Advertisement for orthosearch.org.uk
Results 1 - 20 of 221
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 18 - 18
2 Jan 2024
Ghezzi D Sartori M Boi M Montesissa M Sassoni E Fini M Baldini N Cappelletti M Graziani G
Full Access

Prosthetic joint infections represent complications connected to the implantation of biomedical devices, they have high incidence, interfere with osseointegration, and lead to a high societal burden. The microbial biofilm, which is a complex structure of microbial cells firmly attached to a surface, is one of the main issues causing infections. Biofilm- forming bacteria are acquiring more and more resistances to common clinical treatments due to the abuse of antibiotics administration. Therefore, there is increasing need to develop alternative methods exerting antibacterial activities against multidrug-resistant biofilm-forming bacteria. In this context, metal-based coatings with antimicrobial activities have been investigated and are currently used in the clinical practice. However, traditional coatings exhibit some drawbacks related to the insufficient adhesion to the substrate, scarce uniformity and scarce control over the toxic metal release reducing their efficacy. Here, we propose the use of antimicrobial silver-based nanostructured thin films to discourage bacterial infections. Coatings are obtained by Ionized Jet Deposition, a plasma-assisted technique that permits to manufacture films of submicrometric thickness having a nanostructured surface texture, allow tuning silver release, and avoid delamination. To mitigate interference with osseointegration, here silver composites with bone apatite and hydroxyapatite were explored. The antibacterial efficacy of silver films was tested in vitro against gram- positive and gram-negative species to determine the optimal coatings characteristics by assessing reduction of bacterial viability, adhesion to substrate, and biofilm formation. Efficacy was tested in an in vivo rabbit model, using a multidrug-resistant strain of Staphylococcus aureus showing significant reduction of the bacterial load on the silver prosthesis both when coated with the metal only (>99% reduction) and when in combination with bone apatite (>86% reduction). These studies indicate that IJD films are highly tunable and can be a promising route to overcome the main challenges in orthopedic prostheses


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 23 - 23
2 Jan 2024
Ciatti C Quattrini F Asti C Maniscalco P
Full Access

Previous scientific studies have highlighted how coupling is an important element affecting total hip arthroplasty's survival. This study aims to evaluate whether metal-on-metal (MOM) coupling could be a statistically significant risk factor. The data from the regional joint registry (Registro dell'Impiantologia Protesica Ortopedica, RIPO) was used for analysis. The data collection accuracy of this registry was 97.2% in 2017. We retrospective evaluate all MOM total hip arthroplasties (THAs) implanted in our department between January 01st 2000 and December 31st 2011. We used a control group composed by all other prosthesis implanted in our Department in the same time lapse. We registered 660 MOM THAs. Mean age of patients was 66.9 years. 603 patients have a >36mm head, while 78 a <36 mm one. Neck modularity was present in half of patients. 676 implants were cementless. We registered 69 revisions, especially due to aseptic mobilization (16 THAs), implant breakage (9 THAs) and periprosthetic fracture (6 THAs). The MOM THAs overall Kaplan-Meier survival rate was 87.2 at 15 years, and the difference between MOM THAs and other implants two curves is statistically significant (p<0.05). Male sex is a significant risk factors. Further evaluations are in progress to establish the presence of any additional risk factors. We think weight and/or BMI may be included in this category. Our study confirms the data currently present in the literature regarding a lower survival of metal-on-metal hip prostheses. The male sex is a statistically significant risk factor (p<0.05), while age, head size and modularity of the prosthetic neck are not statistically significant (p>0.05). Any new finds will be presented at the congress venue


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 71 - 71
1 Dec 2020
Pukalski Y Barcik J Zderic I Yanev P Baltov A Rashkov M Richards G Gueorguiev B Enchev D
Full Access

