Advertisement for orthosearch.org.uk
Results 1 - 20 of 313
Results per page:
The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 79 - 84
1 Jun 2020
Abdelfadeel W Houston N Star A Saxena A Hozack WJ

Aims. The aim of this study was to analyze the true costs associated with preoperative CT scans performed for robotic-assisted total knee arthroplasty (RATKA) planning and to determine the value of a formal radiologist’s report of these studies. Methods. We reviewed 194 CT reports of 176 sequential patients who underwent primary RATKA by a single surgeon at a suburban teaching hospital. CT radiology reports were reviewed for the presence of incidental findings that might change the management of the patient. Payments for the scans, including the technical and professional components, for 330 patients at two hospitals were also recorded and compared. Results. There were 82 incidental findings in 61 CT studies, one of which led to a recommendation for additional testing. Across both institutions, the mean total payment for a preoperative scan was $446 ($8 to $3,870). The mean patient payment was $71 ($0 to $2,690). There was wide variation in payments between the institutions. In Institution A, the mean total payment was $258 ($168 to $264), with a mean patient payment of $57 ($0 to $100). The mean technical payment in this institution was $211 ($8 to $856), while the mean professional payment was $48 ($0 to $66). In Institution B, the mean total payment was $636 ($37 to $3,870), with a mean patient payment of $85 ($0 to $2,690). Conclusion. The total cost of a CT scan is low and a minimal part of the overall cost of the RATKA. No incidental findings identified on imaging led to a change in management, suggesting that the professional component could be eliminated to reduce costs. Further studies need to take into account the patient perspective and the wide variation in total costs and patient payments across institutions and insurances. Cite this article: Bone Joint J 2020;102-B(6 Supple A):79–84


The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 153 - 158
1 Nov 2013
Victor J Premanathan A

We have investigated the benefits of patient specific instrument guides, applied to osteotomies around the knee. Single, dual and triple planar osteotomies were performed on tibias or femurs in 14 subjects. In all patients, a detailed pre-operative plan was prepared based upon full leg standing radiographic and CT scan information. The planned level of the osteotomy and open wedge resection was relayed to the surgery by virtue of a patient specific guide developed from the images. The mean deviation between the planned wedge angle and the executed wedge angle was 0° (-1 to 1, . sd. 0.71) in the coronal plane and 0.3° (-0.9 to 3, . sd. 1.14) in the sagittal plane. The mean deviation between the planned hip, knee, ankle angle (HKA) on full leg standing radiograph and the post-operative HKA was 0.3° (-1 to 2, . sd. 0.75). It is concluded that this is a feasible and valuable concept from the standpoint of pre-operative software based planning, surgical application and geometrical accuracy of outcome. . Cite this article: Bone Joint J 2013;95-B, Supple A:153–8


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IX | Pages 72 - 72
1 Mar 2012
Hugill L Foguet P Costa M
Full Access

Purpose of the study. We report the problems associated with setting up an electronic arthroplasty surveillance plan and suggest some solutions which are appropriate to the modern NHS setting. Methods and Results. In 2006, the lower limb arthroplasty surgeons at UHCW NHS Trust decided to set up a ‘virtual’ arthroplasty surveillance plan to provide long-term radiographic and patient reported clinical outcomes for all patients undergoing hip and knee arthroplasty. In the face of increasing pressure upon outpatient waiting time and funding issues, this system was designed to replace the routine clinical review of patients in the outpatient department. While simple in principle, the virtual arthroplasty surveillance plan required input from surgeons and allied health professionals, hospital management, PCT clinicians, PCT finance, hospital finance, IT services and of course patients. However, in 2009 we were able to provide an electronic record of functional outcome scores and associated radiographs for over 1000 patients who had primary hip and knee arthroplasty surgery in our unit. Response rates for the first 6 months of 2009 for hip arthroplasty were 85.2% for functional outcomes and 84.2% for radiographic review. The subsequent clinical input is managed through ‘virtual’ clinics which provide a means to track patient outcomes and also an automated mechanism for financing the system. There are several areas which can still be improved, but early qualitative feedback suggests that this system provides high levels of satisfaction for both patients and surgeons. Conclusion. We believe that the long-term follow-up of patients undergoing arthroplasty surgery is important to both surgeons and patients. An electronic surveillance system using ‘virtual clinics’ offers one possible solution, but implementing such a system in the modern NHS requires a great deal of persistence


