Advertisement for orthosearch.org.uk
Results 1 - 20 of 36
Results per page:
Bone & Joint Research
Vol. 8, Issue 8 | Pages 387 - 396
1 Aug 2019
Alt V Rupp M Lemberger K Bechert T Konradt T Steinrücke P Schnettler R Söder S Ascherl R

Objectives. Preclinical data showed poly(methyl methacrylate) (PMMA) loaded with microsilver to be effective against a variety of bacteria. The purpose of this study was to assess patient safety of PMMA spacers with microsilver in prosthetic hip infections in a prospective cohort study. Methods. A total of 12 patients with prosthetic hip infections were included for a three-stage revision procedure. All patients received either a gentamicin-PMMA spacer (80 g to 160 g PMMA depending on hip joint dimension) with additional loading of 1% (w/w) of microsilver (0.8 g to 1.6 g per spacer) at surgery 1 followed by a gentamicin-PMMA spacer without microsilver at surgery 2 or vice versa. Implantation of the revision prosthesis was carried out at surgery 3. Results. In total, 11 of the 12 patients completed the study. No argyria or considerable differences in laboratory parameters were detected. Silver blood concentrations were below or around the detection limit of 1 ppb in ten of the 11 patients. A maximum of 5.6 ppb at 48 hours after implantation of the silver spacer, which is below the recommended maximum level of 10 ppb, was found in one patient. No silver was detected in the urine. Drainage fluids showed concentrations between 16.1 ppb and 23.3 ppb at 12 hours after implantation of the silver spacers, and between 16.8 ppb to 25.1 ppb at 48 hours after implantation. Pathohistological assessment of the periprosthetic membrane did not reveal any differences between the two groups. Conclusion. Microsilver-loaded gentamicin-PMMA spacers showed good biocompatibility and the broad antimicrobial activity warrants further clinical research to assess its effectivity in reducing infection rates in prosthetic joint infection. Cite this article: V. Alt, M. Rupp, K. Lemberger, T. Bechert, T. Konradt, P. Steinrücke, R. Schnettler, S. Söder, R. Ascherl. Safety assessment of microsilver-loaded poly(methyl methacrylate) (PMMA) cement spacers in patients with prosthetic hip infections: Results of a prospective cohort study. Bone Joint Res 2019;8:387–396. DOI: 10.1302/2046-3758.88.BJR-2018-0270.R1


Bone & Joint Research
Vol. 8, Issue 2 | Pages 81 - 89
1 Feb 2019
Funk GA Menuey EM Cole KA Schuman TP Kilway KV McIff TE

Objectives. The objective of this study was to characterize the effect of rifampin incorporation into poly(methyl methacrylate) (PMMA) bone cement. While incompatibilities between the two materials have been previously noted, we sought to identify and quantify the cause of rifampin’s effects, including alterations in curing properties, mechanical strength, and residual monomer content. Methods. Four cement groups were prepared using commercial PMMA bone cement: a control; one with 1 g of rifampin; and one each with equimolar amounts of ascorbic acid or hydroquinone relative to the amount of rifampin added. The handling properties, setting time, exothermic output, and monomer loss were measured throughout curing. The mechanical strength of each group was tested over 14 days. A radical scavenging assay was used to assess the scavenging abilities of rifampin and its individual moieties. Results. Compared with control, the rifampin-incorporated cement had a prolonged setting time and a reduction in exothermic output during polymerization. The rifampin cement showed significantly reduced strength and was below the orthopaedic weight-bearing threshold of 70 MPa. Based on the radical scavenging assay and strength tests, the hydroquinone structure within rifampin was identified as the polymerization inhibitor. Conclusion. The incorporation of rifampin into PMMA bone cement interferes with the cement’s radical polymerization. This interference is due to the hydroquinone moiety within rifampin. This combination alters the cement’s handling and curing properties, and lowers the strength below the threshold for weight-bearing applications. Additionally, the incomplete polymerization leads to increased toxic monomer output, which discourages its use even in non-weight-bearing applications. Cite this article: G. A. Funk, E. M. Menuey, K. A. Cole, T. P. Schuman, K. V. Kilway, T. E. McIff. Radical scavenging of poly(methyl methacrylate) bone cement by rifampin and clinically relevant properties of the rifampin-loaded cement. Bone Joint Res 2019;8:81–89. DOI: 10.1302/2046-3758.82.BJR-2018-0170.R2


