Advertisement for orthosearch.org.uk
Results 1 - 20 of 515
Results per page:
Bone & Joint Research
Vol. 9, Issue 6 | Pages 272 - 278
1 Jun 2020
Tapasvi S Shekhar A Patil S Pandit H

Aims. The mobile bearing Oxford unicompartmental knee arthroplasty (OUKA) is recommended to be performed with the leg in the hanging leg (HL) position, and the thigh placed in a stirrup. This comparative cadaveric study assesses implant positioning and intraoperative kinematics of OUKA implanted either in the HL position or in the supine leg (SL) position. Methods. A total of 16 fresh-frozen knees in eight human cadavers, without macroscopic anatomical defects, were selected. The knees from each cadaver were randomized to have the OUKA implanted in the HL or SL position. Results. Tibial base plate rotation was significantly more variable in the SL group with 75% of tibiae mal-rotated. Multivariate analysis of navigation data found no difference based on all kinematic parameters across the range of motion (ROM). However, area under the curve analysis showed that knees placed in the HL position had much smaller differences between the pre- and post-surgery conditions for kinematics mean values across the entire ROM. Conclusion. The sagittal tibia cut, not dependent on standard instrumentation, determines the tibial component rotation. The HL position improves accuracy of this step compared to the SL position, probably due to better visuospatial orientation of the hip and knee to the surgeon. The HL position is better for replicating native kinematics of the knee as shown by the area under the curve analysis. In the supine knee position, care must be taken during the sagittal tibia cut, while checking flexion balance and when sizing the tibial component


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_12 | Pages 24 - 24
1 Oct 2018
Behery OA Stulberg B Kreuzer S Kissin Y Campanelli V Vigdorchik JM Long WJ
Full Access

Objectives. Successful total knee arthroplasty (TKA) is predicated on accurate bony resection, mechanical alignment and component positioning. An active robotic TKA system is designed to achieve reliable and accurate bony resection based upon a preoperatively developed surgical plan. Surgical resections are executed intra-operatively according to this pre-operative plan. The goal of this study was to determine the accuracy of final implant positioning and alignment using this active robotic device, as well as its early clinical outcomes. Materials and Methods. An FDA prospective study under investigational device exemption was conducted from 2017–2018. Pre-operative CT scans were used to create a pre-operative plan using the TSolution One? Surgical System (THINK Surgical, Inc). TKA was performed using a standard approach, with planned and robotically executed femoral and tibial resections. Subjects completed 3-month follow-up with post-operative CT scans. A validated method was used to compare pre- and post-operative CT scans to determine differences between planned and achieved implant position. Femoral and tibial component sizing, and mean differences in implant position and alignment were compared. Short Form 12 Physical (PCS) and Mental Component Summary (MCS) scores as well as Knee Society (Objective and Functional) scores at 12 weeks post-operatively were compared with pre-operative scores. Paired-sample t-tests were used for comparisons. Results. Fifty-five subjects whom underwent active robotic TKA and completed 3-month follow-up and were included for analysis. Proximal-distal, antero-posterior and varus-valgus translations, and flexion-extension, internal-external rotations for the FEMUR were statistically different from plan, but the differences were small (<1.7mm, <0.6 deg- p<0.04 for all) and of no clinical significance. The proximal-distal and flexion-extension rotational alignment were also statistically different for the TIBIA but clinically minimal (<0.7 mm, p<0.005). There was no difference in hip-knee angle between planned and post-operative measurements (0 ± 2 degrees p=0.900). No infections, neurovascular, tendon or ligament injuries or fractures were identified. There were no differences in femoral sizing in any case, and 3 tibial components differed by one size. Furthermore, SF-12 PCS and Knee Society (Objective and Functional) scores all statistically improved from pre-operatively to 12 weeks post-operatively (p<0.001 for all), however SF-12 MCS did not improve at 12-weeks (p=0.600). Conclusion. The findings of this early clinical study suggest minimal deviations in final implant position from the pre-operative plan, with improvements in clinical outcome scores and no complications in early follow-up


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 29 - 29
1 Oct 2020
Farooq H Deckard ER Carlson J Ghattas N Meneghini RM
Full Access