Bone & Joint Open
Vol. 5, Issue 8 | Pages 628 - 636
2 Aug 2024
Eachempati KK Parameswaran A Ponnala VK Sunil A Sheth NP

Aims. The aims of this study were: 1) to describe extended restricted kinematic alignment (E-rKA), a novel alignment strategy during robotic-assisted total knee arthroplasty (RA-TKA); 2) to compare residual medial compartment tightness following virtual surgical planning during RA-TKA using mechanical alignment (MA) and E-rKA, in the same set of osteoarthritic varus knees; 3) to assess the requirement of soft-tissue releases during RA-TKA using E-rKA; and 4) to compare the accuracy of surgical plan execution between knees managed with adjustments in component positioning alone, and those which require additional soft-tissue releases. Methods. Patients who underwent RA-TKA between January and December 2022 for primary varus osteoarthritis were included. Safe boundaries for E-rKA were defined. Residual medial compartment tightness was compared following virtual surgical planning using E-rKA and MA, in the same set of knees. Soft-tissue releases were documented. Errors in postoperative alignment in relation to planned alignment were compared between patients who did (group A) and did not (group B) require soft-tissue releases. Results. The use of E-rKA helped restore all knees within the predefined boundaries, with appropriate soft-tissue balancing. E-rKA compared with MA resulted in reduced residual medial tightness following surgical planning, in full extension (2.71 mm (SD 1.66) vs 5.16 mm (SD 3.10), respectively; p < 0.001), and 90° of flexion (2.52 mm (SD 1.63) vs 6.27 mm (SD 3.11), respectively; p < 0.001). Among the study population, 156 patients (78%) were managed with minor adjustments in component positioning alone, while 44 (22%) required additional soft-tissue releases. The mean errors in postoperative alignment were 0.53 mm and 0.26 mm among patients in group A and group B, respectively (p = 0.328). Conclusion. E-rKA is an effective and reproducible alignment strategy during RA-TKA, permitting a large proportion of patients to be managed without soft-tissue releases. The execution of minor alterations in component positioning within predefined multiplanar boundaries is a better starting point for gap management than soft-tissue releases. Cite this article: Bone Jt Open 2024;5(8):628–636


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 82 - 82
7 Aug 2023
Jones R Phillips J Panteli M
Full Access

Abstract. Introduction. Total joint arthroplasty (TJA) is one of the commonest and most successful orthopaedic procedures, used for the management of end-stage arthritis. With the recent introduction of robotic assisted joint replacement, Computed Tomography (CT) has become part of required pre-operative planning. The aim of this study is to quantify and characterise incidental CT findings, their clinical significance, and their effect on planned joint arthroplasty. Methodology. All consecutive patients undergoing an elective TJR (hip or knee arthroplasty) were retrospectively identified, over a 3-year period (December 2019 and December 2022). Data documented and analysed included patient demographics, type of joint arthroplasty, CT findings, their clinical significance, as well as potential delays to the planned arthroplasty because of these findings and subsequent further investigation. Results. A total of 624 patients (637 studies, 323 (51.8%) female, 301 (48.2%) male) were identified of which 163 (25.6%) showed incidental findings within the long bones or pelvis. Of these 52 (8.2%) were significant, potentially requiring further management, 32 (5.0%) represented potential malignancy and 4 (0.6%) resulted in a new cancer diagnosis. Conclusion. It is not currently national standard practice to report planning CT imaging as it is deemed an unnecessary expense and burden on radiology services. Within the study cohort 52 (8.2%) of patients had a significant incidental finding that required further investigation or management and 4 (0.6%) had a previously undiagnosed malignancy. In order to avoid the inevitability of a missed malignancy on a planning CT, we must advocate for formal reports in all cases


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 74 - 80
1 Jun 2021
Deckey DG Rosenow CS Verhey JT Brinkman JC Mayfield CK Clarke HD Bingham JS

