperative, 3–7 days post-op, 6 weeks, 6 months, one, and two years post-op. Using custom 2 cm zones, 19 zones were observed for percent changes in bone mineral density (BMD). Radiographs and Harris Hip scores were obtained at each visit. Results:. Age, gender, and BMI were found to be statistically different with fewer females and lower age in the RHA group, and a lower age in the NS-THA group. In all three groups, regions that were located proximally were shown to be the most susceptible to bone loss. Combined 2 cm zones 1C/7C, 2A/6A, and 2B/6B showed statistical significance (p < 0.05). Bone loss in the proximal regions was 8–10% lower with the femoral neck-sparing short stem, and least in the RHA group, causing little to no BMD loss in proximal regions. Radiographic outcomes and clinical results including Harris Hip scores were equal between the groups. Conclusion:. Consistent with our hypothesis, it was found that hip arthroplasty with a conventional stem resulted in the highest proximal femoral bone loss, and resurfacing arthroplasty was associated with the least bone loss. The femoral neck-sparing short stem ameliorated the bone loss seen with traditional hip arthroplasty, and approximated the bone preservation seen with hip resurfacing. The short stem neck-sparing device may provide some of the benefits of hip resurfacing, but could potentially have wider indications for use


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_8 | Pages 57 - 57
1 May 2014
Gehrke T
Full Access

Massive proximal femoral bone loss can be a complex problem, despite various modern technical and implant solutions. Due to inadequate bone stock and missing proximal fixation possibilities, including larger segmental osseous defects, the use of a mega prosthesis might become necessary. Coverage of the segmental bone loss in combination with distal fixation, can be achieved in either cemented or non-cemented techniques. Some implant types allow for additional fixation of the gluteal muscles, attached with non-absorbable sutures or synthetic mesh grafts. Although first reports about partial or even complete femoral replacement are available since the 1960's, larger case series or technical reports are rare within the literature and limited to some specialised centers. Most series are reported by oncologic centers, with necessary larger osseous resections of the femur. The final implantation of any mega prosthesis system requires meticulous planning, especially to calculate the appropriate leg length of the implant and resulting leg length. Combination of a posterior hip with a lateral knee approach allows for the enlargement to a total femur replacement, if necessary. The lateral vastus muscle is detached and the entire soft tissues envelope can be displaced medially. After implant and cement removal, non-structural bone might be resected. Trial insertion is important, due to the variation of overall muscle tension intraoperatively and prevention of early or late dislocation. Currently the use of proximal modular systems, including length, offset and anteversion adaption, became the technique of choice for these implant systems. However, just very few companies offer yet such a complete system, which might also be expanded to a total femur solution. We were able to evaluate our Endo-Klinik results of total-femur replacements within 100 consecutive patients in non-infected cases, after a mean follow up time of five years. There we “only” 68% patients without complications, main complications included: 13% revealed a deep infection; dislocation was found in 6%, material failure and consequent breakage in 3%, persistent patellar problems in 2% and finally 1% with peroneal nerve palsy. These results show that a total-femur replacement is associated with a high complication rate, even in non-infected patient cohorts