Background. Advanced technologies, like robotics, provide enhanced precision for implanting total knee arthroplasty (TKA) components; however, optimal component position and limb alignment remain unknown. This study purpose was to identify the ideal target sagittal component position and coronal limb alignment that produce optimal clinical outcomes. Methods. A retrospective review of 1,091 consecutive TKAs was performed. All TKAs were PCL retaining or sacrificing with anterior lipped (49.4%) or conforming bearings (50.6%) performed with modern perioperative protocols. Posterior tibial slope, femoral flexion, and tibiofemoral limb alignment were measured with a standardized protocols. Patients were grouped by the ‘how often does your knee feel normal?’ outcome score at latest follow-up. Machine learning algorithms were used to identify optimal alignment zones which predicted improved outcomes scores. Results. Mean age and BMI were 66 years and 34 kg/m. 2. with 67% female. Demographics and relevant covariates did not affect outcomes (p≥0.145) except for BMI (p=0.077) but the difference was not clinically significant. For sagittal alignment, approximating native tibial slope within 0 to +2° with some amount of femoral flexion within 0 to +3° (possibly up to +9°) was predictive of knees always feeling normal. For knees in preoperative varus or neutral, knees were more likely to always feel normal when postoperative tibiofemoral alignment was in varus (>−1°). Knees aligned in valgus preoperatively were more likely to always feel normal in valgus (<−7°) or varus (>−4°) postoperatively. Conclusion. Superior patient-reported outcomes correlated with approximating native tibial slope and incorporating some femoral flexion while maintaining similar preoperative coronal limb alignment. Excessive deviation from native tibial slope, excessive femoral flexion or any femoral component extension, or coronal alignment overcorrection beyond the preoperative limb alignment correlated with worse outcomes


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_11 | Pages 50 - 50
1 Oct 2019
Matsuda S Nishitani K
Full Access

Introduction. The relationship between sagittal component alignment on clinical outcomes has not fully evaluated after TKA. This study evaluated the effect of sagittal alignment of the components on patient function and satisfaction as well as kinematics and kinetics. Methods. This study included 148 primary TKAs with cruciate-substituting prosthesis for primary OA. With post-operative lateral radiograph, femoral component flexion angle (γ) and tibial component posterior slope angle (90-σ) was measured. The patients was classified into multiple groups by every three degrees. Patient satisfaction in 2011KSS among groups were analyzed using one-way analysis of variance. By representing the component position which showed poor clinical outcomes, computer simulation analysis was performed, in which kinematics and kinetics in squatting activity were investigated. Results. The femoral component flexion angle was 4.3 ± 3.3°, and tibial component posterior slope angle was 4.5 ± 3.4°, in average. Patients whose femoral component was implanted more than 9 degrees flexion showed lower satisfaction (Figure). There was no difference in satisfaction according to tibial component angle. Computer simulation analysis showed that excessive flexed position caused no remarkable abnormal kinematics, but increased maximum contact force in medial compartment (1097 N to 1711 N), and femoral component down-size did not fully decrease the contact force (1330 N). Similarly, increase of the maximum ligament force in medial collateral ligament (MCL) (188 N to 671 N) was observed in excessive flexed position, and femoral component downsize (343 N) did not fully recovered the ligament force. Conclusion. Excessive flexion of the femoral component showed poor satisfaction. In computer simulation, increase of the contact force of the medial compartment and MCL was observed in computer simulation. For figures, tables, or references, please contact authors directly


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 5 | Pages 629 - 633
1 May 2011
Hirschmann MT Konala P Amsler F Iranpour F Friederich NF Cobb JP

We studied the intra- and interobserver reliability of measurements of the position of the components after total knee replacement (TKR) using a combination of radiographs and axial two-dimensional (2D) and three-dimensional (3D) reconstructed CT images to identify which method is best for this purpose. A total of 30 knees after primary TKR were assessed by two independent observers (an orthopaedic surgeon and a radiologist) using radiographs and CT scans. Plain radiographs were highly reliable at measuring the tibial slope, but showed wide variability for all other measurements; 2D-CT also showed wide variability. 3D-CT was highly reliable, even when measuring rotation of the femoral components, and significantly better than 2D-CT. Interobserver variability in the measurements on radiographs were good (intraclass correlation coefficient (ICC) 0.65 to 0.82), but rotational measurements on 2D-CT were poor (ICC 0.29). On 3D-CT they were near perfect (ICC 0.89 to 0.99), and significantly more reliable than 2D-CT (p < 0.001). 3D-reconstructed images are sufficiently reliable to enable reporting of the position and orientation of the components. Rotational measurements in particular should be performed on 3D-reconstructed CT images. When faced with a poorly functioning TKR with concerns over component positioning, we recommend 3D-CT as the investigation of choice