Aims. Robotic-assisted total knee arthroplasty (RA-TKA) is theoretically more accurate for component positioning than TKA performed with mechanical instruments (M-TKA). Furthermore, the ability to incorporate soft-tissue laxity data into the plan prior to bone resection should reduce variability between the planned polyethylene thickness and the final implanted polyethylene. The purpose of this study was to compare accuracy to plan for component positioning and precision, as demonstrated by deviation from plan for polyethylene insert thickness in measured-resection RA-TKA versus M-TKA. Methods. A total of 220 consecutive primary TKAs between May 2016 and November 2018, performed by a single surgeon, were reviewed. Planned coronal plane component alignment and overall limb alignment were all 0° to the mechanical axis; tibial posterior slope was 2°; and polyethylene thickness was 9 mm. For RA-TKA, individual component position was adjusted to assist gap-balancing but planned coronal plane alignment for the femoral and tibial components and overall limb alignment remained 0 ± 3°; planned tibial posterior slope was 1.5°. Mean deviations from plan for each parameter were compared between groups for positioning and size and outliers were assessed. Results. In all, 103 M-TKAs and 96 RA-TKAs were included. In RA-TKA versus M-TKA, respectively: mean femoral positioning (0.9° (SD 1.2°) vs 1.7° (SD 1.1°)), mean tibial positioning (0.3° (SD 0.9°) vs 1.3° (SD 1.0°)), mean posterior tibial slope (-0.3° (SD 1.3°) vs 1.7° (SD 1.1°)), and mean mechanical axis limb alignment (1.0° (SD 1.7°) vs 2.7° (SD 1.9°)) all deviated significantly less from the plan (all p < 0.001); significantly fewer knees required a distal femoral recut (10 (10%) vs 22 (22%), p = 0.033); and deviation from planned polyethylene thickness was significantly less (1.4 mm (SD 1.6) vs 2.7 mm (SD 2.2), p < 0.001). Conclusion. RA-TKA is significantly more accurate and precise in planning both component positioning and final polyethylene insert thickness. Future studies should investigate whether this increased accuracy and precision has an impact on clinical outcomes. The greater accuracy and reproducibility of RA-TKA may be important as precise new goals for component positioning are developed and can be further individualized to the patient. Cite this article: Bone Joint J 2021;103-B(6 Supple A):74–80


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 9 - 9
1 Jul 2022
Fleming T Torrie A Murphy T Dodds A Engelke D Curwen C Gosal H Pegrum J
Full Access

Abstract. INTRODUCTION. COVID-19 reduced availability of cross-sectional imaging, prompting the need to clinically justify pre-operative computed tomography (CT) in tibial plateau fractures (TPF). The study purpose was to establish to what extent does a CT alter the pre-operative plan in TPF compared to radiographs. There is a current paucity of evidence assessing its impact on surgical planning. METHODOLOGY. 50 consecutive TPF with preoperative CT were assessed by 4 consultant surgeons. Anonymised radiographs were assessed defining the column classification, planned setup, approach, and fixation technique. At a 1-month interval, randomised matched CT scans were assessed and the same data collected. A tibial plateau disruption score (TPDS) was derived for all 4 quadrants (no injury=0,split=1,split/depression=2 and depression=3). Radiograph and CT TPDS were assessed using an unpaired T-test. RESULTS. 26 female and 24 male patients, mean age 50.3, were included. Mean TPDS on radiographs and CT scans were 2.77 and 3.17 respectively. A significant higher net CT TPDS was observed of 0.4 (95%CI 0.10-0.71)[P=0.0093]. Both radiograph and CT TPDS ANOVA were significant (P<0.0001), showing high intraobserver variability for TPF classification. Fracture apex requiring fixation changed in 34% of cases between the radiographs and CT, whilst set-up and surgical approach changed in 27% and 28.5% of cases respectively. All surgeons agreed no CT was required in only 11 out of 50 cases. CONCLUSION. CT scanning in TPF significantly affects the classification, setup, approach and fixation technique when compared to radiographs alone and can justifiably be requested as part of pre-operative planning


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 87 - 87
1 Jul 2022
Rajput V Fontalis A Plastow R Kayani B Giebaly D Hansejee S Magan A Haddad F
Full Access

Abstract. Introduction. Coronal plane alignment of the knee (CPAK) classification utilises the native arithmetic hip-knee alignment to calculate the constitutional limb alignment and joint line obliquity which is important in pre-operative planning. The objective of this study was to compare the accuracy and reproducibility of measuring the lower limb constitutional alignment with the traditional long leg radiographs versus computed tomography (CT) used for pre-operative planning in robotic-arm assisted TKA. Methods. Digital long leg radiographs and pre-operative CT scan plans of 42 patients (46 knees) with osteoarthritis undergoing robotic-arm assisted total knee replacement were analysed. The constitutional alignment was established by measuring the medial proximal tibial angle (mPTA), lateral distal femoral angle (LDFA), weight bearing hip knee alignment (WBHKA), arithmetic hip knee alignment (aHKA) and joint line obliquity (JLO). Furthermore, the Coronal Plane Alignment of the Knee (CPAK) classification was utilised to classify the patients based on their coronal knee alignment phenotype. Results. Mean age of the patients was 66 years (SD 9) and mean BMI 31.2 (SD 3.9). There were 27 left and 19 right sided surgeries. The Pearson's corelation coefficient was 0.722 (p=0.008) for WBHKA; 0.729 (p<0.001) for MPTA; 0.618 (p=0.14) for aHKA; 0.502 (p= 0.04) for LDFA and 0.305 (p=0.234) for JLO. CPAK classification was concordant for 53% study participants between the two groups. Conclusion. Three-dimensional CT-based modelling with computer software more accurately predicts constitutional limb alignment and JLO as defined by the CPAK classification compared to plain long-leg radiographs in pre-operative planning of total knee arthroplasty