Coronoid fractures account for 2 to 15% of the cases with elbow dislocations and usually occur as part of complex injuries. Comminuted fractures and non-unions necessitate coronoid fixation, reconstruction or replacement. The aim of this biomechanical study was to compare the axial stability achieved via an individualized 3D printed prosthesis with curved cemented intramedullary stem to both radial head grafted reconstruction and coronoid fixation with 2 screws. It was hypothesized that the prosthetic replacement will provide superior stability over the grafted reconstruction and screw fixation. Following CT scanning, 18 human cadaveric proximal ulnas were osteotomized at 40% of the coronoid height and randomized to 3 groups (n = 6). The specimens in Group 1 were treated with an individually designed 3D printed stainless steel coronoid prosthesis with curved cemented intramedullary stem, individually designed based on the contralateral coronoid scan. The ulnas in Group 2 were reconstructed with an ipsilateral radial head autograft fixed with two anteroposterior screws, whereas the osteotomized coronoids in Group 3 were fixed in situ with two anteroposterior screws. All specimens were biomechanically tested under ramped quasi-static axial loading to failure at a rate of 10 mm/min. Construct stiffness and failure load were calculated. Statistical analysis was performed at a level of significance set at 0.05. Prosthetic treatment (Group 1) resulted in significantly higher stiffness and failure load compared to both radial head autograft reconstruction (Group 2) and coronoid screw fixation, p ≤ 0.002. Stiffness and failure load did not reveal any significant differences between Group 2 and Group 3, p ≥ 0.846. In cases of coronoid deficiency, replacement of the coronoid process with an anatomically shaped individually designed 3D printed prosthesis with a curved cemented intramedullary stem seems to be an effective method to restore the buttress function of the coronoid under axial loading. This method provides superior stability over both radial head graft reconstruction and coronoid screw fixation, while achieving anatomical articular congruity. Therefore, better load distribution with less stress at the bone-implant interface can be anticipated. In the clinical practice, implementation of this prosthesis type could allow for early patient mobilization with better short- and long-term treatment outcomes and may be beneficial for patients with irreparable comminuted coronoid fractures, severe arthritic changes or non-unions


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 5 - 5
1 Nov 2018
Samaila E Negri S Magnan B
Full Access

Total ankle replacement (TAR) is contraindicated in patients with significant talar collapse due to AVN and in these patients total talus body prosthesis has been proposed to restore ankle joint. To date, five studies have reported implantation of a custom-made talar body in patients with severely damaged talus, showing the limit of short-term damage of tibial and calcaneal thalamic joint surfaces. Four of this kind of implants have been performed. The first two realized with “traditional” technology CAD-CAM has been performed in active patients affected by “missing talus” and now presents a survival follow-up of 15 and 17 years. For the third patient affected by massive talus AVN we designed a 3D printed porous titanium custom talar body prosthesis fixed on the calcaneum and coupled with a TAR, first acquiring high-resolution 3D CT images of the contralateral healthy talus that was “mirroring” obtaining the volume of fractured talus in order to provide the optimal fit. Then the 3D printed implant was manufactured. The fourth concern a TAR septic mobilization with high bone loss of the talus. The “two-stage” reconstruction conducted with the implant of total tibio-talo-calcaneal prosthesis “custom made” built with the same technology 3D, entirely in titanium and using the “trabecular metal” technology for the calcaneous interface. Weightbearing has progressively allowed after 6 weeks. No complications were observed. All the implants are still in place with an overall joint mobility ranging from 40° to 60°. This treatment requires high demanding technical skills and experience with TAR and foot and ankle trauma. The 15 years survival of 2 total talar prosthesis coupled to a TAR manufactured by a CAD-CAM procedure encourages consider this 3D printed custom implant as a new alternative solution for massive AVN and traumatic missing talus in active patients


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 68 - 68
1 Nov 2018
Sánchez-Abella L Loinaz I Grande H Dupin D
Full Access

In 2011, approximately 1.6 million total hip arthroplasties (THAs) were conducted in 27 of the 34 member countries in the Organization for Economic Cooperation and Development (OECD) However, approximately 10–15% of patients still require revision surgery every year. Therefore, new technologies are required to increase the life-spam of the prosthesis from the current 10–15 years to at least 20–30 years. Our strategy focuses on surface modification of the bearing materials with a hydrophilic coating to improve their wear behaviour. These coatings are biocompatible, with high swelling capacity and antifouling properties, mimicking the properties of natural cartilage, i.e. wear resistance with permanent hydrated layer that prevents prosthesis damage. Clear beneficial advantages of this coating have been demonstrated in different conditions and different materials, such as UHMWPE, PEEK, CrCo, Stainless steel, ZTA and Alumina. Using routine tribological experiments, the wear for UHMWPE substrate was decreased by 75% against alumina, ZTA and stainless steel. For PEEK-CFR substrate coated, the amount of material lost against ZTA and CrCo was at least 40% lower. Further experiments on hip simulator adding abrasive particles (1-micron sized aluminium particles) during 3 million cycles, on a total of 6 million, showed a wear decreased of around 55% compared to uncoated UHMWPE and XLPE. In conclusion, CIDETEC‘s coating technology is versatile and can be adapted to protect and improve the tribological properties of different types of surfaces used for prosthesis, even in abrasive conditions


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 2 - 2
1 Jul 2014
Gao B Angibaud L
Full Access