The Bone & Joint Journal
Vol. 99-B, Issue 10 | Pages 1313 - 1318
1 Oct 2017
Nakamura R Komatsu N Fujita K Kuroda K Takahashi M Omi R Katsuki Y Tsuchiya H

Aims. Open wedge high tibial osteotomy (OWHTO) for medial-compartment osteoarthritis of the knee can be complicated by intra-operative lateral hinge fracture (LHF). We aimed to establish the relationship between hinge position and fracture types, and suggest an appropriate hinge position to reduce the risk of this complication. Patients and Methods. Consecutive patients undergoing OWHTO were evaluated on coronal multiplanar reconstruction CT images. Hinge positions were divided into five zones in our new classification, by their relationship to the proximal tibiofibular joint (PTFJ). Fractures were classified into types I, II, and III according to the Takeuchi classification. Results. Among 111 patients undergoing OWHTOs, 22 sustained lateral hinge fractures. Of the 89 patients without fractures, 70 had hinges in the zone within the PTFJ and lateral to the medial margin of the PTFJ (zone WL), just above the PTFJ. Among the five zones, the relative risk of unstable fracture was significantly lower in zone WL (relative risk 0.24, confidence interval 0.17 to 0.34). Conclusion. Zone WL appears to offer the safest position for the placement of the osteotomy hinge when trying to avoid a fracture at the osteotomy site. Cite this article: Bone Joint J 2017;99B10:1313–18


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IX | Pages 40 - 40
1 Mar 2012
Spalding T Thompson P Clewer G Bird J Smith N Dhillon M
Full Access

Hypothesis. Recent advances in understanding of ACL insertional anatomy has led to new concepts of anatomical positioning of tunnels for ACL reconstruction. Femoral tunnel position has been defined in terms of the lateral intercondylar ridge and the bifurcate ridge but these can be difficult to identify at surgery. Measurements of the lateral wall either using C-arm x-ray control or specific arthroscopic rulers have also been advocated. Method. 30 patients undergoing ACL reconstruction before and after introduction of a new anatomical technique of ACL reconstruction were evaluated using 3D CT scan imaging with cut away views of the lateral aspect of the femoral notch and the radiological quadrant grid. In the new technique, with the knee at 90 degrees flexion, the femoral tunnel was centred 50% from deep to shallow as seen from the medial portal (Group A). Group B consisted of patients where the femoral tunnel was drilled through the antero-medial portal and offset from the posterior wall using a 5mm jig. Results. Ridges were identifiable in only 76% of scans. All tunnels in Group A (anatomical technique) were found to be below (posterior to) the lateral intercondylar (residents) ridge and were within 10% of the optimal position as defined by the Grid method on x-ray. No femoral tunnels in Group B meet anatomical criteria and were malpositioned by a mean of 5mm. Conclusion. We believe 3D CT scan imaging with cut away views of the femoral tunnel is a useful and accurate way of describing tunnel position, and that this technique will be valuable in validating new surgical techniques. According to this CT scan analysis the new anatomical technique correctly placed the femoral tunnel. This work forms the basis of a subsequent randomised trial of techniques in relation to clinical outcome


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 36 - 42
1 Jun 2020
Nishitani K Kuriyama S Nakamura S Umatani N Ito H Matsuda S

Aims

This study aimed to evaluate the association between the sagittal alignment of the femoral component in total knee arthroplasty (TKA) and new Knee Society Score (2011KSS), under the hypothesis that outliers such as the excessive extended or flexed femoral component were related to worse clinical outcomes.

Methods

A group of 156 knees (134 F:22 M) in 133 patients with a mean age 75.8 years (SD 6.4) who underwent TKA with the cruciate-substituting Bi-Surface Knee prosthesis were retrospectively enrolled. On lateral radiographs, γ angle (the angle between the distal femoral axis and the line perpendicular to the distal rear surface of the femoral component) was measured, and the patients were divided into four groups according to the γ angle. The 2011KSSs among groups were compared using the Kruskal-Wallis test. A secondary regression analysis was used to investigate the association between the 2011KSS and γ angle.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 9 | Pages 1223 - 1231
1 Sep 2011
Babazadeh S Dowsey MM Swan JD Stoney JD Choong PFM

The role of computer-assisted surgery in maintaining the level of the joint in primary knee joint replacement (TKR) has not been well defined. We undertook a blinded randomised controlled trial comparing joint-line maintenance, functional outcomes, and quality-of-life outcomes between patients undergoing computer-assisted and conventional TKR. A total of 115 patients were randomised (computer-assisted, n = 55; conventional, n = 60).