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 34 - 34
7 Aug 2023
Afzal I Radha S Mitchell P
Full Access

Abstract. Multidisciplinary team (MDT) meetings in orthopaedic surgery are evolving. The goals include patient optimisation, surgical planning and discharge arrangements, individually on a patient specific basis. In line with British Association Surgery of the Knee and GIRFT guidelines, we report our regional experience on the implementation and evolution of our regional Revision Knee Arthroplasty MDT. We undertook a retrospective review of the process, cases discussed and quality assurance conducted in the weekly MDT. Since implementation of the MDT meeting in January 2019, 550 patients with painful joint replacements have been discussed. In May 2021, we formalised our ‘terms of reference’ and ‘standard operating procedures’ which are adhered to by the consultants operating within the network, all of whom attend the meeting. A proforma has been developed and is completed for all cases capturing all pertinent information. All cases are graded according to R1, R2, or R3 complexity scale. Since its inception, the MDT has looked at all post-operative imaging, we now describe a new classification system for grading the appearances. Confirmation of the pre-operative plan and actual surgical intervention is reviewed and audited. In addition, confirmation of indication of revision at the time of operation is reviewed and validated for accuracy with benefits to the unit, individual surgeon and the NJR. In conclusion, the implementation of the revision MDT facilitating pre-operative revision arthroplasty discussion and post-operative quality assurance processes enable surgeons to educate, reflect on their practice and ensure that the highest standards of care are being provided


Bone & Joint Open
Vol. 5, Issue 2 | Pages 101 - 108
6 Feb 2024
Jang SJ Kunze KN Casey JC Steele JR Mayman DJ Jerabek SA Sculco PK Vigdorchik JM

Aims. Distal femoral resection in conventional total knee arthroplasty (TKA) utilizes an intramedullary guide to determine coronal alignment, commonly planned for 5° of valgus. However, a standard 5° resection angle may contribute to malalignment in patients with variability in the femoral anatomical and mechanical axis angle. The purpose of the study was to leverage deep learning (DL) to measure the femoral mechanical-anatomical axis angle (FMAA) in a heterogeneous cohort. Methods. Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A DL workflow was created to measure the FMAA and validated against human measurements. To reflect potential intramedullary guide placement during manual TKA, two different FMAAs were calculated either using a line approximating the entire diaphyseal shaft, and a line connecting the apex of the femoral intercondylar sulcus to the centre of the diaphysis. The proportion of FMAAs outside a range of 5.0° (SD 2.0°) was calculated for both definitions, and FMAA was compared using univariate analyses across sex, BMI, knee alignment, and femur length. Results. The algorithm measured 1,078 radiographs at a rate of 12.6 s/image (2,156 unique measurements in 3.8 hours). There was no significant difference or bias between reader and algorithm measurements for the FMAA (p = 0.130 to 0.563). The FMAA was 6.3° (SD 1.0°; 25% outside range of 5.0° (SD 2.0°)) using definition one and 4.6° (SD 1.3°; 13% outside range of 5.0° (SD 2.0°)) using definition two. Differences between males and females were observed using definition two (males more valgus; p < 0.001). Conclusion. We developed a rapid and accurate DL tool to quantify the FMAA. Considerable variation with different measurement approaches for the FMAA supports that patient-specific anatomy and surgeon-dependent technique must be accounted for when correcting for the FMAA using an intramedullary guide. The angle between the mechanical and anatomical axes of the femur fell outside the range of 5.0° (SD 2.0°) for nearly a quarter of patients. Cite this article: Bone Jt Open 2024;5(2):101–108


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 90 - 90
1 Jul 2022
KRISHNAN B ANDREWS N CHATOO M THAKRAR R
Full Access