Summary Statement. The constraint behavior of total knee arthroplasty (TKA) prosthesis usually has to be physically tested. This study presents a computer simulation model using finite element analysis (FEA) and demonstrates its effectiveness in predicting the femorotibial constraint behavior of TKA implants. Introduction. TKA prostheses are semi-constrained artificial joints. A well-functioning TKA prosthesis should be designed with a good balance between stability and mobility, meaning the femorotibial constraint of the artificial joint cannot be excessive or too lax. To assess the constraint behavior of a TKA prosthesis, physical testing is usually required, and an industrial test standard has been developed for this purpose. Benefiting from technological advancement, computer simulation has become increasingly useful in many industries, including medical device research and development. FEA has been extensively used in stress analysis and structural evaluation of various orthopaedic implants. This study presented an FEA-based simulation to evaluate the femorotibial constraint behavior of TKA prosthesis, and demonstrated the effectiveness of the method by validating it through physical testing. Methods. A Cruciate Retaining (CR) TKA prosthesis design (Optetrak Logic CR, size 3, Exactech, FL, USA) was used in this study. The prosthesis system consists of a femoral component, a tibial insert, and a tibial baseplate. CAD models of the implants assembled at 0° of flexion were used for the simulation. Finite element models were generated using 10-node tetrahedral elements, with all materials considered linear elastic. Boundary conditions were set up according to the ASTM F1223 standard. The tibial baseplate was fixed distally. A constant compressive force (710 N) was applied on the femoral component. Nonlinear Surface-Surface-Contact was defined at the femorotibial articulating surfaces as well as between the tibial insert and tibial baseplate. A coefficient of friction of 0.2 determined from the physical test was input into the simulation. The femoral component was driven under a displacement-controlled scheme to slide along the anterior-posterior (AP) direction on the tibial insert. At each time step, constraint force occurring at the articulating surface was derived from the reaction force at the distal fixation of the tibial baseplate. The force-displacement curve was plotted by combining the results of all time steps to characterize the constraint behavior of the prosthesis. A nonlinear FEA solver (NX Nastran SOL601, Siemens, TX, USA) was used to solve the simulation. In addition, five samples of the prostheses were physically tested per ASTM F1223. Simulation results were compared to the physical testing. Results. The simulation successfully captured the movement of contact location and pressure along the movement of the femoral component. The force-displacement curve predicted by the simulation exhibited a very close hysteresis loop profile as the results of physical testing. Using the curve slope from 0 to 5 mm to characterise the constraint in the most relevant displacement range, the simulation predicted 45.7 N/mm anteriorly and 36.4 N/mm posteriorly, which are less than 10% different from the physical testing results (46.4 N/mm anteriorly and 39.6 N/mm posteriorly). Discussion/Conclusion. This study demonstrated that the simulation was able to closely predict the femorotibial constraint behavior of the TKA prosthesis under ASTM F1223 testing. The simulation results resembled the physical test results not only in the general profile of the curve but also in the magnitude of slope values. The increased difference at the far anterior region could be related to the fact that no material nonlinearity was considered in the current simulation, a factor that could be improved in future studies. A validated simulation method could be very useful in TKA prosthesis design. Since no physical prototypes are required, design evaluation and optimization can be achieved in a much easier and faster manner


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 10 - 10
1 Jan 2019
Shah KM Heath PR Bradford JR Gartland A Wilkinson JM
Full Access

Commonly used alterations of prosthetic surfaces include grit-blasting (GB), plasma-sprayed titanium (Ti) or hydroxyapatite (HA) coating. Systemic concentrations of cobalt (Co) and chromium (Cr) are elevated in patients with metal-on-metal hip replacement, but can occur for all modular hip replacements. Here, we use whole genome microarrays to assess differential gene expression in primary human osteoblasts grown in vitro and on these prosthesis surfaces following exposure to clinically relevant concentrations of Co and Cr. Mesenchymal cells obtained from bone-fragments of 3 patients undergoing joint replacement surgery were differentiated into osteoblasts. Subsequently, cells were cultured in vitro on tissue-culture plates (TCP), or on GB, Ti and HA surfaces (JRI Orthopaedics Ltd, Sheffield, UK). Following 24hr exposure to a combination of clinically equivalent concentrations of Co2+:Cr3+, RNA was extracted and hybridized to SurePrint-G3 Gene Expression Microarray. Probe signals were normalised using ‘Limma’ package on R-Bioconductor and differential gene expression assessed with empirical Bayes approach (Log2FC>1.00, P<0.001 for differentially expressed genes). For cells grown on TCP, 11 genes were upregulated with 500μg/L Co2+:Cr3+. Of these, 4 were associated to HIF-1 signalling based on KEGG pathway analysis (P=5.4e-5). Exposure to 1000μg/L Co2+:Cr3+ altered expression at 164 loci for HA surfaces, and a separate 50 loci for Ti surfaces compared to GB surfaces. Genes for osteoblast differentiation (BMP2 and RGS2) were downregulated on HA surfaces compared to GB, whilst genes for cell-adhesion (ESAM), vesicular trafficking (RAB37) and protection against oxidative damage (NRF2) were upregulated. Ti surfaces caused an upregulation in ERBB3 and CNTF, which are associated with inhibition of osteoblast differentiation and mineralisation, when compared to GB surfaces. This study confirms the role of HIF-1 signalling in response to prosthesis generated metal ions, and is the first to provide a comprehensive genome-wide insight into transcriptional response of osteoblasts at prosthesis surface to clinically equivalent metal exposure


