Advertisement for orthosearch.org.uk
Results 1 - 12 of 12
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 118 - 118
2 Jan 2024
Stroobant L Verstraete M Onsem S Victor J Chevalier A
Full Access

Numerous papers present in-vivo knee kinematics data following total knee arthroplasty (TKA) from fluoroscopic testing. Comparing data is challenging given the large number of factors that potentially affect the reported kinematics. This paper aims at understanding the effect of following three different factors: implant geometry, performed activity and analysis method. A total of 30 patients who underwent TKA were included in this study. This group was subdivided in three equal groups: each group receiving a different type of posterior stabilized total knee prosthesis. During single-plane fluoroscopic analysis, each patient performed three activities: open chain flexion extension, closed chain squatting and chair-rising. The 2D fluoroscopic data were subsequently converted to 3D implant positions and used to evaluate the tibiofemoral contact points and landmark-based kinematic parameters. Significantly different anteroposterior translations and internal-external rotations were observed between the considered implants. In the lateral compartment, these differences only appeared after post-cam engagement. Comparing the activities, a significant more posterior position was observed for both the medial and lateral compartment in the closed chain activities during mid-flexion. A strong and significant correlation was found between the contact-points and landmarks-based analyses method. However, large individual variations were also observed, yielding a difference of up to 25% in anteroposterior position between both methods. In conclusion, all three evaluated factors significantly affect the obtained tibiofemoral kinematics. The individual implant design significantly affects the anteroposterior tibiofemoral position, internal-external rotation and timing of post-cam engagement. Both kinematics and post-cam engagement additionally depend on the activity investigated, with a more posterior position and associated higher patella lever arm for the closed chain activities. Attention should also be paid to the considered analysis method and associated kinematics definition: analyzing the tibiofemoral contact points potentially yields significantly different results compared to a landmark-based approach


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 4 - 4
11 Apr 2023
Lynch J Perriman D Scarvell J Pickering M Galvin C Smith P
Full Access

Total knee replacement (TKR) design aims to restore normal kinematics with emphasis on flexion range. The survivorship of a TKR is dependent on the kinematics in six-degrees-of-freedom (6-DoF). Stepping up, such as stair ascent is a kinematically demanding activity after TKR. The debate about design choice has not yet been informed by 6-DoF in vivo kinematics. This prospective randomised controlled trial (RCT) compared kneeling kinematics in three TKR designs. 68 participants were randomised to receive either cruciate retaining (CR-FB), rotating platform (CR-RP) or posterior stabilised (PS-FB) prostheses. Image quality was sufficient for 49 of these patients to be included in the final analysis following a minimum 1-year follow-up. Patients completed a step-up task while being imaged using single-plane fluoroscopy. Femoral and tibial computer-aided design (CAD) models for each of the TKR designs were registered to the fluoroscopic images using bespoke software OrthoVis to generate six-degree-of-freedom kinematics. Differences in kinematics between designs were compared as a function of flexion. There were no differences in terminal extension between the groups. The CR-FB was further posterior and the CR-RP was more externally rotated at terminal extension compared to the other designs. Furthermore, the CR-FB designs was more posteriorly positioned at each flexion angle compared to both other designs. Additionally, the CR-RP design had more external femoral rotation throughout flexion when compared with both fixed bearing designs. However, there were no differences in total rotation for either step-up or down. Visually, it appears there was substantial variability between participants in each group, indicating unique patient-specific movement patterns. While use of a specific implant design does influence some kinematic parameters, the overall patterns are similar. Furthermore, there is high variability indicating patient-specific kinematic patterns. At a group level, none of these designs appear to provide markedly different step-up kinematic patterns. This is important for patient expectations following surgery. Future work should aim to better understand the unique patient variability


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 26 - 26
2 Jan 2024
Jacob A Heumann M Zderic I Varga P Caspar J Lauterborn S Haschtmann D Fekete T Gueorguiev B Loibl M
Full Access