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 63 - 63
1 May 2012
Ayre WN Evans SL
Full Access

The most common mode of failure observed in cemented orthopaedic implants is aseptic loosening of the prosthesis over time. This occurs as a result of fatigue failure of the bone cement under different loading conditions. Although a great deal of research has been carried out on the fatigue crack development of poly(methyl methacrylate) (PMMA) bone cements, the effects of different loading frequencies at low and high stress intensities are not well understood. Therefore, the aims of this study are to determine the effects of loading PMMA bone cement at different stress intensities and loading frequencies, as seen in-vivo, and the effects of changing these parameters on fatigue crack propagation. To achieve these aims, disc compact tension (DCT) samples with chevron notches were made and Krak Gages (Russenberger Prufmaschinen, Neuhausen am Rheinfall, Switzerland) were attached to monitor crack growth. The bone cement used in this study was the Cemex System, which uses a cement gun to mix and apply the material into the cavity. From standard compression and bending tests it was found that the cement made using this system had an average compressive strength of 86.66±5.52MPa, an average bending modulus of 3696.06±121.13MPa and an average bending strength of 51.95±4.14MPa. These values are within the normal range of acrylic resin cements for implants and above the minimum requirements of the ISO5833:2002 standard. A program has been written that loads the DCT samples with a stress intensity of 0.2MPam. 1/2. , 0.6MPam. 1/2. and 1.0MPam. 1/2. at a frequency of 1Hz, 2Hz, 5Hz, 10Hz and 20Hz. The crack was allowed to grow 0.2mm at each frequency and the frequencies were increased (1Hz to 20Hz) then decreased in magnitude (20Hz to 1Hz) for each of the stress intensities. This experimental design enables much more sensitive detection of small changes in crack growth rate than a conventional test where the crack grows through the entire range of δK at a single frequency. By repeatedly varying the loading within the same specimen the effects of variation between specimens can be removed, revealing significant differences in crack growth rate. The results provide important information on bone cement when loaded in conditions similar to those seen in-vivo and how frequency and stress intensities affect the fracture mechanics of PMMA


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_14 | Pages 38 - 38
1 Nov 2021
Argenson J Jaubert M LeBaron M Ollivier M Flecher X
Full Access

Two-stage exchange revision total hip arthroplasty performed in case of infection has been considered during many years the gold standard for treatment of chronic infection. Nevertheless, during the last decade, concerns have risen regarding its safety and its efficiency. The purpose of our study was to, first investigate the spacer complications, then to analyze their risks factors.

We retrospectively included 125 patients with chronic hip periprosthetic joint infection who underwent a two stage exchange revision arthroplasty performed between January 2013 and December 2019. All spacer complications were systematically collected and risk factors were analyzed. Statistical evaluation were performed using the Student and Mann-Whitney tests.

Our study confirms the hypothesis of a high-risk strategy with 42% of patients who had a mechanical spacer failure and a 20% recurrence of infection during the average two years period of follow-up. We found a high rate of spacer migration (23%) and a low rate of spacer fracture (8%) compared to literature.

The most important finding was that the majority of spacer complications and failures were found in a population with high medical comorbidities as highlighted by the ASA, Charlson and Lee score associations, as well as with the cardiac, pulmonary, kidney or hepatic chronic conditions.

This study showed that a two-stage hip exchange revision is a high-risk procedure regarding complications and mechanical failures of PMMA spacers.

