Advertisement for orthosearch.org.uk
Results 1 - 10 of 10
Results per page:
The Bone & Joint Journal
Vol. 96-B, Issue 10 | Pages 1290 - 1297
1 Oct 2014
Grammatopoulos G Pandit HG da Assunção R McLardy-Smith P De Smet KA Gill HS Murray DW

There is great variability in acetabular component orientation following hip replacement. The aims of this study were to compare the component orientation at impaction with the orientation measured on post-operative radiographs and identify factors that influence the difference between the two. A total of 67 hip replacements (52 total hip replacements and 15 hip resurfacings) were prospectively studied. Intra-operatively, the orientation of the acetabular component after impaction relative to the operating table was measured using a validated stereo-photogrammetry protocol. Post-operatively, the radiographic orientation was measured; the mean inclination/anteversion was 43° (sd 6°)/ 19° (sd 7°). A simulated radiographic orientation was calculated based on how the orientation would have appeared had an on-table radiograph been taken intra-operatively. The mean difference between radiographic and intra-operative inclination/anteversion was 5° (sd 5°)/ -8° (sd 8°). The mean difference between simulated radiographic and intra-operative inclination/anteversion, which quantifies the effect of the different way acetabular orientation is measured, was 3°/-6° (sd 2°). The mean difference between radiographic and simulated radiographic orientation inclination/anteversion, which is a manifestation of the change in pelvic position between component impaction and radiograph, was 1°/-2° (sd 7°).

This study demonstrated that in order to achieve a specific radiographic orientation target, surgeons should implant the acetabular component 5° less inclined and 8° more anteverted than their target. Great variability (2 sd about ± 15°) in the post-operative radiographic cup orientation was seen. The two equally contributing causes for this are variability in the orientation at which the cup is implanted, and the change in pelvic position between impaction and post-operative radiograph.

Cite this article: Bone Joint J 2014;96-B:1290–7


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 60 - 60
17 Nov 2023
Diaz RL Williams S Jimenez-Cruz D Board T
Full Access

Abstract. BACKGROUND. Hemi-arthroplasty (HA) as a treatment for fractured neck of femur has slightly increased since 2019 and remarkably after the COVID pandemic. The main drawback of the treatment is ongoing cartilage deterioration that may require revision to THR. OBJECTIVE. This study assessed cartilage surface damage in hip HA by reproducing anatomical motion and loading conditions in a hip simulator. METHODS. Experimental design. HA tests were conducted using porcine acetabula and CoCr femoral heads. Five groups (n=4) were included: a control group comprising natural tissue and four HA groups where the acetabula were paired with metal heads to allow radial clearance (RC) classed as small (RC<0.6mm), large (2mm<RC<4mm), extra-large (4mm<RC), and oversized (RC<−0.6mm). Tests were carried out in an anatomical hip simulator that reproduced a simplified twin peak gait cycle, adapted for porcine hip joints, from the ISO 14242 standard for wear of THR prostheses (peak load of 900N). The test length was 6 hours, with photogrammetry taken at 1-hour intervals. Ringers solution was used as a lubricant. RESULTS. No changes were observed in the control group. However, cartilage surface changes were observed in all hemi-arthroplasty groups. Discolouration on the cartilage surface was noticeable at the posterior-superior part of the acetabulum after 1-hour (extra-large and oversized groups). Damage severity and location were characteristic of each clearance group. Of all the groups, the oversized group showed more significant damage. No labrum separation was seen after the simulation. CONCLUSIONS. These results are relevant to understand the effect of femoral head clearance on cartilage damage risk after HA. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 28 - 28
17 Apr 2023
Jimenez-Cruz D Dubey M Board T Williams S
Full Access