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 11 - 11
1 Jan 2019
Giusto E Pendegrass C Liu C Blunn G
Full Access

Intraosseous Transcutaneous Amputation Prosthesis (ITAP) is a new generation of limb replacements that can provide to amputees, an alternative solution to the main problems caused by the most common used external prosthesis such as pressure sores, infections and unnatural gait. ITAP is designed as one pylon osteointegrated into the bone and protruding through the skin, allowing both the mechanical forces to be directly transferred to the skeleton and the external skin being free from frictions and infections. The skin attachment to the implant is fundamental for the success of the ITAP, as it prevents the implant to move and consequently fail. In this study we wanted to test if cell viability and attachment was improved using TiO2 nanotubes. Human keratinocytes and human dermal fibroblasts were seeded for three days on TiO2 nanotubes with different sizes (18–30nm, 40–60nm and 60–110nm), compared with controls (smooth titanium) and tested for viability and attachment. A Mann-Whitney U test was used to compare groups where p values < 0.05 were considered significant. The results showed that the viability and cell attachment for keratinocytes were significantly higher after three days on controls comparing with all nanotubes (p=0.02), while attachment was higher on bigger nanotubes and controls. Cell viability for fibroblasts was significantly higher on nanotubes between 40 and 110nm comparing with smaller size and controls (p=0.03), while investigation of cell attachment is ongoing. From these early results, we can say that TiO2 nanotubes can improve the soft tissue attachment on ITAP. Further in-vitro and ex-vivo experiments on cell attachment will be carried out


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 3 - 3
1 Nov 2018
Ike H Inaba Y Kobayashi N Choe H Tezuka T Kobayashi D Watanabe S Higashihira S
Full Access

SL-PLUS MIA stem (Smith & Nephew Orthopaedics AG) is a modified implant of Zweymuller type SL-PLUS standard stem (Smith & Nephew Orthopaedics AG). We constructed finite element (FE) models and analysed equivalent stresses in the femur. In addition, we measured bone mineral density (BMD) in the femur by dual-energy X-ray absorptiometry (DEXA) after THA. The purpose of this study was to investigate the equivalent stress and to compare the results of the FE analyses with changes in BMD after THA. Twenty-one patients (18 women and 3 men) who underwent primary cementless THA with SL-PLUS MIA or SL-PLUS formed the basis of this study. Eleven patients received SL-PLUS MIA and ten patients received SL-PLUS. Zones were defined according to Gruen's system (zones 1∼7). Computed-tomography (CT) images of the femur were taken before and at 1 week after THA. FE models of the femur and prosthesis were obtained from CT data by Mechanical Finder (Research Center of Computational Mechanics Inc., Tokyo, Japan), software that creates FE models showing individual bone shape and density distribution. Equivalent stresses were analysed in zones 1 to 7 and compared to the DEXA data. FE studies revealed that there was no significant difference in equivalent stress between SL-PLUS MIA and SL-PLUS. BMD was maintained after THA in zones 3, 4, and 5, whereas BMD decreased in zones 2, 6, and 7. In zone 1, BMD decreased in SL-PLUS MIA stem group by 14%, while BMD was maintained in SL-PLUS standard stem


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 118 - 118
1 Aug 2012
Kumar KS Budithi S Jaiswal A Robinson E Richardson J
Full Access

Background. Thrust plate prosthesis (TPP) is a bone conserving prosthesis in use for over thirty years. TPP is a stemless and uncemented femoral prosthesis fixed at the lateral femoral cortex with a bolt, plate and screw. This has a metal-on-metal articulation with a 28mm Metasul head and Allofit press fit acetabular cup. Our study aimed to assess the functional outcome of this prosthesis. Methods. In our institution 234 TTPs were implanted between 1995 and 2005. All patients completed a self-assessed questionnaire of Harris Hip Score at 2 months, 1 year, and then yearly. Only those who had a follow up was within the last two years were included in the analysis. 76 patients who had failed to satisfy the criteria were excluded. Of the 158 hips in the study 75 hips were in male patients and 83 were in female patients. The median age of patients was 52 years (range 15 to 82). 75 hips were on the right side and 83 on the left. All patients were operated by the senior author or a senior trainee under his supervision (seven hips). Revision of the implant or decision to revise was taken as the end point of our study. Results. The median time to follow up was 7 years (range 1 to 15). The median pre-operative hip score was 43 (range 3 to 77) which rose to 83 points (range 11 to 100) at the latest follow up. Median hip score in females improved from 39 to 82 points and in males from 52 to 85 points. Twelve patients underwent revision surgery either for infection or aseptic loosening. Conclusion. The Thrust Plate Prosthesis had a good outcome with an increase in hip score of 40 points and a median survival of 7 years