Two years post-operatively no significant correlation was found between computer-assisted and conventional surgery in terms of maintaining the joint line. Those TKRs where the joint line was depressed post-operatively improved the least in terms of functional scores. No difference was detected in terms of quality-of-life outcomes. Change in joint line was found to be related to change in alignment. Change in alignment significantly affects change in joint line and functional scores.


Bone & Joint Research
Vol. 12, Issue 5 | Pages 313 - 320
8 May 2023
Saiki Y Kabata T Ojima T Kajino Y Kubo N Tsuchiya H

Aims. We aimed to assess the reliability and validity of OpenPose, a posture estimation algorithm, for measurement of knee range of motion after total knee arthroplasty (TKA), in comparison to radiography and goniometry. Methods. In this prospective observational study, we analyzed 35 primary TKAs (24 patients) for knee osteoarthritis. We measured the knee angles in flexion and extension using OpenPose, radiography, and goniometry. We assessed the test-retest reliability of each method using intraclass correlation coefficient (1,1). We evaluated the ability to estimate other measurement values from the OpenPose value using linear regression analysis. We used intraclass correlation coefficients (2,1) and Bland–Altman analyses to evaluate the agreement and error between radiography and the other measurements. Results. OpenPose had excellent test-retest reliability (intraclass correlation coefficient (1,1) = 1.000). The R. 2. of all regression models indicated large correlations (0.747 to 0.927). In the flexion position, the intraclass correlation coefficients (2,1) of OpenPose indicated excellent agreement (0.953) with radiography. In the extension position, the intraclass correlation coefficients (2,1) indicated good agreement of OpenPose and radiography (0.815) and moderate agreement of goniometry with radiography (0.593). OpenPose had no systematic error in the flexion position, and a 2.3° fixed error in the extension position, compared to radiography. Conclusion. OpenPose is a reliable and valid tool for measuring flexion and extension positions after TKA. It has better accuracy than goniometry, especially in the extension position. Accurate measurement values can be obtained with low error, high reproducibility, and no contact, independent of the examiner’s skills. Cite this article: Bone Joint Res 2023;12(5):313–320


Bone & Joint Open
Vol. 5, Issue 8 | Pages 628 - 636
2 Aug 2024
Eachempati KK Parameswaran A Ponnala VK Sunil A Sheth NP

Aims. The aims of this study were: 1) to describe extended restricted kinematic alignment (E-rKA), a novel alignment strategy during robotic-assisted total knee arthroplasty (RA-TKA); 2) to compare residual medial compartment tightness following virtual surgical planning during RA-TKA using mechanical alignment (MA) and E-rKA, in the same set of osteoarthritic varus knees; 3) to assess the requirement of soft-tissue releases during RA-TKA using E-rKA; and 4) to compare the accuracy of surgical plan execution between knees managed with adjustments in component positioning alone, and those which require additional soft-tissue releases. Methods. Patients who underwent RA-TKA between January and December 2022 for primary varus osteoarthritis were included. Safe boundaries for E-rKA were defined. Residual medial compartment tightness was compared following virtual surgical planning using E-rKA and MA, in the same set of knees. Soft-tissue releases were documented. Errors in postoperative alignment in relation to planned alignment were compared between patients who did (group A) and did not (group B) require soft-tissue releases. Results. The use of E-rKA helped restore all knees within the predefined boundaries, with appropriate soft-tissue balancing. E-rKA compared with MA resulted in reduced residual medial tightness following surgical planning, in full extension (2.71 mm (SD 1.66) vs 5.16 mm (SD 3.10), respectively; p < 0.001), and 90° of flexion (2.52 mm (SD 1.63) vs 6.27 mm (SD 3.11), respectively; p < 0.001). Among the study population, 156 patients (78%) were managed with minor adjustments in component positioning alone, while 44 (22%) required additional soft-tissue releases. The mean errors in postoperative alignment were 0.53 mm and 0.26 mm among patients in group A and group B, respectively (p = 0.328). Conclusion. E-rKA is an effective and reproducible alignment strategy during RA-TKA, permitting a large proportion of patients to be managed without soft-tissue releases. The execution of minor alterations in component positioning within predefined multiplanar boundaries is a better starting point for gap management than soft-tissue releases. Cite this article: Bone Jt Open 2024;5(8):628–636


