Objectives. In order to address acetabular defects,
We report the use of
Reconstruction of massive acetabular bone defects in primary and revision THA is challenging for reconstructive joint surgeons. The use of
This paper presents an ongoing review of the use of a wedge-shaped
Cementless biologic fixation surfaces on total joint replacement devices, such as those used in total hip and knee procedures, have evolved over the decades. Historically, various surfaces to allow bone ingrowth or ongrowth have been applied as a coating to a pre-formed solid metal substrate. As shown in Figure 1, from left to right, representative coating surfaces include sintered beads, diffusion-bonded fiber metal, and plasma sprayed titanium. In certain applications, tantalum
The advent of modular
Highly
Failed ingrowth and subsequent separation of revision acetabular components from the inferior hemi-pelvis constitutes a primary mode of failure in revision total hip arthroplasty (THA). Few studies have highlighted other techniques than multiple screws and an ischial flange or hook of cages to reinforce the inferior fixation of the acetabular components, nor did any authors report the use of
Background. Failed ingrowth and subsequent separation of revision acetabular components from the inferior hemi-pelvis constitutes a primary mode of failure in revision total hip arthroplasty (THA). Few studies have highlighted other techniques than multiple screws and an ischial flange or hook of cages to reinforce the ischiopubic fixation of the acetabular components, nor did any authors report the use of
Aims. Severe, superior acetabular bone defects are one of the most challenging aspects to revision total hip arthroplasty (THA). We propose a new concept of “superior extended fixation” as fixation extending superiorly 2 cm beyond the original acetabulum rim with
The conventional method for reconstructing acetabular
bone loss at revision surgery includes using structural bone allograft.
The disadvantages of this technique promoted the advent of metallic
but biocompatible porous implants to fill bone defects enhancing
initial and long-term stability of the acetabular component. This
paper presents the indications, surgical technique and the outcome
of using
We investigated the early results of modular
Aims. It may not be possible to undertake revision total hip arthroplasty
(THA) in the presence of massive loss of acetabular bone stock using
standard cementless hemispherical acetabular components and metal
augments, as satisfactory stability cannot always be achieved. We
aimed to study the outcome using a reconstruction cage and a porous
metal augment in these patients. Patients and Methods. A total of 22 acetabular revisions in 19 patients were performed
using a combination of a reconstruction cage and
Purpose:
Introduction. Cementless fixation in total knee arthroplasty has been proposed to offer advantages long-term once osteointegration has occurred as there is no substrate between the implant and the bone to fail. Radiostereometric analysis (RSA) is a useful tool to study fixation, but typically focused on early migration in the first two post-operative years. Few studies have looked at 10-year RSA migration in cementless fixation and those that have contain small numbers of subjects. The objective of this study was to compare implant migration and inducible displacement between cemented and cementless TKA at 10 years and to compare the 10-year migration to the 2-year data in an effort to validate the predictive modelling of RSA. Methods. Subjects who had previously participated in RSA migration studies with 2-year follow-up were recruited to return for a long-term follow-up exam, at least 10 years from their surgery. The implants under study included two cemented designs from two manufacturers and one
Metallosis is a combined chemical and toxic reaction which, if the wear of a metal implant is large, may cause extensive reaction of synovial membrane and thus triggering the loosening. We present a case of a 72 year-old man, who underwent to a cemented unicompartimental
Metaphyseal bone loss is common with revision
total knee replacement (RTKR). Using the Anderson Orthopaedic Research
Institute (AORI) classification, type 2-B and type 3 defects usually
require large metal blocks, bulk structural allograft or highly
porous metal cones. Tibial and femoral trabecular metal metaphyseal
cones are a unique solution for large bone defects. These cones
substitute for bone loss, improve metaphyseal fixation, help correct
malalignment, restore the joint line and may permit use of a shorter
stem. The technique for insertion involves sculpturing of the remaining
bone with a high speed burr and rasp, followed by press-fit of the
cone into the metaphysis. The fixation and osteoconductive properties
of the porous cone outer surface allow ingrowth and encourage long-term
biological fixation. The revision knee component is then cemented
into the porous cone inner surface, which provides superior fixation
compared with cementing into native but deficient metaphyseal bone.
The advantages of the cone compared with allograft include: technical
ease, biological fixation, no resorption, and possibly a lower risk
of infection. The disadvantages include: difficult extraction and
relatively short-term follow-up. Several studies using cones report
promising short-term results for the reconstruction of large bone
defects in RTKR. Cite this article:
Reliable, Durable, Easy to do, Solves major problems (bone loss, fixation) Availability, Disease transmission, Preparation difficulties, Long-term fixation/incorporationAdvantages of cones in revision TKA
Allograft concerns
Bone loss in total knee replacement has different configurations and most condylar and plateau deficits are well managed with prosthetic augmentation. Cones are rarely, if ever, necessary for these deficits and when entire femoral condyles are absent distal segmental replacement has worked well. In the setting of severe intramedullary bone loss on the tibial or femoral side cones may be used to support deficit bone. This is the one indication for the use of cones. The negative side of cones is that additional bone may be removed to fit a cone adequately. Many of the lesser areas of bone deficiency can be managed by the use of larger diameter stems for fixation. In a paper from Sandford et al. from the Vancouver group allograft results at 5 −10 year follow up had a similar success rate to cones. Rohl in a paper looking at cones and hybrid stems for bone loss in revision TKR found no difference in results at 3.5 years. Cones cost $4,000–6,000 each and their utilization has been increasing greatly. At Hospital for Special Surgery in 2015 18 cones were used, this has increased to over 150 in 2017 at a cost of $800,000. The overutilization of cones adds considerably to the cost of a revision procedure. Cones have a place in revision TKR for bone loss but it is limited and they should be used in the most extreme cases where bone augmentation is required for structural stability.
Restoration of bone loss is a major challenge of revision TKA surgery. It is critical to achieve of a stable construct to support implants and achieve successful results. Major bone defects of the femoral and/or tibia (AORI type IIB/III) have been reconstructed using impaction grafting, structural allografts or tumor prostheses. The major concerns with structural allograft are graft resorption, mechanical failure, tissue availability, disease transmission, considerable surgical skill required and prolonged operative time. Porous tantalum metaphyseal cones, are becoming the established method of choice to correct large bone defects with several recent studies demonstrating promising results. The high coefficient of friction of these implants provides structural support for femoral and tibial components. The high degree of porosity has excellent potential for bone ingrowth and long-term biologic fixation. Several published series, although with relatively small cohorts of patients, have reported good short-term results with trabecular metal cones for major femoral and tibial bony defects in revision TKA. In a recent study, 16 femoral and 17 tibial cones were reviewed at an average follow up of 33 months (range, 13 to 73 months) the mean Knee Society Score improved from 42 pre-operatively to 83 at last follow up with an improvement of the functional score from an average of 34 to 66 (p<0.0001). Radiological follow up revealed no evidence of loosening or migration of the constructs. No evidence of complications were noted in correlation with the use of trabecular metal cones.