No predictive model has been published to forecast operating time for total knee arthroplasty (TKA). The aims of this study were to design and validate a predictive model to estimate operating time for robotic-assisted TKA based on demographic data, and evaluate the added predictive power of CT scan-based predictors and their impact on the accuracy of the predictive model. A retrospective study was conducted on 1,061 TKAs performed from January 2016 to December 2019 with an image-based robotic-assisted system. Demographic data included age, sex, height, and weight. The femoral and tibial mechanical axis and the osteophyte volume were calculated from CT scans. These inputs were used to develop a predictive model aimed to predict operating time based on demographic data only, and demographic and 3D patient anatomy data.Aims
Methods
The primary objective of this registry-based study was to compare patient-reported outcomes of cementless and cemented medial unicompartmental knee arthroplasty (UKA) during the first postoperative year. The secondary objective was to assess one- and three-year implant survival of both fixation techniques. We analyzed 10,862 cementless and 7,917 cemented UKA cases enrolled in the Dutch Arthroplasty Registry, operated between 2017 and 2021. Pre- to postoperative change in outcomes at six and 12 months’ follow-up were compared using mixed model analyses. Kaplan-Meier and Cox regression models were applied to quantify differences in implant survival. Adjustments were made for patient-specific variables and annual hospital volume.Aims
Methods
The purpose of this study was to develop a personalized outcome prediction tool, to be used with knee arthroplasty patients, that predicts outcomes (lengths of stay (LOS), 90 day readmission, and one-year patient-reported outcome measures (PROMs) on an individual basis and allows for dynamic modifiable risk factors. Data were prospectively collected on all patients who underwent total or unicompartmental knee arthroplasty at a between July 2015 and June 2018. Cohort 1 (n = 5,958) was utilized to develop models for LOS and 90 day readmission. Cohort 2 (n = 2,391, surgery date 2015 to 2017) was utilized to develop models for one-year improvements in Knee Injury and Osteoarthritis Outcome Score (KOOS) pain score, KOOS function score, and KOOS quality of life (QOL) score. Model accuracies within the imputed data set were assessed through cross-validation with root mean square errors (RMSEs) and mean absolute errors (MAEs) for the LOS and PROMs models, and the index of prediction accuracy (IPA), and area under the curve (AUC) for the readmission models. Model accuracies in new patient data sets were assessed with AUC.Aims
Methods
Debate remains whether the patella should be resurfaced during total knee replacement (TKR). For non-resurfaced TKRs, we estimated what the revision rate would have been if the patella had been resurfaced, and examined the risk of re-revision following secondary patellar resurfacing. A retrospective observational study of the National Joint Registry (NJR) was performed. All primary TKRs for osteoarthritis alone performed between 1 April 2003 and 31 December 2016 were eligible (n = 842,072). Patellar resurfacing during TKR was performed in 36% (n = 305,844). The primary outcome was all-cause revision surgery. Secondary outcomes were the number of excess all-cause revisions associated with using TKRs without (versus with) patellar resurfacing, and the risk of re-revision after secondary patellar resurfacing.Aims
Methods