In patients with high medical comorbidities, other strategies may be considered and interdisciplinary cooperation with other facilities are needed to identify and control each risk factor.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 118 - 118
1 Nov 2018
Bistolfi A
Full Access

The discussion will focus on new approaches to reduce bacterial adhesion on the surface of polymethylmethacrylate (PMMA) in contact with bone, comparing the clinical and engineering point of view. One possibility is to encourage and speed up direct interaction with the bone, for example by adding a bioactive phase in the cement (hydroxyapatite, glass and bioactive glass ceramic). A widespread strategy is also the addition of different types of antibiotics (gentamicin, tobramycin vancomycin, etc.), although they are known to have some drawbacks: not complete release, resistant strain development. Another strategy could be represented by the PMMA-based composite cements loaded with a completely inorganic filler consisting of a bioactive glass doped with ions whose bioactivity mechanism is well-known and encompasses a chemical and biological interaction with tissues promoting osteoinduction. Bioactive glasses can be doped with antibacterial ions (silver, copper, etc.) preserving their biocompatibility and bioactivity and, at the same time, acquiring antibacterial properties. Thus, it is possible to produce composite cements that combine the properties of the polymer matrix with those of the inorganic filler, overcoming the main problems associated with the use of antibiotics. An additional possibility is the addition of essential oils, vegetable oils with remarkable antibacterial properties.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 44 - 44
1 Oct 2019
Harper KD Dong D Bratescu R Incavo SJ Liberman SR
Full Access

Introduction

The medical field has long held largely anecdotal beliefs that polymethyl methacrylate (PMMA) vapors are dangerous to a growing fetus, and as such, women who are pregnant should avoid exposure. This study investigates the perceptions of female orthopedic surgeons regarding PMMA cement exposure during pregnancy, and if it influences 1) currently held beliefs / practices and 2) clinical and career choices.

Methods

A 23-question survey was distributed via e-mail to active members of the Ruth Jackson Orthopaedic Society and a private social media group for women in orthopedics. Questions included demographics, current usage of PMMA, previous exposure during pregnancy and/or breastfeeding, and beliefs regarding current or future willingness of exposure. Additionally, questions were asked regarding PMMA training and whether beliefs influenced specialty choices.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_9 | Pages 38 - 38
1 Sep 2019
Sikkens D Broekema A Soer R Reneman M Groen R Kuijlen J
Full Access

Introduction

Degeneration of the cervical spine can lead to neurological symptoms that require surgical intervention. Often, an anterior cervical discectomy (ACD) with fusion is performed with interposition of a cage. However, a cage substantially increases health care costs. The polymer polymethylmethacrylate (PMMA) is an alternative to cages, associated with lower costs. The reported high-occurrence of non-fusion with PMMA is often seen as a drawback, but evidence for a correlation between radiological fusion and clinical outcome is absent. To investigate if the lower rate of fusion with PMMA has negative effects on long-term clinical outcome, we assessed the clinical results of ACD with PMMA as a intervertebral spacer with a 5–10 year follow-up.

Methods

A retrospective cohort study among all patients who underwent a mono-level ACD with PMMA for degenerative cervical disease, between 2007–2012, was performed. Patients filled out an online questionnaire, developed to assess clinical long-term outcome, complications and re-operation rates. The primary outcome measure was the Neck Disability Index (NDI), secondary outcome measures were re-operation and complication rates.


Bone & Joint Research
Vol. 10, Issue 4 | Pages 277 - 284
1 Apr 2021
Funk GA Menuey EM Ensminger WP Kilway KV McIff TE

Aims. Poly(methyl methacrylate) (PMMA)-based bone cements are the industry standard in orthopaedics. PMMA cement has inherent disadvantages, which has led to the development and evaluation of a novel silorane-based biomaterial (SBB) for use as an orthopaedic cement. In this study we test both elution and mechanical properties of both PMMA and SBB, with and without antibiotic loading. Methods. For each cement (PMMA or SBB), three formulations were prepared (rifampin-added, vancomycin-added, and control) and made into pellets (6 mm × 12 mm) for testing. Antibiotic elution into phosphate-buffered saline was measured over 14 days. Compressive strength and modulus of all cement pellets were tested over 14 days. Results. The SBB cement was able to deliver rifampin over 14 days, while PMMA was unable to do so. SBB released more vancomycin overall than did PMMA. The mechanical properties of PMMA were significantly reduced upon rifampin incorporation, while there was no effect to the SBB cement. Vancomycin incorporation had no effect on the strength of either cement. Conclusion. SBB was found to be superior in terms of rifampin and vancomycin elution. Additionally, the incorporation of these antibiotics into SBB did not reduce the strength of the resultant SBB cement composite whereas rifampin substantially attenuates the strength of PMMA. Thus, SBB emerges as a potential weight-bearing alternative to PMMA for the local delivery of antibiotics. Cite this article: Bone Joint Res 2021;10(4):277–284


