Advertisement for orthosearch.org.uk
Results 1 - 20 of 29
Results per page:

Aims. Proliferation, migration, and differentiation of anterior cruciate ligament (ACL) remnant and surrounding cells are fundamental processes for ACL reconstruction; however, the interaction between ACL remnant and surrounding cells is unclear. We hypothesized that ACL remnant cells preserve the capability to regulate the surrounding cells’ activity, collagen gene expression, and tenogenic differentiation. Moreover, extracorporeal shock wave (ESW) would not only promote activity of ACL remnant cells, but also enhance their paracrine regulation of surrounding cells. Methods. Cell viability, proliferation, migration, and expression levels of Collagen-I (COL-I) A1, transforming growth factor beta (TGF-β), and vascular endothelial growth factor (VEGF) were compared between ACL remnant cells untreated and treated with ESW (0.15 mJ/mm. 2. , 1,000 impulses, 4 Hz). To evaluate the subsequent effects on the surrounding cells, bone marrow stromal cells (BMSCs)’ viability, proliferation, migration, and levels of Type I Collagen, Type III Collagen, and tenogenic gene (Scx, TNC) expression were investigated using coculture system. Results. ESW-treated ACL remnant cells presented higher cell viability, proliferation, migration, and increased expression of COL-I A1, TGF-β, and VEGF. BMSC proliferation and migration rate significantly increased after coculture with ACL remnant cells with and without ESW stimulation compared to the BMSCs alone group. Furthermore, ESW significantly enhanced ACL remnant cells’ capability to upregulate the collagen gene expression and tenogenic differentiation of BMSCs, without affecting cell viability, TGF-β, and VEGF expression. Conclusion. ACL remnant cells modulated activity and differentiation of surrounding cells. The results indicated that ESW enhanced ACL remnant cells viability, proliferation, migration, and expression of collagen, TGF-β, VEGF, and paracrine regulation of BMSC proliferation, migration, collagen expression, and tenogenesis. Cite this article: Bone Joint Res 2020;9(8):457–467


Bone & Joint Research
Vol. 10, Issue 4 | Pages 269 - 276
1 Apr 2021
Matsubara N Nakasa T Ishikawa M Tamura T Adachi N

Aims. Meniscal injuries are common and often induce knee pain requiring surgical intervention. To develop effective strategies for meniscus regeneration, we hypothesized that a minced meniscus embedded in an atelocollagen gel, a firm gel-like material, may enhance meniscus regeneration through cell migration and proliferation in the gel. Hence, the objective of this study was to investigate cell migration and proliferation in atelocollagen gels seeded with autologous meniscus fragments in vitro and examine the therapeutic potential of this combination in an in vivo rabbit model of massive meniscus defect. Methods. A total of 34 Japanese white rabbits (divided into defect and atelocollagen groups) were used to produce the massive meniscus defect model through a medial patellar approach. Cell migration and proliferation were evaluated using immunohistochemistry. Furthermore, histological evaluation of the sections was performed, and a modified Pauli’s scoring system was used for the quantitative evaluation of the regenerated meniscus. Results. In vitro immunohistochemistry revealed that the meniscus cells migrated from the minced meniscus and proliferated in the gel. Furthermore, histological analysis suggested that the minced meniscus embedded in the atelocollagen gel produced tissue resembling the native meniscus in vivo. The minced meniscus group also had a higher Pauli’s score compared to the defect and atelocollagen groups. Conclusion. Our data show that cells in minced meniscus can proliferate, and that implantation of the minced meniscus within atelocollagen induces meniscus regeneration, thus suggesting a novel therapeutic alternative for meniscus tears. Cite this article: Bone Joint Res 2021;10(4):269–276


Bone & Joint Research
Vol. 13, Issue 7 | Pages 321 - 331
3 Jul 2024
Naito T Yamanaka Y Tokuda K Sato N Tajima T Tsukamoto M Suzuki H Kawasaki M Nakamura E Sakai A

Aims

The antidiabetic agent metformin inhibits fibrosis in various organs. This study aims to elucidate the effects of hyperglycaemia and metformin on knee joint capsule fibrosis in mice.