Abstract. Introduction. Osteotomy is a recognised surgical option for the management of unicompartmental knee osteoarthritis. The effectiveness of the surgery is correlated with the accuracy of correction obtained. Overcorrection can potentially lead to excess load through the healthy cartilage resulting in accelerated wear and early failure of surgery. Despite this past studies report this accuracy to be as low as 20% in achieving planned corrections. Aim. Assess the effectiveness of adopting modern osteotomy techniques in improving surgical accuracy. Methodology. A prospective cohort study. Patients were identified who had undergone osteotomy surgery for unicompartmental knee OA using a standardised technique. The surgical techniques adopted to ensure accuracy included digital templating software (Orthoview), Precision saw(Stryker), bone wedge allograft and plate osteosynthesis (Tomofix). Pre and post operative analysis of standardised long leg X-rays was performed and the intended (I) and achieved(A) corrections were calculated. Results. A total of 94 (35F/59M) patients with a mean age of 52 years were identified who fulfilled the inclusion criteria for the study. 62 patients were treated with a tibial osteotomy, 21 with femoral and 11 with a double level osteotomy. Using a 10% acceptable range (AR) for error, in 89% of cases (84 of 94) the target Mikulicz point was achieved. Potential risk factors for overcorrection included female sex and osteotomy type, with a higher incidence of over correction observed with double level osteotomies (27%). Conclusion. This study demonstrates that meticulous digital software planning and surgical technique ensures accurate surgical correction in periarticular knee osteotomy surgery


The Bone & Joint Journal
Vol. 106-B, Issue 6 | Pages 573 - 581
1 Jun 2024
van Houtert WFC Strijbos DO Bimmel R Krijnen WP Jager J van Meeteren NLU van der Sluis G

Aims. To investigate the impact of consecutive perioperative care transitions on in-hospital recovery of patients who had primary total knee arthroplasty (TKA) over an 11-year period. Methods. This observational cohort study used electronic health record data from all patients undergoing preoperative screening for primary TKA at a Northern Netherlands hospital between 2009 and 2020. In this timeframe, three perioperative care transitions were divided into four periods: Baseline care (Joint Care, n = 171; May 2009 to August 2010), Function-tailored (n = 404; September 2010 to October 2013), Fast-track (n = 721; November 2013 to May 2018), and Prehabilitation (n = 601; June 2018 to December 2020). In-hospital recovery was measured using inpatient recovery of activities (IROA), length of stay (LOS), and discharge to preoperative living situation (PLS). Multivariable regression models were used to analyze the impact of each perioperative care transition on in-hospital recovery. Results. The four periods analyzed involved 1,853 patients (65.9% female (1,221/1,853); mean age 70.1 years (SD 9.0)). IROA improved significantly with each transition: Function-tailored (0.9 days; p < 0.001 (95% confidence interval (CI) -0.32 to -0.15)), Fast-track (0.6 days; p < 0.001 (95% CI -0.25 to -0.16)), and Prehabilitation (0.4 days; p < 0.001 (95% CI -0.18 to -0.10)). LOS decreased significantly in Function-tailored (1.1 days; p = 0.001 (95% CI -0.30 to -0.06)), Fast-track (0.6 days; p < 0.001 (95% CI -0.21 to -0.05)), and Prehabilitation (0.6 days; p < 0.001 (95%CI -0.27 to -0.11)). Discharge to PLS increased in Function-tailored (77%), Fast-track (91.6%), and Prehabilitation (92.6%). Post-hoc analysis indicated a significant increase after the transition to the Fast-track period (p < 0.001 (95% CI 3.19 to 8.00)). Conclusion. This study highlights the positive impact of different perioperative care procedures on in-hospital recovery of patients undergoing primary TKA. Assessing functional recovery, LOS, and discharge towards PLS consistently, provides hospitals with valuable insights into postoperative recovery. This can potentially aid planning and identifying areas for targeted improvements to optimize patient outcomes. Cite this article: Bone Joint J 2024;106-B(6):573–581


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 98 - 98
1 Jul 2022
Vidakovic H Meen R Ohly N
Full Access