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_30 | Pages 25 - 25
1 Aug 2013
Di Rollo D Rana B
Full Access

The thickness of the cement mantle surrounding total hip replacements has been used to predict the incidence of aseptic loosening. However little work has been done regarding the significance of the cement mantle distal to the tip of the femoral prosthesis. Results are reported of a radiographic audit study analyzing the thickness of the distal cement column in primary total hip replacement. In this study the thickness of cement distal to the tip of the femoral prosthesis was measured from 80 post-op AP radiographs taken over a period of 5 months using both the PACS system and plain film x-rays. The mean thickness was 2cm (max 8cm) (min −1.8cm) with a std dev of 1.7cm. This study demonstrated the wide variation in the thickness of the distal cement column achieved by surgeons. It also highlighted the fact that while 2–5mm is the generally accepted optimal cement mantle surrounding the femoral prosthesis, there is little guidance from the literature with regards the optimal thickness of the cement mantle distal to the tip of the femoral prosthesis. Further work requires to be undertaken to determine the optimal thickness of cement in this area, as well as changes in local surgical practice to ensure the optimal thickness of cement distally is consistently achieved. A re-audit of this work after alterations of surgical technique is desirable


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 91 - 91
1 Apr 2017
Lerf R Reimelt I Dallmann F Delfosse D
Full Access

Background. When reversing the hard-soft articulation in inverse shoulder replacement, i.e. hard inlay and soft glenosphere, the tribological behaviour of such a pairing has to be tested thoroughly. Therefore, two hard materials for the inlay, CoCr alloy and alumina toughened zirconia ceramic (ATZ) articulating on two soft materials, conventional UHMWPE and vitamin E stabilised, highly cross-linked PE (E-XLPE) were tested. Methods. The simulator tests were performed analogue to standardised gravimetric wear tests for hip prosthesis (ISO 14242-1) with load and motion curves adapted to the shoulder. The test parameters differing from the standard were the maximum force (1.0 kN) and the range of motion. A servo-hydraulic six station joint simulator (EndoLab, Rosenheim) was used to run the tests up to 5 times 106 cycles with diluted calf serum at 37° C as lubricant. Results. The wear rates measured in the simulator when the CoCr alloy inlay articulated on UHMWPE and E-XLPE were respectively 32.50 +/− 3.48 mg/Mcycle and 10.65 +/− 2.36 mg/Mcycle. In comparison, when the ATZ inlay articulated on UHMWPE and E-XLPE the wear rates were 20.34 +/− 1.14 mg/Mcycle and 5.99 +/− 0.79 mg/Mcycle respectively. Conclusions. The simulator wear rate of the standard articulation CoCr – UHMWPE is similar to that found in the corresponding pairing for hip endoprosthesis. Replacing UHMWPE by E-XLPE, the wear rate is reduced to about 1/3 for both hard counterparts, CoCr and ZTA, respectively. Replacing the CoCr inlay by a part made from ZTA lowers wear by about 37 % in articulation against UHMWPE and about 44 % against E-XLPE. The lowest wear rate, with a reduction of about 80 % compared to the standard CoCr – UHMWPE, exhibits the pairing of both advanced materials, ZTA – E-XLPE. However, long-term clinical follow-up will confirm if this in-vitro wear reduction leads to longer in-vivo survival. Level of evidence. Laboratory test on sample implants. Study financed by Mathys Orthopaedie GmbH


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 98 - 98
1 Jan 2017
Bonnin M Saffarini M de KoK A Verstraete M Van Hoof T Van der Straten C Victor J
Full Access

To determine the mechanisms and extents of popliteus impingements before and after TKA and to investigate the influence of implant sizing. The hypotheses were that (i) popliteus impingements after TKA may occur at both the tibia and the femur and (ii) even with an apparently well-sized prosthesis, popliteal tracking during knee flexion is modified compared to the preoperative situation. The location of the popliteus in three cadaver knees was measured using computed tomography (CT), before and after implantation of plastic TKA replicas, by injecting the tendon with radiopaque liquid. The pre- and post-operative positions of the popliteus were compared from full extension to deep flexion using normosized, oversized and undersized implants (one size increments). At the tibia, TKA caused the popliteus to translate posteriorly, mostly in full extension: 4.1mm for normosized implants, and 15.8mm with oversized implants, but no translations were observed when using undersized implants. At the femur, TKA caused the popliteus to translate laterally at deeper flexion angles, peaking between 80º-120º: 2.0 mm for normosized implants and 2.6 mm with oversized implants. Three-dimensional analysis revealed prosthetic overhang at the postero-superior corner of normosized and oversized femoral components (respectively, up to 2.9 mm and 6.6 mm). A well-sized tibial component modifies popliteal tracking, while an undersized tibial component maintains more physiologic patterns. Oversizing shifts the popliteus considerably throughout the full arc of motion. This study suggests that both femoro- and tibio-popliteus impingements could play a role in residual pain and stiffness after TKA