Methods

Eight-week-old wild-type (WT) and type 2 diabetic (db/db) mice were divided into four groups without or with metformin treatment (WT met(-/+), Db met(-/+)). Mice received daily intraperitoneal administration of metformin and were killed at 12 and 14 weeks of age. Fibrosis morphology and its related genes and proteins were evaluated. Fibroblasts were extracted from the capsules of 14-week-old mice, and the expression of fibrosis-related genes in response to glucose and metformin was evaluated in vitro.


Bone & Joint Research
Vol. 13, Issue 6 | Pages 279 - 293
7 Jun 2024
Morris JL Letson HL McEwen PC Dobson GP

Aims

Adenosine, lidocaine, and Mg2+ (ALM) therapy exerts differential immuno-inflammatory responses in males and females early after anterior cruciate ligament (ACL) reconstruction (ACLR). Our aim was to investigate sex-specific effects of ALM therapy on joint tissue repair and recovery 28 days after surgery.

Methods

Male (n = 21) and female (n = 21) adult Sprague-Dawley rats were randomly divided into ALM or Saline control treatment groups. Three days after ACL rupture, animals underwent ACLR. An ALM or saline intravenous infusion was commenced prior to skin incision, and continued for one hour. An intra-articular bolus of ALM or saline was also administered prior to skin closure. Animals were monitored to 28 days, and joint function, pain, inflammatory markers, histopathology, and tissue repair markers were assessed.


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 880 - 887
1 Aug 2023
Onodera T Momma D Matsuoka M Kondo E Suzuki K Inoue M Higano M Iwasaki N

Aims

Implantation of ultra-purified alginate (UPAL) gel is safe and effective in animal osteochondral defect models. This study aimed to examine the applicability of UPAL gel implantation to acellular therapy in humans with cartilage injury.

Methods

A total of 12 patients (12 knees) with symptomatic, post-traumatic, full-thickness cartilage lesions (1.0 to 4.0 cm2) were included in this study. UPAL gel was implanted into chondral defects after performing bone marrow stimulation technique, and assessed for up to three years postoperatively. The primary outcomes were the feasibility and safety of the procedure. The secondary outcomes were self-assessed clinical scores, arthroscopic scores, tissue biopsies, and MRI-based estimations.


Bone & Joint Open
Vol. 4, Issue 3 | Pages 158 - 167
10 Mar 2023
Landers S Hely R Hely A Harrison B Page RS Maister N Gwini SM Gill SD

Aims

This study investigated the effects of transcatheter arterial embolization (TAE) on pain, function, and quality of life in people with early-stage symptomatic knee osteoarthritis (OA) compared to a sham procedure.

Methods

A total of 59 participants with symptomatic Kellgren-Lawrence grade 2 knee OA were randomly allocated to TAE or a sham procedure. The intervention group underwent TAE of one or more genicular arteries. The control group received a blinded sham procedure. The primary outcome was knee pain at 12 months according to the Knee injury and Osteoarthritis Outcome Score (KOOS) pain scale. Secondary outcomes included self-reported function and quality of life (KOOS, EuroQol five-dimension five-level questionnaire (EQ-5D-5L)), self-reported Global Change, six-minute walk test, 30-second chair stand test, and adverse events. Subgroup analyses compared participants who received complete embolization of all genicular arteries (as distinct from embolization of some arteries) (n = 17) with the control group (n = 29) for KOOS and Global Change scores at 12 months. Continuous variables were analyzed with quantile regression, adjusting for baseline scores. Dichotomized variables were analyzed with chi-squared tests.


Bone & Joint Research
Vol. 13, Issue 7 | Pages 342 - 352
9 Jul 2024
Cheng J Jhan S Chen P Hsu S Wang C Moya D Wu Y Huang C Chou W Wu K

Aims

To explore the efficacy of extracorporeal shockwave therapy (ESWT) in the treatment of osteochondral defect (OCD), and its effects on the levels of transforming growth factor (TGF)-β, bone morphogenetic protein (BMP)-2, -3, -4, -5, and -7 in terms of cartilage and bone regeneration.