Bone & Joint Research
Vol. 11, Issue 8 | Pages 575 - 584
17 Aug 2022
Stoddart JC Garner A Tuncer M Cobb JP van Arkel RJ

Aims. The aim of this study was to determine the risk of tibial eminence avulsion intraoperatively for bi-unicondylar knee arthroplasty (Bi-UKA), with consideration of the effect of implant positioning, overstuffing, and sex, compared to the risk for isolated medial unicondylar knee arthroplasty (UKA-M) and bicruciate-retaining total knee arthroplasty (BCR-TKA). Methods. Two experimentally validated finite element models of tibia were implanted with UKA-M, Bi-UKA, and BCR-TKA. Intraoperative loads were applied through the condyles, anterior cruciate ligament (ACL), medial collateral ligament (MCL), and lateral collateral ligament (LCL), and the risk of fracture (ROF) was evaluated in the spine as the ratio of the 95. th. percentile maximum principal elastic strains over the tensile yield strain of proximal tibial bone. Results. Peak tensile strains occurred on the anterior portion of the medial sagittal cut in all simulations. Lateral translation of the medial implant in Bi-UKA had the largest increase in ROF of any of the implant positions (43%). Overstuffing the joint by 2 mm had a much larger effect, resulting in a six-fold increase in ROF. Bi-UKA had ~10% increased ROF compared to UKA-M for both the male and female models, although the smaller, less dense female model had a 1.4 times greater ROF compared to the male model. Removal of anterior bone akin to BCR-TKA doubled ROF compared to Bi-UKA. Conclusion. Tibial eminence avulsion fracture has a similar risk associated with Bi-UKA to UKA-M. The risk is higher for smaller and less dense tibiae. To minimize risk, it is most important to avoid overstuffing the joint, followed by correctly positioning the medial implant, taking care not to narrow the bone island anteriorly. Cite this article: Bone Joint Res 2022;11(8):575–584


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 83 - 83
1 Jul 2022
Dandridge O Garner A Amis A Cobb J Arkel RV
Full Access

Abstract. Patellofemoral Arthroplasty (PFA) is an alternative to TKA for patellofemoral osteoarthritis that preserves tibiofemoral compartments. It is unknown how implant positioning affects biomechanics, especially regarding the patella. This study analysed biomechanical effects of femoral and patellar component position, hypothesising femoral positioning is more important. Nine cadaveric knees were studied using a repeated-measures protocol. Knees were tested intact, then after PFA implanted in various positions: neutral (as-planned), patellar over/understuffing (±2mm), patellar tilt, patellar flexion, femoral rotation, and femoral tilt (all ±6°). Arthroplasties were implemented with CT-designed patient-specific instrumentation. Anterior femoral cuts referenced Whiteside's line and all femoral positions ensured smooth condyle-to-component transition. Knee extension moments, medial patellofemoral ligament (MPFL) length-change, and tibiofemoral and patellofemoral kinematics were measured under physiological muscle loading. Data were analysed with one-dimensional statistical parametric mapping (Bonferroni-Holm corrected). PFA changed knee function, altering extension moments (p<0.001) and patellofemoral kinematics (p<0.05), but not tibiofemoral kinematics. Patellar component positioning affected patellofemoral kinematics: over/understuffing influenced patellar anterior translation and the patellar tendon moment arm (p<0.001). Medially tilted patellar cuts produced lateral patellar tilt (p<0.001) and vice versa. A similar inverse effect occurred with extended/flexed patellar cuts, causing patellar flexion and extension (p<0.001), respectively. Of all variants, only extending the patellar cut produced near-native extension moments throughout. Conversely, the only femoral effect was MPFL length change between medially/laterally rotated components. PFA can restore native knee biomechanics. Provided anterior femoral cuts are controlled and smooth condyle-to-component transition assured, patellar position affects biomechanics more than femoral, contradicting the hypothesis


Bone & Joint Open
Vol. 4, Issue 12 | Pages 914 - 922
1 Dec 2023
Sang W Qiu H Xu Y Pan Y Ma J Zhu L