Hip joint biomechanics can be altered by abnormal morphology of the acetabulum and/or femur. This may affect load distribution and contact stresses on the articular surfaces, hence, leading to damage and degradation of the tissue. Experimental hip joint simulators have been used to assess tribology of total hip replacements and recently methods further developed to assess the natural hip joint mechanics. The aim of this study was to evaluate articular surfaces of human cadaveric joints following prolonged experimental simulation under a standard gait cycle. Four cadaveric male right hips (mean age = 62 years) were dissected, the joint disarticulated and capsule removed. The acetabulum and femoral head were mounted in an anatomical hip simulator (Simulation Solutions, UK). A simplified twin peak gait cycle (peak load of 3kN) was applied. Hips were submerged in Ringers solution (0.04% sodium azide) and testing conducted at 1 Hertz for 32 hours (115,200 cycles). Soft tissue degradation was recorded using photogrammetry at intervals throughout testing. All four hips were successfully tested. Prior to simulation, two samples exhibited articular surface degradation and one had a minor scalpel cut and a small area of cartilage delamination. The pre-simulation damage got slightly worse as the simulation continued but no new areas of damage were detected upon inspection. The samples without surface degradation, showed no damage during testing and the labral sealing effect was more obvious in these samples. The fact that no new areas of damage were detected after long simulations, indicates that the loading conditions and positioning of the sample were appropriate, so the simulation can be used as a control to compare mechanical degradation of the natural hip when provoked abnormal conditions or labral tissue repairs are simulated


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 39 - 39
1 Mar 2021
Jimenez-Cruz D Masterson A Dubey M Board T Williams S
Full Access

Abstract. OBJECTIVES. Abnormal joint mechanics have been proposed as adversely affecting natural hip joint tribology, whereby increased stress on the articular cartilage from abnormal loading leads to joint degeneration. The aim of this project was to assess the damage caused by different loading conditions on the articular surfaces of the porcine hip joint in an experimental simulator. METHODS. Porcine hip joints were dissected and mounted in a single station hip simulator (SimSol, UK) and tested under loading scenarios (that corresponded to equivalent of different body mass index's’ (BMI) in humans), as follows:“Normal” (n=4), the loading cycle consisted of a simplified gait cycle based on a scaled version of a simplified twin-peak human gait cycle, the peak load was 900N (representative of a healthy BMI). Representative of an “Overweight” BMI (n=3), as the normal cycle with a peak load of 1,130N Representative of an “Obese” BMI (n=1), as the normal cycle with a peak load of 1,340N Tests were conducted at 1Hz for 14,400 cycles in Ringers solution; photogrammetry was used to characterise the appearance of the cartilage and labrum pre, during and post simulation. the appearance and location of damage was recorded. RESULTS. No significant damage was observed for samples tested under normal conditions. Following “overweight” condition testing, tears and detachment of the labrum were observed during testing in two (of three) samples. In addition to damaged observed in “overweight” tested samples the “obese” showed similar damage and also cartilage bruising and wear tracks on the articular surface of the acetabulum. DISCUSSION. The absence of damage in “normal” loading provides evidence that this is an appropriate methodology and loading regime for porcine hips. Increased damage with increasing loads demonstrates the potential to develop further this experimental simulation to assess adverse loading in natural hip joints. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 396 - 396
1 Oct 2006
Hawes B Reeves M McGeough J Simpson A
Full Access

Measuring strain in biological specimens has always been inherently difficult due to their shape and surface properties. Traditional methods such as strain gauges require contact and therefore have reinforcing effects, also the surface preparation can be time consuming and if proper fixation is not achieved the results will be inaccurate. Using a non contact method to measure strain such as photogrammetry has several advantages. The strain over the whole surface of a specimen can be mapped, depending on the field of view of the camera used. It has a large dynamic range, from microns to millimetres which can be decided upon at the post processing stage. Specimens can be tested to destruction without damaging any measurement equipment. Also there is considerably less set up time involved between testing different specimens once the system is in place. We aimed to test speckle photogrammetry, a method used in industry and fluid dynamics as a tool for assessing proximal femur fracture stability and repair techniques. A Zwick Roell materials testing machine was used to axially apply a staircase loading pattern to sawbones femora, simulating the load experienced by the femur when standing. Firstly an intact bone was tested then a set of three identical fractures of each of three common fracture configurations were produced by osteotomy. The first femur of each configuration was loaded un-repaired to failure; the remaining two were repaired using common techniques for that particular fracture type then also loaded to failure. The bone and fixation device were covered with stochastic, high contrast paint speckle prior to testing. This speckle pattern was recorded at regular load intervals by a digital camera which was attached to the materials testing machine via a rigid frame to eliminate any camera movement. These images were then transferred to a computer where they were converted to 8 bit bitmap images. Matlab was used to process the data from subsequent images to produce vector and colour maps of the displacements and strains over the entire visible surface of the proximal femur and to show the comparative displacements and strains experienced by the individual bone fragment and the fixation devices. Non contact optical strain measurement has proved itself to be a useful tool in assessing the stability of fractures and the repair techniques of these fractures. Additionally it can also be used to validate finite element models to compare theoretical and experimental results due to the similar data and graphic visualisation outputs which are produced by both techniques