Methods

The OCD lesion was created on the trochlear groove of left articular cartilage of femur per rat (40 rats in total). The experimental groups were Sham, OCD, and ESWT (0.25 mJ/mm2, 800 impulses, 4 Hz). The animals were euthanized at 2, 4, 8, and 12 weeks post-treatment, and histopathological analysis, micro-CT scanning, and immunohistochemical staining were performed for the specimens.


The Bone & Joint Journal
Vol. 104-B, Issue 6 | Pages 663 - 671
1 Jun 2022
Lewis E Merghani K Robertson I Mulford J Prentice B Mathew R Van Winden P Ogden K

Aims

Platelet-rich plasma (PRP) intra-articular injections may provide a simple and minimally invasive treatment for early-stage knee osteoarthritis (OA). This has led to an increase in its adoption as a treatment for knee OA, although there is uncertainty about its efficacy and benefit. We hypothesized that patients with early-stage symptomatic knee OA who receive multiple PRP injections will have better clinical outcomes than those receiving single PRP or placebo injections.

Methods

A double-blinded, randomized placebo-controlled trial was performed with three groups receiving either placebo injections (Normal Saline), one PRP injection followed by two placebo injections, or three PRP injections. Each injection was given one week apart. Outcomes were prospectively collected prior to intervention and then at six weeks, three months, six months, and 12 months post-intervention. Primary outcome measures were Knee Injury and Osteoarthritis Outcome Score (KOOS) and EuroQol five-dimension five-level index (EQ-5D-5L). Secondary outcomes included visual analogue scale for pain and patient subjective assessment of the injections.


Bone & Joint Research
Vol. 13, Issue 2 | Pages 66 - 82
5 Feb 2024
Zhao D Zeng L Liang G Luo M Pan J Dou Y Lin F Huang H Yang W Liu J

Aims

This study aimed to explore the biological and clinical importance of dysregulated key genes in osteoarthritis (OA) patients at the cartilage level to find potential biomarkers and targets for diagnosing and treating OA.

Methods

Six sets of gene expression profiles were obtained from the Gene Expression Omnibus database. Differential expression analysis, weighted gene coexpression network analysis (WGCNA), and multiple machine-learning algorithms were used to screen crucial genes in osteoarthritic cartilage, and genome enrichment and functional annotation analyses were used to decipher the related categories of gene function. Single-sample gene set enrichment analysis was performed to analyze immune cell infiltration. Correlation analysis was used to explore the relationship among the hub genes and immune cells, as well as markers related to articular cartilage degradation and bone mineralization.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_11 | Pages 36 - 36
1 Oct 2019
Muratoglu OK Gil D Atici A Connolly R Hugard S Oral E
Full Access