Stand-alone anterior lumbar interbody fusion (ALIF) provides the opportunity to avoid supplemental posterior fixation. This may reduce morbidity and complication rate, which is of special interest in patients with reduced bone mineral density (BMD). This study aims to assess immediate biomechanical stability and radiographic outcome of a stand-alone ALIF device with integrated screws in specimens of low BMD. Eight human cadaveric spines (L4-sacrum) were instrumented with SynFix-LR™ (DePuy Synthes) at L5/S1. Quantitative computed tomography was used to measure BMD of L5 in AMIRA. Threshold values proposed by the American Society of Radiology 80 and 120 mg CaHa/mL were used to differentiate between Osteoporosis, Osteopenia, and normal BMD. Segmental lordosis, anterior and posterior disc height were analysed on pre- and postoperative radiographs (Fig 1). Specimens were tested intact and following instrumentation using a flexibility protocol consisting of three loading cycles to ±7.5 Nm in flexion-extension, lateral bending, and axial rotation. The ranges of motion (ROM) of the index level were assessed using an optoelectronic system. BMD ranged 58–181mg CaHA/mL. Comparison of pre- and postoperative radiographs revealed significant increase of L5/S1 segmental lordosis (mean 14.6°, SD 5.1, p < 0.001) and anterior disc height (mean 5.8mm, SD 1.8, p < 0.001), but not posterior disc height. ROM of 6 specimens was reduced compared to the intact state. Two specimens showed destructive failure in extension. Mean decrease was most distinct in axial rotation up to 83% followed by flexion-extension. ALIF device with integrated screws at L5/S1 significantly increases segmental lordosis and anterior disc height without correlation to BMD. Primary stability in the immediate postoperative situation is mostly warranted in axial rotation. The risk of failure might be increased in extension for some patients with reduced lumbar BMD, therefore additional posterior stabilization could be considered. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 90 - 90
1 Nov 2021
Kowalski E Catelli D Lamontagne M Dervin G
Full Access

Introduction and Objective. Gait variability is the amplitude of the fluctuations in the time series with respect to the mean of kinematic (e.g., joint angles) or kinetic (e.g., joint moments) measurements. Although gait variability increases with normal ageing or pathological mechanisms, such as knee osteoarthritis (OA). The purpose was to determine if a patient who underwent a total knee arthroplasty (TKA) can reduce gait variability. Materials and Methods. Twenty-five patients awaiting TKA were randomly assigned to receive either medial pivot (MP, m=7/f=6, age=62.4±6.2 years) or posterior stabilized (PS, m=7/f=5, age=63.7±8.9 years) implants, and were compared to 13 controls (CTRL, m=7/f=6, age=63.9±4.3 years). All patients completed a gait analysis within one month prior and 12 months following surgery, CTRLs completed the protocol once. A waveform F-Test Method (WFM) was used to compare the variance in knee biomechanics variables at each interval of the gait cycle. Results. Preoperatively, the PS group had greater sagittal knee angle variability compared to the MP (32–58% gait cycle) and CTRL (21–53% gait cycle) groups. Postoperatively, no difference in sagittal knee angle variability existed between any of the groups. Preoperatively, sagittal knee moment variability was greater in the MP (2–39% gait cycle) and PS (5–19% and 42–57% gait cycle) groups compared to the CTRL. Postoperatively, sagittal knee moment was lower in the MP (49–55% gait cycle) and greater in the PS (23–36% gait cycle) compared to the CTRL. Knee power variability was greater preoperatively in the MP (52–61% gait cycle) and PS (52–62% gait cycle) compared to the CTRL. Postoperatively, knee power variability was lower in the MP (17–22% and 45–50% gait cycle) and PS (6–23%, 34–41% and 45–49% gait cycle) compared to the CTRL group. Conclusions. Preoperatively, knee OA patients have greater variability in knee moments than CTRLs during the transition from double-limb support to single-limb support on the affected limb. This indicates knee instability as patients are adopting a gait strategy that refers to knee muscle contraction avoidance. The MP group showed greater knee stability postoperatively as they had lower knee moment and power variability compared to the CTRL. The significance of having less variability than CTRLs is not well understood at this time. Future research on muscle activity is needed to determine if neuromuscular adaptations are causing these reductions in variability after TKA


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 83 - 83
1 Mar 2021
McAleese T Quinn M Graves S Clark G
Full Access

Abstract. Objectives. Patella resurfacing in primary total knee arthroplasty (TKA) remains a contentious issue. Australian rates of patellar resurfacing are 66.6%, significantly higher compared to UK rates of 8–15% and Swedish rates of 2%. Resurfacing has gained popularity in Australia since registry data has shown decreased revision rates with no increase in patellar component related complications. We present for discussion an analysis of 113,694 total knee arthroplasties using commonly implanted prostheses in the UK. Methods. We included all TKA's since the Australian register's conception on 01/09/1999 for a primary diagnosis of osteoarthritis involving the use of either the Triathlon or Duracon implant with and without patellar components. The primary outcome of the study was time to revision for Triathlon's resurfaced and non-resurfaced prosthesis compared to the Duracon's equivalent data. We also analysed the reasons for revision between the 4 groups, type of revision and complication rates. We then compared minimally stabilised and posterior stabilised prostheses. Results. The cumulative revision rate for Triathlon prostheses with resurfacing after 12 years was 3.2% (95% CI, 2.9% to 3.6%) compared to 5.6% (95% CI, 5.0% to 6.2%) without resurfacing. Duracon's equivalent data was 6.3% with resurfacing and 5.9% without resurfacing. Triathlon prosthesis with resurfacing have much lower rates of revision due to loosening, patellofemoral pain, patellar erosion compared to unresurfaced Triathlon prostheses. Conclusion. Triathlon with re-surfacing has lower revision rates regardless of age or BMI. Previous concerns regarding patellofemoral loosening, tibial wear, maltracking relate to Duracon only, indicating the importance of implant specific studies. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 89 - 89
1 Dec 2020
Lentine B Tarka M Schottel P Nelms N Russell S Blankstein M
Full Access