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 45 - 45
1 Jul 2014
Vanhegan I Coathup M McCarthy I Haddad F Blunn G
Full Access

Summary Statement. Proximal femoral bony deficits present a surgical and biomechanical challenge to implant longevity in revision hip arthroplasty. This work finds comparable primary stability when a distally fixing tapered fluted stem was compared with a conical design in cadaveric tests. Introduction. Proximal bony deficits complicate revision hip surgery and compromise implant survival. Longer distally fixing stems which bypass such defects are therefore required to achieve stability compatible with bony ingrowth and implant longevity. Aims. It is hypothesised that a tapered stem will provide superior rotational stability to a conical design. This work therefore aims to compare the primary stability and biomechanical properties of a new design of tapered fluted modular femoral stem (Redapt®, Smith & Nephew) with that of a conical fluted stem (Restoration®, Stryker). Materials & Methods. 7 Pairs of cadaveric femora were obtained according to strict inclusion/exclusion criteria. Each underwent dual energy x-ray absorptiometry and calibration plain-film radiographs were taken. Digital templating was performed using TraumaCad (Voyant Health, Brainlab) to determine implant sizing. Both stems are fluted, modular and manufactured from titanium. The control stem (Restoration) featured a straight conical design and the investigation stem (Redapt) a straight tapered design. Implantation was performed by a revision arthroplasty surgeon familiar with both systems. Proximal bone deficiency was reproduced using an extended trochanteric osteotomy with removal of metaphyseal bone before reattaching the osteotomy. Primary stability in the axial, sagittal and coronal planes was assessed using micromotion transducers (HBM, Darmstadt, Germany) and also by Radiostereometric Analysis (RSA). RSA employs simultaneous biplanar radiographs to measure relative movement. Two 1mm tantalum beads were mounted on the prosthesis with the centre of the femoral head taken as the third reference point. Beads were placed proximally in the surrounding bone as rigid body markers. Each bone was potted according to the ISO standard for fatigue testing and cyclically loaded at 1Hz for at least 3 increments (750–350N, 1000–350N, 1500–350N) for 1000 cycles. RSA radiographs were taken at baseline and on completion of each cycle. A strain analysis was concurrently performed using a PhotoStress® (Vishay Precision Group, Raleigh, USA) photoelastic coating on the medial femoral cortex. Each bone was loaded intact and then with the prosthesis in-situ at 500N increments until strain fringes were identified. Once testing was completed, the stems were sectioned at the femoral isthmus and data is presented on the cross-sectional fit and fill observed. Results. Both stem designs showed comparable primary stability with all stems achieving clinically acceptable micromotion (<150 μm) when loaded at body weight. A larger proportion of the control stems remained stable as loading increased to x2-3 body weight. Transducer-recorded migration appeared greatest in the axial plane (y axis) with negligible distal movement in the coronal or sagittal planes. Point motion analysis (RSA) indicated most movement to be in the coronal plane (x-axis) whereas segment motion analysis showed rotation about the long axis of the prosthesis to be largest. Photoelastic strain patterns were transferred more distally in both designs, however substantial stress shielding was also observed. Discussion/Conclusion. Both designs achieved adequate distal fixation and primary stability under representative clinical loading conditions. This work supports the continued use of this novel stem design for revision surgery in the presence of extensive proximal bone loss


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 4 - 4
1 Jul 2014
Shandiz M Boulos P Saevarsson S Yoo S Anglin C
Full Access