Introduction. Infection remains as one of the major challenges of total joint surgery. One-stage irrigation, debridement and reimplantation, or two-stage revision surgery with a temporary implantation of antibiotic eluting bone cement spacer followed by reimplantation are two methods often used to treat infected patients with mixed outcomes. Like bone cement, ultra-high molecular weight polyethylene (UHMWPE) can also be used as a carrier for antibiotics. Recently, we demonstrated that vancomycin and rifampin can be delivered from UHMWPE implants at therapeutic levels to eradicate Staphylococcus aureus biofilm in a lupine animal model. There are regulatory challenges in translating these types of combination devices to clinical use. Last year, at this meeting, we presented the preliminary pre-clinical testing for a temporary UHMWPE spacer containing gentamicin sulfate as a first step towards clinical use. Since then, we carried out a survey among the Knee Society membership about their preference for spacer use in two-stage revision surgery and found that 43% prefer to use a CoCr femoral component on an all-poly cemented tibial insert, 22% prefer bone cement spacers molded in the OR, 20% prefer static bone cement spacers, and 14% prefer pre-formed bone cement spacers. We modified our implant design based on the majority's preference for a total knee system, rather than bone cement spacers, in the temporary two-stage approach. In this study, we explored the effect of gentamicin sulfate (GS) elution from UHMWPE/GS tibial inserts on bacterial colonization on CoCr surfaces. Methods. We characterized the gentamicin sulfate (GS) particles with scanning electron microscopy (SEM). We molded UHMWPE/GS powder blends and characterized the morphology using SEM and Energy Dispersive X-Ray Spectroscopy (EDS). We submerged samples of molded UHMWPE/GS in buffered phosphate solution (PBS) at 37°C and quantified the extent of GS elution into PBS with a method described by Gubernator et al. using o-phthaladehyde (OPA) [1]. Under basic conditions, OPA reacts with primary amino groups to form fluorescent complexes. Since gentamicin is the only source of such amino acids in our elution samples, the number of fluorescent complexes formed is directly proportional to the amount of gentamicin in the sample. Using this method, we could quantify gentamicin elution by measuring sample fluorescence post OPA-reaction. We used a plate reader to excite the fluorescent complexes formed in the OPA reaction and measured the resulting emission at wavelengths of 340 nm and 455 nm, respectively. We also quantified the effect of the standard cleaning protocol (heated sonication in alkaline water and alcohol) used to clean UHMWPE implants on subsequent GS elution from UHMWPE/GS samples using the OPA method. We used agar diffusion tests to characterize antibacterial properties of UHMWPE/GS samples after cleaning. For these tests, we collected eluents collected from UHMWPE/GS and gentamicin-impregnated bone cement (BC/GS) following 1, 2, 3, and 4 weeks of elution, and tested against S. aureus (ATCC 12600). We used the “daughter cells” method developed by Bechert et al. to assess anticolonizing properties of UHMWPE/GS [2,3]. We also characterized the colonization of bacteria on CoCr surfaces in the presence of GS eluting from UHMWPE/GS test samples. For this we modified a Pin-on-Disc (PoD) wear tester: An UHMWPE/GS pin and UHMWPE pin (control) articulated against an implant-finish CoCr disc with Tryptic Soy Broth containing S. Aureus as the lubricant. After 18 hrs, we rinsed the articular surfaces of the pin and disc and stamped them onto Agar gel to transfer any adherent bacteria. We incubated the Agar plate overnight such that adherent bacteria proliferated and became visible. Results. SEM characterized the GS particles as hollow spheres (Fig 1a). These formed small groups of agglomerated domains at the virgin resin boundaries of UHMWPE after molding (Fig 1b). Sulfur signature from the EDS analysis identified the agglomerated domains as GS particles (Fig 2). Elution of GS started with an initial burst and was followed by steady elution up to 12 weeks (Fig 3). Cleaning reduced the initial burst GS elution; and the elution remained unchanged after 2 days (Fig 4). The agar diffusion test showed simmilar inhibition zones for the eluents collected from UHMWPE/GS and BC/GS, suggesting that these samples yield similar antibacterial activity against S. aureus (Fig 5). UHMWPE/GS demonstrated pronounced anticolonizing properties, effectively mitigating the proliferation of S. aureus “daughter” cells. Anticolonizing activity of Palacos R+G was not significantly different when compared with UHMWPE/GS. The PoD test showed little-to-no colonization of CoCr surfaces in the presence of UHMWPE/GS pins, indicative of excellent antibacterial properties of UHMWPE/GS against S. aureus. Conclusion. SEM and EDS has allowed us to visualize domains of gentamicin sulfate particles in UHMWPE. Our OPA method has greater precision than traditional agar-well diffusion methods of measuring gentamicin concentration and showed that gentamicin sulfate-loaded UHMWPE elutes at the same rate as Palacos R+G. Pin-on-disc experiments and the daughter cell method both confirmed that these two materials have similar anticolonization abilities. We also found that using the standard cleaning protocol for UHMWPE orthopedic implants decreased the burst of gentamicin eluting from UHMWPE, but after 2 days, it had no effect compared to uncleaned UHMWPE/GS. Finally, we found that UHMWPE/GS can reduce the colonization of bacteria on CoCr. UHMWPE/GS continues to be a promising material for treating PJI. For figures, tables, or references, please contact authors directly