Bone & Joint Research
Vol. 7, Issue 7 | Pages 447 - 456
1 Jul 2018
Morgenstern M Vallejo A McNally MA Moriarty TF Ferguson JY Nijs S Metsemakers W

Objectives. As well as debridement and irrigation, soft-tissue coverage, and osseous stabilization, systemic antibiotic prophylaxis is considered the benchmark in the management of open fractures and considerably reduces the risk of subsequent fracture-related infections (FRI). The direct application of antibiotics in the surgical field (local antibiotics) has been used for decades as additional prophylaxis in open fractures, although definitive evidence confirming a beneficial effect is scarce. The purpose of the present study was to review the clinical evidence regarding the effect of prophylactic application of local antibiotics in open limb fractures. Methods. A comprehensive literature search was performed in PubMed, Web of Science, and Embase. Cohort studies investigating the effect of additional local antibiotic prophylaxis compared with systemic prophylaxis alone in the management of open fractures were included and the data were pooled in a meta-analysis. Results. In total, eight studies which included 2738 patients were eligible for quantitative synthesis. The effect of antibiotic-loaded poly(methyl methacrylate) beads was investigated by six of these studies, and two studies evaluated the effect of local antibiotics applied without a carrier. Meta-analysis showed a significantly lower infection rate when local antibiotics were applied (4.6%; 91/1986) than in the control group receiving standard systemic prophylaxis alone (16.5%; 124/752) (p < 0.001) (odds ratio 0.30; 95% confidence interval 0.22 to 0.40). Conclusion. This meta-analysis suggests a risk reduction in FRI of 11.9% if additional local antibiotics are given prophylactically for open limb fractures. However, due to limited quality, heterogeneity, and considerable risk of bias, the pooling of data from primary studies has to be interpreted with caution. Cite this article: M. Morgenstern, A. Vallejo, M. A. McNally, T. F. Moriarty, J. Y. Ferguson, S. Nijs, WJ. Metsemakers. Bone Joint Res 2018;7:447–456. The effect of local antibiotic prophylaxis when treating open limb fractures: A systematic review and meta-analysis. DOI: 10.1302/2046-3758.77.BJR-2018-0043.R1


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 243 - 243
1 Mar 2013
Lin A Pelletier M Walsh W Crosky A
Full Access

The use of polymethyl methacrylate based cement for the fixation of joint replacements although commonly applied, is still limited by interfacial weakness. This study aims to document the effects of a variety of surface treatments on implant/cement bonding and link them to their surface properties. Thirty seven femoral implant analogues of Ti6Al4V rods were given one of six different surface treatments: traditional grit blasting, wet and dry Vaquasheening, acid etching in concentrated sulphuric and hydrochloric acid, anodisation at 150V, and a combination of acid etching and anodisation, before being embedded into a commercially available poly(methyl methacrylate) bone cement. The interfacial strength, energy and stiffness were measured through pushout testing. Surface analysis included examination with scanning electron microscopy, wettability tests and roughness analysis. Results were analysed with a one-way ANOVA with post hoc tests. Overall, the coarse blasted surface created the strongest interface, followed by both etched then anodised, acid etched only, wet Vaquasheened, anodised only and finally dry vaquasheened. While anodised samples showed a weaker bond than etched samples, the combination of etching and anodisation was not different to etching alone. In addition, six different types of interface failure modes were observed, and theories as to explain their mechanism, using experimental evidence were outlined. Coarse blasted surfaces showed the strongest bonding, while other surface modifications may encourage tissue ingrowth and other biological responses, these surface treatments do not strengthen bonding for cemented fixation


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_15 | Pages 55 - 55
1 Dec 2015
Ferreira I Bettencourt A Gonçalves L Kasper S Kikhney J Moter A Almeida A Trampuz A
Full Access