Aims. Unicompartmental knee arthroplasty (UKA) is the preferred treatment for anterior medial knee osteoarthritis (OA) owing to the rapid postoperative recovery. However, the risk factors for UKA failure remain controversial. Methods. The clinical data of Oxford mobile-bearing UKAs performed between 2011 and 2017 with a minimum follow-up of five years were retrospectively analyzed. Demographic, surgical, and follow-up data were collected. The Cox proportional hazards model was used to identify the risk factors that contribute to UKA failure. Kaplan-Meier survival was used to compare the effect of the prosthesis position on UKA survival. Results. A total of 407 patients who underwent UKA were included in the study. The mean age of patients was 61.8 years, and the mean follow-up period of the patients was 91.7 months. The mean Knee Society Score (KSS) preoperatively and at the last follow-up were 64.2 and 89.7, respectively (p = 0.001). Overall, 28 patients (6.9%) with UKA underwent revision due to prosthesis loosening (16 patients), dislocation (eight patients), and persistent pain (four patients). Cox proportional hazards model analysis identified malposition of the prostheses as a high-risk factor for UKA failure (p = 0.007). Kaplan-Meier analysis revealed that the five-year survival rate of the group with malposition was 85.1%, which was significantly lower than that of the group with normal position (96.2%; p < 0.001). Conclusion. UKA constitutes an effective method for treating anteromedial knee OA, with an excellent five-year survival rate. Aseptic loosening caused by prosthesis malposition was identified as the main cause of UKA failure. Surgeons should pay close attention to prevent the potential occurrence of this problem. Cite this article: Bone Jt Open 2023;4(12):914–922


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 29 - 29
7 Aug 2023
Mayne A Rajgor H Munasinghe C Agrawal Y Pagkalos I Davis E Sharma A
Full Access

Abstract. Introduction. There is growing interest in the use of robotic Total Knee Arthroplasty (TKA) to improve accuracy of component positioning. This is the first study to investigate the radiological accuracy of implant component position using the ROSA® knee system with specific reference to Joint Line Height, Tibial Slope, Patella Height and Posterior Condylar Offset. As secondary aims we compared accuracy between image-based and imageless navigation, and between implant designs (Persona versus Vanguard TKA). Methodology. This was a retrospective review of a prospectively-maintained database of the initial 100 consecutive TKAs performed by a high volume surgeon using the ROSA® knee system. To determine the accuracy of component positioning, the immediate post-operative radiograph was reviewed and compared with the immediate pre-operative radiograph with regards to Joint Line Height, Tibial Slope, Patella Height (using the Insall-Salvati ratio) and Posterior Condylar Offset. Results. Mean age of patients undergoing ROSA TKA was 70 years (range, 55 to 95 years). Mean difference in joint line height between pre and post-operative radiographs was 0.2mm (range −1.5 to +1.8mm, p<0.05), posterior condylar offset mean change 0.16mm (range −1.4 to +1.3mm, p<0.05), tibial slope mean change 0.1 degrees (p<0.05) and patella height mean change 0.02 (range −0.1 to +0.1 p<0.05). No significant differences were found between imageless and image-based groups, or between implant designs (Persona versus Vanguard). Conclusion. This study validates the use of the ROSA® knee system in accurately restoring Joint Line Height, Patella Height and Posterior Condylar Offset


The Bone & Joint Journal
Vol. 103-B, Issue 9 | Pages 1514 - 1525
1 Sep 2021
Scott CEH Holland G Gillespie M Keenan OJ Gherman A MacDonald DJ Simpson AHRW Clement ND

Aims. The aims of this study were to investigate the ability to kneel after total knee arthroplasty (TKA) without patellar resurfacing, and its effect on patient-reported outcome measures (PROMs). Secondary aims included identifying which kneeling positions were most important to patients, and the influence of radiological parameters on the ability to kneel before and after TKA. Methods. This prospective longitudinal study involved 209 patients who underwent single radius cruciate-retaining TKA without patellar resurfacing. Preoperative EuroQol five-dimension questionnaire (EQ-5D), Oxford Knee Score (OKS), and the ability to achieve four kneeling positions were assessed including a single leg kneel, a double leg kneel, a high-flexion kneel, and a praying position. The severity of radiological osteoarthritis (OA) was graded and the pattern of OA was recorded intraoperatively. The flexion of the femoral component, posterior condylar offset, and anterior femoral offset were measured radiologically. At two to four years postoperatively, 151 patients with a mean age of 70.0 years (SD 9.44) were included. Their mean BMI was 30.4 kg/m. 2. (SD 5.36) and 60 were male (40%). They completed EQ-5D, OKS, and Kujala scores, assessments of the ability to kneel, and a visual analogue scale for anterior knee pain and satisfaction. Results. The ability to kneel in the four positions improved in between 29 (19%) and 53 patients (35%) after TKA, but declined in between 35 (23%) and 46 patients (30%). Single-leg kneeling was most important to patients. After TKA, 62 patients (41%) were unable to achieve a single-leg kneel, 76 (50%) were unable to achieve a double-leg kneel, 102 (68%) were unable to achieve a high-flexion kneel and 61 (40%) were unable to achieve a praying position. Posterolateral cartilage loss significantly affected preoperative deep flexion kneeling (p = 0.019). A postoperative inability to kneel was significantly associated with worse OKS, Kujala scores, and satisfaction (p < 0.05). Multivariable regression analysis identified significant independent associations with the ability to kneel after TKA (p < 0.05): better preoperative EQ-5D and flexion of the femoral component for single-leg kneeling; the ability to achieve it preoperatively and flexion of the femoral component for double-leg kneeling; male sex for high-flexion kneeling; and the ability to achieve it preoperatively, anterior femoral offset, and patellar cartilage loss for the praying position. Conclusion. The ability to kneel was important to patients and significantly influenced knee-specific PROMs, but was poorly restored by TKA with equal chances of improvement or decline. Cite this article: Bone Joint J 2021;103-B(9):1514–1525