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 145 - 149
1 Jun 2021
Crawford DA Passias BJ Adams JB Berend KR Lombardi AV

Aims

A limited number of investigations with conflicting results have described perivascular lymphocytic infiltration (PVLI) in the setting of total knee arthroplasty (TKA). The purpose of this study was to determine if PVLI found in TKAs at the time of aseptic revision surgery was associated with worse clinical outcomes and survivorship.

Methods

A retrospective review was conducted on 617 patients who underwent aseptic TKA revision who had histological analysis for PVLI at the time of surgery. Clinical and radiological data were obtained pre- and postoperatively, six weeks postoperatively, and then every year thereafter.


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 151 - 157
1 Jun 2020
Gil D Atici AE Connolly RL Hugard S Shuvaev S Wannomae KK Oral E Muratoglu OK

Aims

We propose a state-of-the-art temporary spacer, consisting of a cobalt-chrome (CoCr) femoral component and a gentamicin-eluting ultra-high molecular weight polyethylene (UHMWPE) tibial insert, which can provide therapeutic delivery of gentamicin, while retaining excellent mechanical properties. The proposed implant is designed to replace conventional spacers made from bone cement.

Methods

Gentamicin-loaded UHMWPE was prepared using phase-separated compression moulding, and its drug elution kinetics, antibacterial, mechanical, and wear properties were compared with those of conventional gentamicin-loaded bone cement.


Bone & Joint Research
Vol. 9, Issue 9 | Pages 543 - 553
1 Sep 2020
Bakirci E Tschan K May RD Ahmad SS Kleer B Gantenbein B

Aims

The anterior cruciate ligament (ACL) is known to have a poor wound healing capacity, whereas other ligaments outside of the knee joint capsule such as the medial collateral ligament (MCL) apparently heal more easily. Plasmin has been identified as a major component in the synovial fluid that varies among patients. The aim of this study was to test whether plasmin, a component of synovial fluid, could be a main factor responsible for the poor wound healing capacity of the ACL.

Methods

The effects of increasing concentrations of plasmin (0, 0.1, 1, 10, and 50 µg/ml) onto the wound closing speed (WCS) of primary ACL-derived ligamentocytes (ACL-LCs) were tested using wound scratch assay and time-lapse phase-contrast microscopy. Additionally, relative expression changes (quantitative PCR (qPCR)) of major LC-relevant genes and catabolic genes were investigated. The positive controls were 10% fetal calf serum (FCS) and platelet-derived growth factor (PDGF).


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IX | Pages 81 - 81
1 Mar 2012
Khan W Dheerendra S Johnson D Andrew J Hardingham T
Full Access

INTRODUCTION. Bone marrow derived mesenchymal stem cells are a potential source of cells for the repair of articular cartilage defects. Hypoxia has been shown to improve chondrogenesis in adult stem cells. In this study we characterised bone marrow derived stem cells and investigated the effects of hypoxia on gene expression changes and chondrogenesis. MATERIALS AND METHODS. Adherent colony forming cells were isolated and cultured from the stromal component of bone marrow. The cells at passage 2 were characterised for stem cell surface epitopes, and then cultured as cell aggregates in chondrogenic medium under normoxic (20% oxygen) or hypoxic (5% oxygen) conditions for 14 days. Gene expression analysis, glycosoaminoglycan and DNA assays, and immunohistochemical staining were determined to assess chondrogenesis. RESULTS. Bone marrow derived adherent colony forming cells stained strongly for markers of adult mesenchymal stem cells including CD44, CD90 and CD105, and they were negative for the haematopoietic cell marker CD34 and for the neural and myogenic cell marker CD56. Interestingly, a high number of cells were also positive for the pericyte marker 3G5. Cell aggregates showed a chondrogenic response and in lowered oxygen there was increased matrix accumulation of proteoglycan, but less cell proliferation, which resulted in 3.2-fold more glycosoaminoglycan per DNA after 14 days of culture. In hypoxia there was increased expression of key transcription factor SOX6, and the expression of collagens II and XI, and aggrecan was also increased. DISCUSSION. Pericytes are a candidate stem cell in many tissue and our results show that bone marrow derived mesenchymal stem cells express the pericyte marker 3G5. The response to chondrogenic culture in these cells was enhanced by lowered oxygen tension, which up-regulated SOX6 and increased the synthesis and assembly of matrix during chondrogenesis. This has important implications for tissue engineering applications of bone marrow derived stem cells