The aim of the present study was to assess the antibiofilm activity of daptomycin- and vancomycin-loaded poly(methyl methacrylate) (PMMA) and PMMA-Eudragit RL100 (EUD) microparticles against mature biofilms of polysaccharide intercellular adhesin-positive S. epidermidis. The effect of plain, daptomycin- and vancomycin-loaded PMMA and PMMA-EUD microparticles on S. epidermidis biofilms was assessed by isothermal microcalorimetry (IMC) and fluorescence in situ hybridization (FISH). Biofilms were grown for 48h onto poly-urethane pieces of fixed dimensions. Each sample was washed with PBS in order to remove planktonic bacteria and incubated for 24h with different concentrations of acrylic microparticles (20–1.25 mg/mL). The minimal biofilm inhibitory concentration (MBIC) of the antibiotic-loaded particles was defined as the lowest concentration of particles that was able to prevent heat flow associated to the recovery of the biofilms. After incubation with the microparticles, sessile cocci were hybridized with the pan-bacterial EUB338-FITC and the staphylococci-specific STAPHY-FICT probes and stained with DAPI. Biofilm structure and metabolic state were characterized by fluorescence microscopy. According to the IMC results, plain PMMA-particles showed no effect on S. epidermidis biofilms, whereas PMMA-EUD-microparticles negatively influenced the recovery of the biofilm probably due to the highly positive charge of these particles. The MBIC of daptomycin-loaded PMMA-microparticles was 20 mg/mL, whereas vancomycin-loaded PMMA microparticles were not able to inhibit biofilm recovery. Adding EUD to the formulation reduced the MBIC of daptomycin-loaded microparticles to 1.25 mg/mL, corresponding to a 16-fold reduction. Regarding the vancomycin-loaded microparticles, EUD caused a further decrease of their antibiofilm activity. The FISH micrographs corroborated the IMC results and provided additional insights on the antibiofilm effect of these carriers. According to FISH, daptomycin-loaded PMMA-EUD microparticles were responsible for the most pronounced reduction in biofilm mass. In addition, FISH showed that both PMMA and PMMA-EUD microparticles were able to attach to the biofilms. Adding EUD to the formulations proved to be a powerful strategy to improve daptomycin-loaded microparticles antibiofilm activity. In addition, the combination of IMC and FISH was essential in order to fully assess the effect of polymeric microparticles on sessile S. epidermidis. Although the present study enabled gaining further insights on this subject, the nature of these interactions remains unclear. However, this may be a crucial aspect for the enhancement of antibiofilm activity of antibiotic-loaded polymeric microcarriers against mature biofilms. This work was supported by the Portuguese government (Fundação para a Ciência e a Tecnologia) and FEDER (grant SFRH/BD/69260/2010 and research project EXCL/CTM-NAN/0166/2012) and strategic project PEst-OE/SAU/UI4013/2011


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 178 - 178
1 Sep 2012
Sinclair S Konz G Dawson J Bloebaum R
Full Access