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 74 - 80
1 Jun 2021
Deckey DG Rosenow CS Verhey JT Brinkman JC Mayfield CK Clarke HD Bingham JS

Aims. Robotic-assisted total knee arthroplasty (RA-TKA) is theoretically more accurate for component positioning than TKA performed with mechanical instruments (M-TKA). Furthermore, the ability to incorporate soft-tissue laxity data into the plan prior to bone resection should reduce variability between the planned polyethylene thickness and the final implanted polyethylene. The purpose of this study was to compare accuracy to plan for component positioning and precision, as demonstrated by deviation from plan for polyethylene insert thickness in measured-resection RA-TKA versus M-TKA. Methods. A total of 220 consecutive primary TKAs between May 2016 and November 2018, performed by a single surgeon, were reviewed. Planned coronal plane component alignment and overall limb alignment were all 0° to the mechanical axis; tibial posterior slope was 2°; and polyethylene thickness was 9 mm. For RA-TKA, individual component position was adjusted to assist gap-balancing but planned coronal plane alignment for the femoral and tibial components and overall limb alignment remained 0 ± 3°; planned tibial posterior slope was 1.5°. Mean deviations from plan for each parameter were compared between groups for positioning and size and outliers were assessed. Results. In all, 103 M-TKAs and 96 RA-TKAs were included. In RA-TKA versus M-TKA, respectively: mean femoral positioning (0.9° (SD 1.2°) vs 1.7° (SD 1.1°)), mean tibial positioning (0.3° (SD 0.9°) vs 1.3° (SD 1.0°)), mean posterior tibial slope (-0.3° (SD 1.3°) vs 1.7° (SD 1.1°)), and mean mechanical axis limb alignment (1.0° (SD 1.7°) vs 2.7° (SD 1.9°)) all deviated significantly less from the plan (all p < 0.001); significantly fewer knees required a distal femoral recut (10 (10%) vs 22 (22%), p = 0.033); and deviation from planned polyethylene thickness was significantly less (1.4 mm (SD 1.6) vs 2.7 mm (SD 2.2), p < 0.001). Conclusion. RA-TKA is significantly more accurate and precise in planning both component positioning and final polyethylene insert thickness. Future studies should investigate whether this increased accuracy and precision has an impact on clinical outcomes. The greater accuracy and reproducibility of RA-TKA may be important as precise new goals for component positioning are developed and can be further individualized to the patient. Cite this article: Bone Joint J 2021;103-B(6 Supple A):74–80


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 46 - 46
7 Aug 2023
Rahman A Heath D Mellon S Murray D
Full Access