The Bone & Joint Journal
Vol. 101-B, Issue 7 | Pages 848 - 851
1 Jul 2019
Sautet P Parratte S Mékidèche T Abdel MP Flécher X Argenson J Ollivier M

Aims

The aims of this study were to compare the mean duration of antibiotic release and the mean zone of inhibition between vancomycin-loaded porous tantalum cylinders and antibiotic-loaded bone cement at intervals, and to evaluate potential intrinsic antimicrobial properties of tantalum in an in vitro medium environment against methicillin-sensitive Staphylococcus aureus (MSSA).

Materials and Methods

Ten porous tantalum cylinders and ten cylinders of cement were used. The tantalum cylinders were impregnated with vancomycin, which was also added during preparation of the cylinders of cement. The cylinders were then placed on agar plates inoculated with MSSA. The diameter of the inhibition zone was measured each day, and the cylinders were transferred to a new inoculated plate. Inhibition zones were measured with a Vernier caliper and using an automated computed evaluation, and the intra- and interobserver reproducibility were measured. The mean inhibition zones between the two groups were compared with Wilcoxon’s test.


The Bone & Joint Journal
Vol. 101-B, Issue 7_Supple_C | Pages 108 - 114
1 Jul 2019
Ji G Xu R Niu Y Li N Ivashkiv L Bostrom MPG Greenblatt MB Yang X

Aims

It is increasingly appreciated that coordinated regulation of angiogenesis and osteogenesis is needed for bone formation. How this regulation is achieved during peri-implant bone healing, such as osseointegration, is largely unclear. This study examined the relationship between angiogenesis and osteogenesis in a unique model of osseointegration of a mouse tibial implant by pharmacologically blocking the vascular endothelial growth factor (VEGF) pathway.

Materials and Methods

An implant was inserted into the right tibia of 16-week-old female C57BL/6 mice (n = 38). Mice received anti-VEGF receptor-1 (VEGFR-1) antibody (25 mg/kg) and VEGF receptor-2 (VEGFR-2) antibody (25 mg/kg; n = 19) or an isotype control antibody (n = 19). Flow cytometric (n = 4/group) and immunofluorescent (n = 3/group) analyses were performed at two weeks post-implantation to detect the distribution and density of CD31hiEMCNhi endothelium. RNA sequencing analysis was performed using sorted CD31hiEMCNhi endothelial cells (n = 2/group). Osteoblast lineage cells expressing osterix (OSX) and osteopontin (OPN) were also detected with immunofluorescence. Mechanical pull-out testing (n = 12/group) was used at four weeks post-implantation to determine the strength of the bone-implant interface. After pull-out testing, the tissue attached to the implant surface was harvested. Whole mount immunofluorescent staining of OSX and OPN was performed to determine the amount of osteoblast lineage cells.


Objectives

The lack of effective treatment for cartilage defects has prompted investigations using tissue engineering techniques for their regeneration and repair. The success of tissue-engineered repair of cartilage may depend on the rapid and efficient adhesion of transplanted cells to a scaffold. Our aim in this study was to repair full-thickness defects in articular cartilage in the weight-bearing area of a porcine model, and to investigate whether the CD44 monoclonal antibody biotin-avidin (CBA) binding technique could provide satisfactory tissue-engineered cartilage.