Abstract. Introduction. Mako robotic assisted knee arthroplasty requires a planning CT scan within 8 weeks of surgery according to the supplier's protocol. This is often impractical, therefore we evaluated whether CT scans remain valid for an extended period. Methodology. Patients undergoing Mako partial (PKA) and total (TKA) knee arthroplasty were identified from our hospital database. The hospital PACS system was used to define the time interval between the initial planning CT scan and surgery, and whether further imaging was required prior to surgery. Results. 443 consecutive Mako cases (225 TKA and 218 PKA) were undertaken between November 2019 and December 2021 (33 cases to March 2020, and 410 cases from August 2020). CT scans were done within 8 weeks of surgery in 229 patients (51.7%); between 8 and 24 weeks in 148 patients (33.4%); between 24 and 48 weeks in 53 patients (12.0%); and more than 48 weeks in 13 patients (2.9%). Repeat pre-operative radiographs were done in the first 43 patients with a delay to surgery of more than 8 weeks following their CT scan. No gross anatomical changes were identified, and this practice was therefore discontinued. No patients required a repeat CT scan. There were no intra-operative registration errors in any patient in this series. Conclusion. Planning CT scans were valid for up to one year in a large series of patients undergoing Mako PKA and TKA. This may allow for more cost-effective use of resources, while minimising irradiation to patients


Bone & Joint Open
Vol. 3, Issue 10 | Pages 767 - 776
5 Oct 2022
Jang SJ Kunze KN Brilliant ZR Henson M Mayman DJ Jerabek SA Vigdorchik JM Sculco PK

Aims. Accurate identification of the ankle joint centre is critical for estimating tibial coronal alignment in total knee arthroplasty (TKA). The purpose of the current study was to leverage artificial intelligence (AI) to determine the accuracy and effect of using different radiological anatomical landmarks to quantify mechanical alignment in relation to a traditionally defined radiological ankle centre. Methods. Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A sub-cohort of 250 radiographs were annotated for landmarks relevant to knee alignment and used to train a deep learning (U-Net) workflow for angle calculation on the entire database. The radiological ankle centre was defined as the midpoint of the superior talus edge/tibial plafond. Knee alignment (hip-knee-ankle angle) was compared against 1) midpoint of the most prominent malleoli points, 2) midpoint of the soft-tissue overlying malleoli, and 3) midpoint of the soft-tissue sulcus above the malleoli. Results. A total of 932 bilateral full-limb radiographs (1,864 knees) were measured at a rate of 20.63 seconds/image. The knee alignment using the radiological ankle centre was accurate against ground truth radiologist measurements (inter-class correlation coefficient (ICC) = 0.99 (0.98 to 0.99)). Compared to the radiological ankle centre, the mean midpoint of the malleoli was 2.3 mm (SD 1.3) lateral and 5.2 mm (SD 2.4) distal, shifting alignment by 0.34. o. (SD 2.4. o. ) valgus, whereas the midpoint of the soft-tissue sulcus was 4.69 mm (SD 3.55) lateral and 32.4 mm (SD 12.4) proximal, shifting alignment by 0.65. o. (SD 0.55. o. ) valgus. On the intermalleolar line, measuring a point at 46% (SD 2%) of the intermalleolar width from the medial malleoli (2.38 mm medial adjustment from midpoint) resulted in knee alignment identical to using the radiological ankle centre. Conclusion. The current study leveraged AI to create a consistent and objective model that can estimate patient-specific adjustments necessary for optimal landmark usage in extramedullary and computer-guided navigation for tibial coronal alignment to match radiological planning. Cite this article: Bone Jt Open 2022;3(10):767–776


Bone & Joint Open
Vol. 5, Issue 10 | Pages 911 - 919
21 Oct 2024
Clement N MacDonald DJ Hamilton DF Gaston P

Aims. The aims were to assess whether joint-specific outcome after total knee arthroplasty (TKA) was influenced by implant design over a 12-year follow-up period, and whether patient-related factors were associated with loss to follow-up and mortality risk. Methods. Long-term follow-up of a randomized controlled trial was undertaken. A total of 212 patients were allocated a Triathlon or a Kinemax TKA. Patients were assessed preoperatively, and one, three, eight, and 12 years postoperatively using the Oxford Knee Score (OKS). Reasons for patient lost to follow-up, mortality, and revision were recorded. Results. A total of 94 patients completed 12-year functional follow-up (62 females, mean age 66 years (43 to 82) at index surgery). There was a clinically significantly greater improvement in the OKS at one year (mean difference (MD) 3.0 (95% CI 0.4 to 5.7); p = 0.027) and three years (MD 4.7 (95% CI 1.9 to 7.5); p = 0.001) for the Triathlon group, but no differences were observed at eight (p = 0.331) or 12 years’ (p = 0.181) follow-up. When assessing the OKS in the patients surviving to 12 years, the Triathlon group had a clinically significantly greater improvement in the OKS (marginal mean 3.8 (95% CI 0.2 to 7.4); p = 0.040). Loss to functional follow-up (53%, n = 109/204) was independently associated with older age (p = 0.001). Patient mortality was the major reason (56.4%, n = 62/110) for loss to follow-up. Older age (p < 0.001) and worse preoperative OKS (p = 0.043) were independently associated with increased mortality risk. An age at time of surgery of ≥ 72 years was 75% sensitive and 74% specific for predicting mortality with an area under the curve of 78.1% (95% CI 70.9 to 85.3; p < 0.001). Conclusion. The Triathlon TKA was associated with clinically meaningful greater improvement in knee-specific outcome when compared to the Kinemax TKA. Loss to follow-up at 12 years was a limitation, and studies planning longer-term functional assessment could limit their cohort to patients aged under 72 years. Cite this article: Bone Jt Open 2024;5(10):911–919