Background. Synthetic interbody spinal fusion devices are used to restore and maintain disc height and ensure proper vertebral alignment. These devices are often filled with autograft bone to facilitate bone bridging through the device while providing mechanical stability. Nonporous polyetheretherketone (PEEK) devices are widely used clinically for such procedures. 1. Trabecular Metal devices are an alternative, fabricated from porous tantalum. It was hypothesized that the porous Trabecular Metal device would better maintain autograft viability through the center of the device, the ‘graft hole’ (GH). Methods. Twenty-five goats underwent anterior cervical discectomy and fusion using a Trabecular Metal or PEEK device for 6, 12 or 26 weeks. The GH of each device was filled with autograft bone morsels harvested from the animal at implantation. Fluorochrome labeling oxytetracycline was administered to the animals and used to determine bone viability in the device regions. Following necropsy, the vertebral segments were embedded in poly(methyl methacrylate) sectioned and analyzed using fluorescence and backscatter electron (BSE) imaging. The percent of bone tissue present within the GH was measured as a volume percent using BSE images (Fig. 1). Results. Bone percent analysis demonstrated that there was no significant difference (p<0.05) in volume of bone tissue within the GH of the two devices at 6 and 26 weeks (Fig. 2). At 12 weeks the animals implanted with the Trabecular Metal device had significantly greater volumes of bone within the GH region. Viable bone was observed in the host bone region and periprosthetic to the implant of all PEEK (n=12) and Trabecular Metal (n=12) animals within the study, determined by the presence of fluorescent labels (Fig. 3). Viable bone was also observed in the GH region of all animals with a Trabecular Metal device. However, only 5 of 12 PEEK animals showed bone viability within the GH (2 at 12 weeks and 3 at 26 weeks). A Fisher's exact comparison of the number of animals with viable bone in the GH showed a significant difference between the two devices, p<0.05. Conclusion. Autograft viability was better maintained within the GH for the porous Trabecular Metal device compared to the PEEK device. Although the amount of bone tissue within the GH of the PEEK devices was determined to have no significant difference compared to the Trabecular Metal devices at 6 and 26 weeks, the GH bone tissue was not viable in a number of the PEEK animals at each time point. The interconnected network and high volume porosity of the Trabecular Metal device may have allowed for fluid exchange, angiogenesis and increased blood supply to the autograft morsels. The viability of the autograft morsels also played an important role in the success of bone bridging through the GH between the vertebral endplates. In this animal model it was demonstrated that the autograft bone placed within the PEEK spinal fusion device did not always remain viable after implantation, but sometimes only filled the GH and did not necessarily facilitate fusion between the vertebrae as intended


The Bone & Joint Journal
Vol. 104-B, Issue 12 | Pages 1352 - 1361
1 Dec 2022
Trovarelli G Pala E Angelini A Ruggieri P

Aims

We performed a systematic literature review to define features of patients, treatment, and biological behaviour of multicentric giant cell tumour (GCT) of bone.

Methods

The search terms used in combination were “multicentric”, “giant cell tumour”, and “bone”. Exclusion criteria were: reports lacking data, with only an abstract; papers not reporting data on multicentric GCT; and papers on multicentric GCT associated with other diseases. Additionally, we report three patients treated under our care.


Bone & Joint Research
Vol. 12, Issue 8 | Pages 467 - 475
2 Aug 2023
Wu H Sun D Wang S Jia C Shen J Wang X Hou C Xie Z Luo F

Aims

This study was designed to characterize the recurrence incidence and risk factors of antibiotic-loaded cement spacer (ALCS) for definitive bone defect treatment in limb osteomyelitis.

Methods

We included adult patients with limb osteomyelitis who received debridement and ALCS insertion into the bone defect as definitive management between 2013 and 2020 in our clinical centre. The follow-up time was at least two years. Data on patients’ demographics, clinical characteristics, and infection recurrence were retrospectively collected and analyzed.


Bone & Joint Research
Vol. 10, Issue 8 | Pages 488 - 497
10 Aug 2021
Cleemann R Sorensen M West A Soballe K Bechtold JE Baas J

Aims

We wanted to evaluate the effects of a bone anabolic agent (bone morphogenetic protein 2 (BMP-2)) on an anti-catabolic background (systemic or local zoledronate) on fixation of allografted revision implants.

Methods

An established allografted revision protocol was implemented bilaterally into the stifle joints of 24 canines. At revision surgery, each animal received one BMP-2 (5 µg) functionalized implant, and one raw implant. One group (12 animals) received bone graft impregnated with zoledronate (0.005 mg/ml) before impaction. The other group (12 animals) received untreated bone graft and systemic zoledronate (0.1 mg/kg) ten and 20 days after revision surgery. Animals were observed for an additional four weeks before euthanasia.


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 97 - 102
1 Jan 2022
Hijikata Y Kamitani T Nakahara M Kumamoto S Sakai T Itaya T Yamazaki H Ogawa Y Kusumegi A Inoue T Yoshida T Furue N Fukuhara S Yamamoto Y

Aims

To develop and internally validate a preoperative clinical prediction model for acute adjacent vertebral fracture (AVF) after vertebral augmentation to support preoperative decision-making, named the after vertebral augmentation (AVA) score.