Summary Statement. A large proportion of knee arthroplasty patients are dissatisfied with their replacement. Significant differences exist between preoperative, postoperative and normal kinematics. A better understanding of the inter-relationships between kinematics, shape and prosthesis placement could lead to improved quality of life. Introduction. Knee kinematics are altered by total knee arthroplasty (TKA) both intentionally and unintentionally. Knowledge of how and why kinematics change may improve patient outcome and satisfaction through improved implant design, implant placement or rehabilitation. Comparing preoperative to postoperative kinematics and shape of the natural and replaced joint will allow an investigation of the inter-relationships between knee shape, prosthesis placement, knee kinematics and quality of life. Patients & Methods. Using a sequential-biplanar radiographic protocol that allowed imaging the preoperative and postoperative patellofemoral (PF) and tibiofemoral (TF) joints under weightbearing throughout the range of motion, we imaged and compared the 6 degree-of-freedom PF and TF kinematics of 9 pre-TKA subjects to those of 15 post-TKA subjects (Zimmer NexGen Legacy Posterior Stabilised Gender Solutions (GS) components). Using a novel computed tomography (CT) protocol, we obtained the femoral, tibial and patellar knee shapes, plus component placement after TKA. The same 9 pre-TKA subjects have now been re-imaged a minimum of one year postoperatively (DePuy Sigma Mobile Bearing cruciate-sacrificing components) to determine their changes in knee geometry and kinematics; full analysis is in progress. Results. Clear, statistically significant differences were seen between the kinematics of the pre-TKA and post-TKA groups. For the TF joint, the tibia was more posterior and inferior in the post-TKA group compared to the pre-TKA group (max 20 mm and 15 mm, respectively) (p<0.001). Subjects had neutral alignment in the post-TKA group compared to varus alignment (max 9°) in the pre-TKA group (p<0.001). For the PF joint, the patella was shifted more posteriorly and less laterally postoperatively and was tilted neutrally compared to laterally (p<0.001). Our preliminary analysis of the matched preop-postop subjects likewise shows a more posterior and inferior tibia and neutral versus valgus alignment. Greater tibial rotations were seen postoperatively due to the mobile bearing. The patella was more posterior and less lateral postoperatively, as seen with the two groups. Discussion/Conclusion. The kinematic differences seen are likely due to a combination of surgical, implant and patient factors. Both groups showed differences from normal kinematics, based on previous studies in the literature. In the future, by comparing the preoperative and postoperative kinematics, shape and quality of life for the same subjects (i.e. the 9 pre-TKA subjects in this study), and analyzing the interrelationships amongst these, we aim to determine if a different implant shape or different component positioning could create more normal kinematics, resulting in a better clinical outcome


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 3 | Pages 413 - 416
1 Mar 2007
van Riet RP van Glabbeek F de Weerdt W Oemar J Bortier H

We undertook a study on eight arms from fresh cadavers to define the clinical usefulness of the lesser sigmoid notch as a landmark when reconstructing the length of the neck of the radius in replacement of the head with a prosthesis. The head was resected and its height measured, along with several control measurements. This was compared with in situ measurements from the stump of the neck to the proximal edge of the lesser sigmoid notch of the ulna. All the measurements were performed three times by three observers acting independently. The results were highly reproducible with intra- and interclass correlations of > 0.99. The mean difference between the measurement on the excised head and the distance from the stump of the neck and the lesser sigmoid notch was −0.02 mm (−1.24 to +0.97). This difference was not statistically significant (p = 0.78). The proximal edge of the lesser sigmoid notch provides a reliable landmark for positioning a replacement of the radial head and may have clinical application


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 1 | Pages 120 - 125
1 Jan 2000
Lan F Wunder JS Griffin AM Davis AM Bell RS White LM Ichise M Cole W

We used dual-energy x-ray absorptiometry (DEXA) to evaluate the extent of periprosthetic bone remodelling around a prosthesis for distal femoral reconstruction, the Kotz modular femoral tibial replacement (KMFTR; Howmedica, Rutherford, New Jersey). A total of 23 patients was entered into the study which had four parts: 1) 17 patients were scanned three times on both the implant and contralateral legs to determine whether the precision of DEXA measurements was adequate to estimate bone loss surrounding the anchorage piece of the KMFTR; 2) in 23 patients the bone mineral density (BMD) in different regions of interest surrounding the diaphyseal anchorage was compared with that of the contralateral femur at the same location to test whether there was consistent evidence of loss of BMD adjacent to the prosthetic stem; 3) in 12 patients sequential studies were performed about one year apart to compare bone loss; and 4) bone loss was compared in ten patients with implants fixed by three screws and in 13 without screws. The mean coefficients of variation (SD/mean) for the 17 sets of repeated scans ranged from 2.9% to 7.8% at different regions of interest in the KMFTR leg and from 1.4% to 2.5% in the contralateral leg. BMD was decreased in the KMFTR leg relative to the contralateral limb and the percentage of BMD loss in general increased as the region of interest moved distally in the femur. Studies done after one year showed no consistent pattern of progressive bone loss between the two measurements. The ten patients with implants fixed by screws were found to have a mean loss of BMD of 42% in the most distal part of the femur, while the 13 without screw fixation had a mean loss of 11%. DEXA was shown to have adequate precision to evaluate loss of BMD around the KMFTR. This was evident relative to the contralateral leg in all patients and generally increased in the most distal part of the femur. In general, it stabilised between two measurements taken one year apart and was greater surrounding implants fixed by cross-locking screws


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 52 - 52
1 Apr 2018
Rieker C
Full Access

Total Hip Arthroplasty (THA) is a well-established, cost-effective treatment for improving function and alleviating pain in patients who have disabling hip disease with excellent long-term results. Based on the excellent results, there is an ongoing trend for THA to be performed in younger and more active patients, having higher physical demands on their new total joints.