Introduction. Femoral periprosthetic fractures above TKA are commonly treated with retrograde intramedullary nailing (IMN). This study determined if TKA design and liner type affect the minimum knee flexion required for retrograde nailing through a TKA. Methods. Twelve cadaveric specimens were prepared for six single radius (SR) TKAs and six asymmetric medial pivot (MP) TKAs. Trials with 9mm polyethylene liners were tested with cruciate retaining (CR), cruciate substituting (CS) and posterior stabilizing (PS) types. The knee was extended to identify the minimum knee flexion required to allow safe passage of the opening reamer while maintaining an optimal fluoroscopic starting point for retrograde nailing. Furthermore, the angle of axis deviation between the reamer and the femoral shaft was calculated from fluoroscopic images. Results. In all specimens, the reamer entry point was posterior to Blumensaat's line. In the SR TKA, the average flexion required was 70, 71 and 82 degrees for CR, CS and PS respectively. The required flexion in PS was significantly greater than the other designs (p=0.03). In the MP TKA, the average flexion required was 74, 84 and 123 degrees for CR, CS and PS respectively. The required flexion was significantly greater in CS and PS designs (p<0.0001). Femoral component size did not affect the minimum flexion required. Furthermore, the entry reamer required 9.2 (SR) and 12.5 (MP) degrees of posterior axis deviation from the femur. Conclusions. Our study illustrates four novel factors to consider when performing retrograde nailing through TKA. First, significant knee flexion is required to obtain an ideal radiographic starting point when retaining the liner. Second, PS implants require more flexion with both TKA designs. Third, femoral component size does not affect the flexion required. Fourth, there is a consistent posterior axis deviation of the entry reamer from the femoral shaft, explaining the commonly created extension deformity


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 155 - 155
1 Jul 2014
Hutchinson R Choudry Q McLauchlan G
Full Access

Summary. The 80% porous structure of trabecular metal allows for bone ingrowth in more than 90% of the available surface. The Nexgen LPS Uncemented Knee using a trabecular metal tibial component has performed well at minimum of 5 years’ follow-up. Introduction. Total Knee Arthroplasty prostheses most frequently used in today's practice have cemented components. These have shown excellent clinical results. The fixation can however weaken with time, and cement debris within the articulation can lead to accelerated wear. Cementless implants are less commonly used, but some have also shown good long-term clinical results. The potential advantages of cementless implants are retention of bone stock, less chance of third-body wear due to the absence of cement, shorter operative time, and easier treatment of periprosthetic fractures. The posterior stabilised knee replacement has been said to increase tangential shear stresses on the tibial component and increases contact stresses on the cam and post mechanism hence the great debate of cruciate retaining or cruciate sacrificing implants. Objectives. We report the results of a prospective cohort of consecutive primary total knee arthroplasties using an uncemented posterior stabilised prosthesis using a trabecular metal (tantalum) tibial component at a minimum 5-year follow-up. Methods. Prospective 5 year follow-up of patients undergone an uncemented posterior stabilised total knee replacement using a trabecular metal tibial component (NexgenLPS). Clinical examination, Oxford knee score, Knee society score, SF12 and radiological evaluation undertaken at review. Results. 81 patients, 45 female, 36 male. Left 31, Right 50. Mean age 74.3 yrs range (51–90). SF12, mean: 31.8 range (25–37). Oxford Knee Score Pre-op Mean 20.1 range (9–36) Post op: Mean 32.1 range (9–48). Knee Society score. Pain Mean 91.8; range (60–100). Functional score mean 76.2; range (30–100). Mean Range of movement 110.5 degrees range (90–125). No evidence of loosening at 5 yrs. No deep infection. No Revisions. Conclusion. Although there are a variety of methods of achieving satisfactory initial fixation in cementless components, trabecular metal has an advantage owing to its cellular structure resembling bone. The 80% porous structure of trabecular metal allows for bone ingrowth in more than 90% of the available surface. The Nexgen LPS Uncemented Knee using a trabecular metal tibial component used in this series has shown no evidence of loosening at a minimum of 5 years’ follow-up and the prosthesis as a whole has performed very well clinically. Its early results are comparable to those prostheses most commonly used as reported by the arthroplasty registers. The longer term results from this prosthesis are awaited with interest