Methods

Cartilage defects were created in the load-bearing region of the lateral femoral condyle of mini-type pigs. The defects were repaired with traditional tissue-engineered cartilage, tissue-engineered cartilage constructed with the biotin-avidin (BA) technique, tissue-engineered cartilage constructed with the CBA technique and with autologous cartilage. The biomechanical properties, Western blot assay, histological findings and immunohistochemical staining were explored.


Bone & Joint Research
Vol. 5, Issue 6 | Pages 247 - 252
1 Jun 2016
Tabuchi K Soejima T Murakami H Noguchi K Shiba N Nagata K

Objectives

The objective of this study was to determine if the use of fascia lata as a tendon regeneration guide (placed into the tendon canal following harvesting the semitendinosus tendon) would improve the incidence of tissue regeneration and prevent fatty degeneration of the semitendinosus muscle.

Materials and Methods

Bilateral semitendinosus tendons were harvested from rabbits using a tendon stripper. On the inducing graft (IG) side, the tendon canal and semitendinosus tibial attachment site were connected by the fascia lata, which was harvested at the same width as the semitendinosus tendon. On the control side, no special procedures were performed. Two groups of six rabbits were killed at post-operative weeks 4 and 8, respectively. In addition, three healthy rabbits were killed to obtain normal tissue. We evaluated the incidence of tendon tissue regeneration, cross-sectional area of the regenerated tendon tissue and proportion of fatty tissue in the semitendinosus muscle.


The Bone & Joint Journal
Vol. 97-B, Issue 12 | Pages 1640 - 1644
1 Dec 2015
Dzaja I Vasarhelyi EM Lanting BA Naudie DD Howard JL Somerville L McCalden RW MacDonald SJ

The purpose of this study was to compare clinical outcomes of total knee arthroplasty (TKA) after manipulation under anaesthesia (MUA) for post-operative stiffness with a matched cohort of TKA patients who did not requre MUA.

In total 72 patients (mean age 59.8 years, 42 to 83) who underwent MUA following TKA were identified from our prospective database and compared with a matched cohort of patients who had undergone TKA without subsequent MUA. Patients were evaluated for range of movement (ROM) and clinical outcome scores (Western Ontario and McMaster Universities Arthritis Index, Short-Form Health Survey, and Knee Society Clinical Rating System) at a mean follow-up of 36.4 months (12 to 120). MUA took place at a mean of nine weeks (5 to 18) after TKA. In patients who required MUA, mean flexion deformity improved from 10° (0° to 25°) to 4.4° (0° to 15°) (p < 0.001), and mean range of flexion improved from 79.8° (65° to 95°) to 116° (80° to 130°) (p < 0.001). There were no statistically significant differences in ROM or functional outcome scores at three months, one year, or two years between those who required MUA and those who did not. There were no complications associated with manipulation.

At most recent follow-up, patients requiring MUA achieved equivalent ROM and clinical outcome scores when compared with a matched control group. While other studies have focused on ROM after manipulation, the current study adds to current literature by supplementing this with functional outcome scores.

Cite this article: Bone Joint J 2015;97-B:1640–4.


Bone & Joint Research
Vol. 4, Issue 7 | Pages 120 - 127
1 Jul 2015
Ramkumar PN Harris JD Noble PC

Objectives

A lack of connection between surgeons and patients in evaluating the outcome of total knee arthroplasty (TKA) has led to the search for the ideal patient-reported outcome measure (PROM) to evaluate these procedures. We hypothesised that the desired psychometric properties of the ideal outcome tool have not been uniformly addressed in studies describing TKA PROMS.

Methods

A systematic review was conducted investigating one or more facets of patient-reported scores for measuring primary TKA outcome. Studies were analysed by study design, subject demographics, surgical technique, and follow-up adequacy, with the ‘gold standard’ of psychometric properties being systematic development, validity, reliability, and responsiveness.