Abstract. Introduction. In cementless UKR, early post-operative tibial fractures are 7x more common in very small tibias. A smaller keel has been shown to reduce this fracture risk, but its effect on fixation is unassessed. This mechanical study assesses the effect of keel interference and size on sagittal micromotion of the tibial component in physiological loading positions. Method. A high-resolution Digital Image Correlation setup was developed and validated to an accuracy of 50 micrometres. Variants of tibial components were 3D-printed: standard, no-interference, no-keel, and a new small keel. Components were implanted into bone-analogue foam which was machined to a CT-reconstructed small tibia, using surgical technique. Tibias were loaded to 200N in physiological loading positions: 8mm (step-up) and 15mm (lunge) posterior to midpoint, and micromotion was assessed. Results. In all tests, anterior lift-off was the largest micromotion observed. In ‘step-up’, a standard keel moved more than the no-interference and no-keel variants (340μm-vs-63μm-vs-30μm, p=0.002). In ‘lunge’ loading, the no-interference and no-keel variants moved more than the standard (826μm-vs-1003μm-vs-521μm, p=0.039). The small keel experienced less micromotion in ‘step-up’ (245μm-vs-340μm p=0.233, overall p=0.009) and ‘lunge’ (378μm-vs-521μm p=0.265, overall p=0.006) than the standard keel. Conclusion. The keel protects against large tibial micromotion during lunge movement. Counterintuitively, interference increases micromotion during step-up movement, likely due to implant pivoting around the bone-keel interface. Results suggest patients should be advised against lunge movements early post-operatively. The new smaller keel fixes similarly or better than the standard keel, making it viable for replacing the standard keel to potentially reduce fracture risk


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 17 - 17
7 Aug 2023
Arthur L Ghosh P Mohammad H Campi S Murray D Mellon S
Full Access

Abstract. Introduction. The Oxford Unicompartmental Knee Replacement's (OUKR's) fully-congruent design minimises polyethylene wear. Consequently, wear is a rare failure mechanism. Phase-3 OUKR linear wear at 5 years was higher than previous OUKR phases, but very low compared to fixed-bearing UKRs. This study aimed to measure OUKR bearing wear at 10 years and investigate factors that may affect wear. Methodology. Bearing thickness for 39 OUKRs from a randomised study was calculated using radiostereometric analysis at regular intervals up to 10 years. Data for 39 and 29 OUKRs was available at 5 and 10 years, respectively. As creep occurs early, wear rate was calculated using linear regression between 6 months and 10 years. Relationships between wear and patient factors, fixation method, Oxford Knee Score (OKS), bearing position, and component position were analysed. Results. The mean wear rate was 0.06mm/year. Fixation method, age, OKS, component size, and bearing size had no correlation with wear. A higher BMI was associated with lower wear (p=0.01). Bearings more than 4mm from the wall had significantly more wear (p=0.04) than those less than 4mm from the wall. There was a linear correlation between the femoral component contact area on the bearing and wear (p=0.04). Conclusions. Phase-3 bearing wear rate is constant, significantly higher than previous OUKR phases at 10 years, and may increase the risk of long-term bearing failure. To minimise complications associated with wear, size 4 bearings should be used in young patients and manufacturing bearings from more durable, highly crosslinked polyethylene should be studied


Aims. The aim of this study was to compare any differences in the primary outcome (biphasic flexion knee moment during gait) of robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional mechanically aligned total knee arthroplasty (TKA) at one year post-surgery. Methods. A total of 76 patients (34 bi-UKA and 42 TKA patients) were analyzed in a prospective, single-centre, randomized controlled trial. Flat ground shod gait analysis was performed preoperatively and one year postoperatively. Knee flexion moment was calculated from motion capture markers and force plates. The same setup determined proprioception outcomes during a joint position sense test and one-leg standing. Surgery allocation, surgeon, and secondary outcomes were analyzed for prediction of the primary outcome from a binary regression model. Results. Both interventions were shown to be effective treatment options, with no significant differences shown between interventions for the primary outcome of this study (18/35 (51.4%) biphasic TKA patients vs 20/31 (64.5%) biphasic bi-UKA patients; p = 0.558). All outcomes were compared to an age-matched, healthy cohort that outperformed both groups, indicating residual deficits exists following surgery. Logistic regression analysis of primary outcome with secondary outcomes indicated that the most significant predictor of postoperative biphasic knee moments was preoperative knee moment profile and trochlear degradation (Outerbridge) (R. 2. = 0.381; p = 0.002, p = 0.046). A separate regression of alignment against primary outcome indicated significant bi-UKA femoral and tibial axial alignment (R. 2. = 0.352; p = 0.029), and TKA femoral sagittal alignment (R. 2. = 0.252; p = 0.016). The bi-UKA group showed a significant increased ability in the proprioceptive joint position test, but no difference was found in more dynamic testing of proprioception. Conclusion. Robotic arm-assisted bi-UKA demonstrated equivalence to TKA in achieving a biphasic gait pattern after surgery for osteoarthritis of the knee. Both treatments are successful at improving gait, but both leave the patients with a functional limitation that is not present in healthy age-matched controls. Cite this article: Bone Joint J 2022;103-B(4):433–443