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 28 - 28
1 Oct 2020
Deckey DG Rosenow CS Verhey JT Mayfield CK Christopher ZK Clarke HD Bingham JS
Full Access

Introduction. Robot-assisted total knee arthroplasty (RA-TKA) is theoretically more accurate for component positioning than TKA performed with mechanical instruments (M-TKA). Furthermore, the ability to quantify soft tissue laxity and adjust the plan prior to bone resection should reduce variability in polyethylene thickness. This study was performed to compare accuracy to plan for component positioning and polyethylene thickness in RA-TKA versus M-TKA. Methods. 199 consecutive primary TKAs (96 C-TKA and 103 RA-TKA) performed by a single surgeon were reviewed. Full-length standing and knee radiographs were obtained pre and post-operatively. For M-TKA, measured resection technique was used. Planned coronal plane femoral and tibial component alignment, and overall limb alignment were all 0° to the mechanical axis; tibial posterior slope was 2°; and polyethylene thickness was 9mm. For RA-TKA, individual component position was adjusted to assist balance the gaps but planned coronal plane alignment for the femoral and tibial components and overall limb alignment had to remain 0+/− 3°; planned tibial posterior slope was 1.5°. Planned values and polyethylene thickness for RA-TKA were obtained from the final intra-operative plan. Mean deviations from plan for each parameter were compared between groups (ΔFemur, ΔTibia, ΔPS, and polyethylene thickness) as were distal femoral recut and tourniquet time. Results. In RA-MKA versus M-TKA: the ΔFemur (0.9 ° v. 1.7 °), ΔTibia (0.3 ° v. 1.3 °), and ΔPS (−0.3 ° v. 1.7 °) all deviated significantly less from plan (all p<0.0001); significantly fewer knees required distal femoral recut (10% vs. 23%, p=0.033); and deviation from planned polyethylene thickness was significantly less (1.4mm vs 2.7mm, p<0.0001. However, tourniquet time was longer (99 minutes v. 89 minutes, p<0.0001). Conclusion. RA-TKA is both significantly more accurate to plan for component positioning and final polyethylene thickness. The greater accuracy and reproducibility of RA-TKA may be important as precise new goals for component positioning are developed


Bone & Joint Open
Vol. 2, Issue 6 | Pages 397 - 404
1 Jun 2021
Begum FA Kayani B Magan AA Chang JS Haddad FS

Limb alignment in total knee arthroplasty (TKA) influences periarticular soft-tissue tension, biomechanics through knee flexion, and implant survival. Despite this, there is no uniform consensus on the optimal alignment technique for TKA. Neutral mechanical alignment facilitates knee flexion and symmetrical component wear but forces the limb into an unnatural position that alters native knee kinematics through the arc of knee flexion. Kinematic alignment aims to restore native limb alignment, but the safe ranges with this technique remain uncertain and the effects of this alignment technique on component survivorship remain unknown. Anatomical alignment aims to restore predisease limb alignment and knee geometry, but existing studies using this technique are based on cadaveric specimens or clinical trials with limited follow-up times. Functional alignment aims to restore the native plane and obliquity of the joint by manipulating implant positioning while limiting soft tissue releases, but the results of high-quality studies with long-term outcomes are still awaited. The drawbacks of existing studies on alignment include the use of surgical techniques with limited accuracy and reproducibility of achieving the planned alignment, poor correlation of intraoperative data to long-term functional outcomes and implant survivorship, and a paucity of studies on the safe ranges of limb alignment. Further studies on alignment in TKA should use surgical adjuncts (e.g. robotic technology) to help execute the planned alignment with improved accuracy, include intraoperative assessments of knee biomechanics and periarticular soft-tissue tension, and correlate alignment to long-term functional outcomes and survivorship