Methods

In this prognostic study, a multicentre, retrospective single-level vertebral augmentation cohort of 377 patients from six Japanese hospitals was used to derive an AVF prediction model. Backward stepwise selection (p < 0.05) was used to select preoperative clinical and imaging predictors for acute AVF after vertebral augmentation for up to one month, from 14 predictors. We assigned a score to each selected variable based on the regression coefficient and developed the AVA scoring system. We evaluated sensitivity and specificity for each cut-off, area under the curve (AUC), and calibration as diagnostic performance. Internal validation was conducted using bootstrapping to correct the optimism.


The Bone & Joint Journal
Vol. 104-B, Issue 5 | Pages 575 - 580
2 May 2022
Hamad C Chowdhry M Sindeldecker D Bernthal NM Stoodley P McPherson EJ

Periprosthetic joint infection (PJI) is a difficult complication requiring a comprehensive eradication protocol. Cure rates have essentially stalled in the last two decades, using methods of antimicrobial cement joint spacers and parenteral antimicrobial agents. Functional spacers with higher-dose antimicrobial-loaded cement and antimicrobial-loaded calcium sulphate beads have emphasized local antimicrobial delivery on the premise that high-dose local antimicrobial delivery will enhance eradication. However, with increasing antimicrobial pressures, microbiota have responded with adaptive mechanisms beyond traditional antimicrobial resistance genes. In this review we describe adaptive resistance mechanisms that are relevant to the treatment of PJI. Some mechanisms are well known, but others are new. The objective of this review is to inform clinicians of the known adaptive resistance mechanisms of microbes relevant to PJI. We also discuss the implications of these adaptive mechanisms in the future treatment of PJI.

Cite this article: Bone Joint J 2022;104-B(5):575–580.


Bone & Joint Research
Vol. 10, Issue 12 | Pages 797 - 806
8 Dec 2021
Chevalier Y Matsuura M Krüger S Traxler H Fleege† C Rauschmann M Schilling C

Aims

Anchorage of pedicle screw rod instrumentation in the elderly spine with poor bone quality remains challenging. Our study aims to evaluate how the screw bone anchorage is affected by screw design, bone quality, loading conditions, and cementing techniques.

Methods

Micro-finite element (µFE) models were created from micro-CT (μCT) scans of vertebrae implanted with two types of pedicle screws (L: Ennovate and R: S4). Simulations were conducted for a 10 mm radius region of interest (ROI) around each screw and for a full vertebra (FV) where different cementing scenarios were simulated around the screw tips. Stiffness was calculated in pull-out and anterior bending loads.


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 9 - 16
1 Jul 2021
Hadden WJ Ibrahim M Taha M Ure K Liu Y Paish ADM Holdsworth DW Abdelbary H

Aims

The aims of this study were to develop an in vivo model of periprosthetic joint infection (PJI) in cemented hip hemiarthroplasty, and to monitor infection and biofilm formation in real-time.

Methods

Sprague-Dawley rats underwent cemented hip hemiarthroplasty via the posterior approach with pre- and postoperative gait assessments. Infection with Staphylococcus aureus Xen36 was monitored with in vivo photoluminescent imaging in real-time. Pre- and postoperative gait analyses were performed and compared. Postmortem micro (m) CT was used to assess implant integration; field emission scanning electron microscopy (FE-SEM) was used to assess biofilm formation on prosthetic surfaces.


The Bone & Joint Journal
Vol. 103-B, Issue 7 | Pages 1215 - 1221
1 Jul 2021
Kennedy JW Ng NYB Young D Kane N Marsh AG Meek RMD

Aims

Cement-in-cement revision of the femoral component represents a widely practised technique for a variety of indications in revision total hip arthroplasty. In this study, we compare the clinical and radiological outcomes of two polished tapered femoral components.

Methods

From our prospectively collated database, we identified all patients undergoing cement-in-cement revision from January 2005 to January 2013 who had a minimum of two years' follow-up. All cases were performed by the senior author using either an Exeter short revision stem or the C-Stem AMT high offset No. 1 prosthesis. Patients were followed-up annually with clinical and radiological assessment.