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 64 - 64
1 May 2012
Conlisk N Pankaj P Howie CR
Full Access

Study Aim. Femoral components used in total knee arthroplasty (TKA) are primarily designed on the basis of kinematics and ease of fixation. This study considers the stress-strain environment in the distal femur due to different implant internal geometry variations (based on current industry standards) using finite element (FE) analyses. Both two and three dimensional models are considered for a range of physiological loading scenarios – from full extension to deep flexion. Issues associated with micro-motion at the bone-implant interface are also considered. Materials and methods. Two (plane strain) and three dimensional finite element analyses were conducted to examine implant micro-motions and stability. The simple 2D models were used to examine the influence of anterior-posterior (AP) flange angle on implant stability. AP slopes of 3°, 7° and 11° were considered with contact between bone and implant interfaces being modeled using the standard coulomb friction model. The direction and region of loading was based on loading experienced at full extension, 90° flexion and 135° flexion. Three main model variations were created for the 3D analyses, the first model represented an intact distal femur, the second a primary implanted distal femur and the third a distal femur implanted with a posterior stabilising implant. Further each of the above 3D model sets were divided into two group, the first used a frictional interface between the bone and implant to characterise the behavior of uncemented implants post TKA and the second group assumed 100% osseointegration had already taken place and focused on examining the subsequent stress/strain environment in the femur with respect to different femoral component geometries relative the intact distal femur model. Results and Discussion. Analyses indicate a trend relating the slope of the anterior-posterior (AP) flange to implant loosening at high flexion angles for uncemented components. Once cemented, this becomes less important. Results from the 3D analyses show that the posterior stabilising implant causes stress concentrations which can lead to bicondylar fatigue fracture. All femoral components cause stress shielding in cancellous bone particularly when they are fully bonded. Investigations into implant micromotion show that revision implants with box sections provided more resistance to micromotion than the pegged primary implants. However for the gait cycle tested the maximum recorded micromotion of both implants was well within acceptable levels for osseointegration to occur


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 34 - 34
1 May 2017
Verstraete M De Coninck S Smis J De Baets P Victor J
Full Access

Background. A new knee simulator has been developed at Ghent University. This simulator provides the unique opportunity of evaluating the knee kinematics during activities of daily living. The simulator therefore controls the position of the ankle in the sagittal plane while keeping the hip at a fixed position. This approach provides full kinematic freedom to the knee. To evaluate and validate the performance of the simulator, the development of and comparison with a numerical simulation model is discussed in this paper. Methods. Both a two and three dimensional simulation model have been developed using the AnyBody Modelling System (AMS). In the two dimensional model, the knee joint is represented by a hinge. Similarly, the ankle and hip joint are represented by a hinge joint and a variable amplitude quadriceps and hamstrings force is applied. In line with this simulation model, a hinge model was created that could be mounted in the UGent knee simulator to evaluate the performance of the simulated model. The hinge model thereby performs a cyclic motion under varying simulated muscle loads while recording the ankle reaction forces. In addition to the two dimensional model, a three dimensional model has been developed. More specifically, a model is built of a sawbone leg holding a posterior stabilised single radius total knee implant. The physical sawbone model contains simplified medial and lateral collateral ligaments. In line with the boundary conditions of the UGent knee simulator, the simulated hip contains a single rotational degree of freedom and the ankle holds four degrees of freedom (three rotations, single translation). In the simulations, the knee is modelled using the force-dependent kinematics (FDK) method built in the AMS. This leaves the knee with six degrees of freedom that are controlled by the ligament tension in combination with the applied quadriceps load and shape of the implant. The physical sawbone model goes through five cycles in the UGent simulator using while recording the kinematics of the femur and tibia using a set of markers rigidly attached to the femur and tibia bone. The position of the implant with respect to the markers was evaluated by CT-scanning the sawbone model. Results and Discussion. In a first step, the reaction forces at the ankle in the 2D model were evaluated. The difference between the simulated and measured reaction force is limited and can be explained from a slight variation of the attachment point of the simulated muscle loads. For the 3D model, the kinematic patterns have been evaluated for both the simulation and physical model using Grood & Suntay definitions. The kinematic parameters display realistic trends, however, no exact match has been obtained for all parameters so far. The latter might be attributed to a number of simplifications in the simulation model as well as elastic deformation of the physical sawbone model. Conclusion. A three dimensional model of a knee implant in the UGent Knee Simulator has been developed. The simulated kinematic patterns appear realistic though no exact match with the measured patterns has been obtained. Future research will therefore focus on the development of a more realistic experimental and numerical model