Polyethylene (PE) wear and its biological consequences are one of the main causes of implant failure in THA. Macrophages phagocytise PE wear particles and this will result in osteolysis and loss of periprosthetic bone. The risk of these complications can be estimated in relation to the amount of volumetric wear based on two assumptions: that the number of PE particles dispersed in the peri-prosthetic tissues is controlled by the amount of PE wear; and that the development of osteolysis and the resulting aseptic loosening is triggered by these PE particles. Based on these assumptions, a model was developed to estimate the osteolysis-free life of a THA, depending on the Linear Wear Rate (LWR) and femoral head size of the PE bearing.

A review of the literature was conducted to provide an estimate of the radiologic osteolysis threshold based on the volumetric wear of the PE bearing. This review demonstrates that this radiologic osteolysis threshold is approximated 670 mm3 for conventional PE. The osteolysis-free life of the THA was estimated by simply dividing this threshold volume by the annual Volumetric Wear Rate (VWR) of the bearing. The annual VWR is basically controlled by two parameters: (1) annual LWR and (2) head size, and was calculated by using published formulae.

For 28 mm heads, following osteolysis-free life was determined in function of the annual LWR. LWR: 10 µm/y => 116.6 years / LWR: 25 µm/y => 46.6 years / LWR: 50 µm/y => 23.3 years / LWR: 100 µm/y => 11.6 years. For 40 mm heads, following osteolysis-free life was determined in function of the annual LWR. LWR: 10 µm/y => 57.1 years / LWR: 25 µm/y => 22.9 years / LWR: 50 µm/y => 11.4 years / LWR: 100 µm/y => 5.7 years.

The osteolysis-free life determined by this model is in good agreement with the clinical results of PE bearings having a 28 mm head size and demonstrates that extreme low LWRs are mandatory to assure a descent osteolysis-free life for THA (PE bearings) using large heads, such as 40 mm. For such head sizes, small variations of the LWR may have large impacts on the osteolysis-free life of the THA.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 100 - 100
1 Nov 2018
Reffuveille F Varin-Simon J Vernet-Garnier V Madoux J Gangloff S Ohl X Mongaret C
Full Access

Prosthetic Joint Infections (PJIs) are increasing with the use of orthopedic devices on an ageing population. Cutibacterium acnes is a commensal organism that plays an important role in the ecosystem healthy human skin, yet this species is also recognized as a pathogen in foreign body infection: endocarditis, prostatitis and specifically in PJIs. C. acnes is able to escape the immune system. This phenomenon could reflect two bacterial behaviour: the bacterial internalization by host cells and the biofilm formation. In this study, we studied different clinical strains of C. acnes. We noticed that C. acnes isolated from PJIs form 2 fold-more biofilm than the strains isolated from a normal skin in two models (Crystal violet staining and fluorescent microscopy (p=0.04 and p=0.02, respectively, Mann-Whitney test). We did not observe any difference in the internalization rate of those strains by osteoblasts. However, the quantity of biofilm formed by C. acnes before and after the internalization was compared. A significant increase in biofilm formation was observed for the strains isolated from the skin (x2.3±0.07; p=0.008, Mann-Whitney test). However, the hydrophobicity of the skin strains is significantly less important than for the PJIs strains (24.8±13% vs 56.6±12% respectively; p=0.003, Mann-Whitney test) but this did not change after internalization suggesting that there is no cell wall evolution. In conclusion, we studied for the first time the impact of bacterial internalization by osteoblasts on the virulent behaviour of C. acnes, which could explain the hided pathogenicity of this commensal bacterium.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 26 - 26
1 Apr 2017
Li L Patel A Jundi H Parmar H
Full Access

Background

Focal resurfacing can treat localised articular damage of the knee not appropriate for arthroplasty or biological repair. Independent results on these implants are limited. We previously published early results showing significantly improved Knee Injury & Osteoarthritis Outcome Score (KOOS4) without complication or re-operation, demonstrating this system gives good analgesia and functional improvement in selected patients. We present long-term follow-up of these patients.

Methods

We prospectively evaluated medium- to long-term results in patients with localised, full-thickness articular cartilage defects of the knee undergoing HemiCAP resurfacing. All procedures were performed by one consultant surgeon. Post-operative rehabilitation was standardised. Outcome measures were KOOS4 score, visual analogue score (VAS), Kellgren and Lawrence arthritis grade, and re-operation rates.