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 88 - 88
7 Aug 2023
Ahmed I Dhaif F Khatri C Parsons N Hutchinson C Price A Staniszewska S Metcalfe A
Full Access

Abstract. Introduction. Recent research has questioned the role of arthroscopic meniscectomy in patients with a meniscal tear leading to the development of treatment recommendations for these patients. There is a clear need to understand patient perceptions of living with a meniscal tear in order to plan future research and treatment guidelines. Aims. To explore the experiences and expectations of treatment of young patients with a meniscal tear of the knee. Methodology. Ten participants diagnosed with a meniscal tear were recruited from the METRO cohort study using a purposive sampling strategy. These patients underwent semi-sructured interviews between April and May 2021. Thematic analysis was used to code the transcripts and generate key themes in order to describe the data. Results. Themes identified relate to the broad areas of: the effect of symptoms, the expericne of the clinical consultation and the experience of the treatment modality undertaken. Meniscal tears have a profound impact on pain and many patients experience effects on their family and financial life in addition to physical symptoms. Participants expected the majority of their management to occur in secondary care and most thought surgery would be a definitive treatment, while the effectiveness of physiotherapy could not be guaranteed as it would not fix the physical tear. Conclusion. Patient experience of meniscal tear may not correspond with current available clinical evidence. Clinicians should consider the common misconceptions highlighted in this study when conducting a consultation and pre-empt them to optimally manage patient expectations


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 1 - 1
7 Aug 2023
Scheepers W Held M von Bormann R Wascher D Richter D Schenck R Harner C
Full Access

Abstract. Introduction. Knee dislocations (KDs) are complex injuries which are often associated with damage to surrounding soft tissues or neurovascular structures. A classification system for these injuries should be simple and reproducible and allow communication among surgeons for surgical planning and outcome prediction. The aim of this study was to formulate a list of factors, prioritised by high-volume knee surgeons, that should be included in a KD classification system. Methods. A global panel of orthopaedic knee surgery specialists participated in a Delphi process. A list of factors to be included in a KD classification system was formulated by 91 orthopaedic surgeons, which was subsequently prioritised by 27 experts from 6 countries. The items were analysed to find factors that had at least 70% consensus for inclusion in a classification system. Results. The four factors that reached consensus agreement and thus deemed critical for inclusion in a classification system were vascular injuries (89%), common peroneal nerve injuries (78%), number of torn ligaments (78%), and open injuries (70%). Conclusion. The wide geographic distribution of participants provides diverse insight and makes the results of the study globally applicable. The most important factors to include in a classification system as determined by the Delphi technique were vascular injuries, common peroneal nerve injuries, number of torn ligaments, and open injuries. The Schenck anatomic classification system most accurately identifies these patient variables with the addition of open injuries. The authors propose to update the Schenck classification system with the inclusion of open injuries as an additional modifier


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 72 - 72
7 Aug 2023
Vetharajan N Reed M Petheram T Partington P Carluke I Kramer D
Full Access

Abstract. Introduction. National BOAST guidelines have been developed to coordinate and improve the standard of care for all patients with problems after knee replacement surgery. Since the inception of these guidelines we wanted to assess the impact of these guidelines on patients and their pathways following their discussions at our weekly revision MDT meetings. Methodology. Trust casenotes programs, PACS software and MDT notes were evaluated over the past 12 months (January 2022 to December 2022) to collect data for all patients with problematic knee replacements. Current in-patients discussed at MDT were excluded. Results. In total 52 patients with problematic knees were discussed. In terms of the SPECIFIC criteria described in BOAST guidelines, 39% met one or more of these criteria (component loosening, infection, instability, component wear) of which 90% are have had or planned for revision surgery. Of those (61%) not meeting this criteria, 77% have been deemed not to have a surgical cause after further investigations with the rest still pending further investigation. Conclusion. The publication of guidelines has aided in the ongoing management of patients with problematic knee replacements. From our MDT discussions over the last year, its clear that when appropriately investigated and a cause found from the SPECIFIC criteria, patients are offered appropriate revision surgery. Further work with longer-term outcomes from MDT discussions would help to evaluate the impact of these discussions on which problematic knees benefit most from revision surgery and the effect on knee revision networks