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 123 - 123
1 Jan 2017
Parchi P Andreani L Evangelisti G Carbone M Condino S Ferrari V Lisanti M
Full Access

Pedicle screws fixation to stabilize lumbar spinal fusion has become the gold standard for posterior stabilization. However their positioning remain difficult due to variation in anatomical shape, dimensions and orientation, which can determine the inefficacy of treatment or severe damages to close neurologic structures. Image guided navigation allows to drastically decrease errors in screw placement but it is used only by few surgeons due to its cost and troubles related to its using, like the need of a localizer in the surgical scenario and the need of a registration procedure. An alternative image guided approach, less expensive and less complex, is the using of patient specific templates similar to the ones used for dental implants or knee prosthesis. Like proposed by other authors we decided to design the templates using CT scans. (slice thickness of 2.0 mm). Template developing is done, for each vertebra, using a modified version of ITK-SNAP 1.5 segmentation software, which allow to insert cylinders (full or empty) in the segmented images. At first we segment the spine bone and then the surgeon chose screw axes using the same software. We design each template with two hollow cylinders aligned with the axes, to guide the insertion in the pedicle, adding contact points that fit on the vertebra, to obtain a template right positioning. Finally we realize the templates in ABS using rapid prototyping. After same in-vitro tests, using a synthetic spine (by Sawbones), we studied a solution to guarantee template stability with simple positioning and minimizing intervention invasiveness. Preliminary ex-vivo animal testing on porcine specimens has been conducted to evaluate template performance in presence of soft-tissue in place, simulating dissection and vertebra exposure. For verification, the surgeon examined post-operative CT-scans to evaluate Kirschner wires positioning. During the ex-vivo animal test sessions, template alignment resulted easy thanks to the spinous process contact point. Their insertion required no additional tissue removal respect to the traditional approach. The positioning of contact points on vertebra's lamina and articular processes required just to shift the soft tissue under the cylinders bases. The surgeon in some cases evaluated false stable template positions since not each of the 4 contact points were actually in contact with the bone surface and tried the right position. CT evaluation demonstrate a positive results in 96.5% of the Kirschner wires implanted. Our approach allows to obtain patient specific templates that does not require the complete removal of soft tissue around vertebra. Guide positioning is facilitated thanks to the using of the spinous processes contact point, while false stable positions can be avoided using four redundant contact points. The templates can be used to guide the drill, the insertion of Kirschner in case of use of cannulated screws or to guide directly the screw. After these preliminary ex-vivo animal tests we obtained the authorization of the Italian Health Ministry to start the human study


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 5 | Pages 900 - 906
1 Sep 1998
Miller RK Goodfellow JW Murray DW O’Connor JJ

Using a new, non-invasive method, we measured the patellofemoral force (PFF) in cadaver knees mounted in a rig to simulate weight-bearing. The PFF was measured from 20° to 120° of flexion before and after implanting three designs of knee prosthesis. Medial unicompartmental arthroplasty with a meniscal-bearing prosthesis and with retention of both cruciate ligaments caused no significant change in the PFF. After arthroplasty with a posterior-cruciate-retaining prosthesis and division of the anterior cruciate ligament, the PFF decreased in extension and increased by 20% in flexion. Implantation of a posterior stabilised prosthesis and division of both cruciate ligaments produced a decrease in the PFF in extension but maintained normal load in flexion. There was a direct relationship between the PFF and the angle made with the patellar tendon and the long axis of the tibia. The abnormalities of the patellar tendon angle which resulted from implantation of the two total prostheses explain the observed changes in the PFF and show how the mechanics of the patellofemoral joint depend upon the kinematics of the tibiofemoral articulation


Objectives

Preservation of both anterior and posterior cruciate ligaments in total knee arthroplasty (TKA) can lead to near-normal post-operative joint mechanics and improved knee function. We hypothesised that a patient-specific bicruciate-retaining prosthesis preserves near-normal kinematics better than standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining prostheses in TKA.

Methods

We developed the validated models to evaluate the post-operative kinematics in patient-specific bicruciate-retaining, standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under gait and deep knee bend loading conditions using numerical simulation.