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 73 - 73
1 Apr 2018
Vancleef S Herteleer M Herijgers P Nijs S Jonkers I Vander Sloten J
Full Access

Last decade, a shift towards operative treatment of midshaft clavicle fractures has been observed [T. Huttunen et al., Injury, 2013]. Current fracture fixation plates are however suboptimal, leading to reoperation rates up to 53% [J. G. Wijdicks et al., Arch. Orthop. Trauma Surg, 2012]. Plate irritation, potentially caused by a bad geometric fit and plate prominence, has been found to be the most important factor for reoperation [B. D. Ashman et a.l, Injury, 2014]. Therefore, thin plate implants that do not interfere with muscle attachment sites (MAS) would be beneficial in reducing plate irritation. However, little is known about the clavicle MAS variation. The goal of this study was therefore to assess their variability by morphing the MAS to an average clavicle. 14 Cadaveric clavicles were dissected by a medical doctor (MH), laser scanned (Nikon, LC60dx) and a photogrammetry was created with Agisoft photoscan (Agisoft, Russia). Subsequently a CT-scan of these bones was acquired and segmented in Mimics (Materialise, Belgium). The segmented bone was aligned with the laser scan and MAS were indicated in 3-matic (Materialise, Belgium). Next, a statistical shape model (SSM) of the 14 segmented clavicles was created. The average clavicle from the SSM was then registered to all original clavicle meshes. This registration assures correspondences between source and target mesh. Hence, MAS of individual muscles of all 14 bones were indicated on the average clavicle. Mean area is 602 mm. 2. ± 137 mm. 2. for the deltoid muscle, 1022 mm. 2. ±207 mm. 2. for the trapezius muscle, and 683 mm. 2. ± 132 mm. 2. for the pectoralis major muscle. The sternocleidomastoid muscle has a mean area of 513 mm. 2. ± 190 mm. 2. and the subclavius muscle had the smallest mean area of 451 mm. 2. ± 162 mm. 2. Visualization of all MAS on the average clavicle resulted in 72% coverage of the surface, visualizing only each muscle's largest MAS led to 52% coverage. The large differences in MAS surface areas, as shown by the standard deviation, already indicate their variability. Difference between coverage by all MAS and only the largest, shows that MAS location varies strongly as well. Therefore, design of generic plates that do not interfere with individual MAS is challenging. Hence, patient-specific clavicle fracture fixation plates should be considered to minimally interfere with MAS


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 18 - 18
1 Oct 2016
Smith NL Stankovic V Riches PE
Full Access

A number of advantages of unicondylar arthroplasty (UKA) over total knee arthroplasty in patients presenting osteoarthritis in only a single compartment have been identified in the literature. However, accurate implant positioning and alignment targets, which have been shown to significantly affect outcomes, are routinely missed by conventional techniques. Computer Assisted Orthopaedic Surgery (CAOS) has demonstrated its ability to improve implant accuracy, reducing outliers. Despite this, existing commercial systems have seen extremely limited adoption. Survey indicates the bulk, cost, and complexity of existing systems as inhibitive characteristics. We present a concept system based upon small scale head mounted tracking and augmented reality guidance intended to mitigate these factors. A visible-spectrum stereoscopic system, able to track multiple fiducial markers to 6DoF via photogrammetry and perform semi-active speed constrained resection, was combined with a head mounted display, to provide a video-see-through augmented reality system. The accuracy of this system was investigated by probing 180 points upon a 110×110×50 mm known geometry and performing controlled resection upon a 60×60×15 mm bone phantom guided by an overlaid augmented resection guide that updated in real-time. The system produced an RMS probing accuracy and precision of 0.55±0.04 and 0.10±0.01 mm, respectively. Controlled resection resulted in an absolute resection error of 0.34±0.04 mm with a general trend of over-resection of 0.10±0.07 mm. The system was able to achieve the sub-millimetre accuracy considered necessary to successfully position unicondylar knee implants. Several refinements of the system, such as pose filtering, are expected to increase the functional volume over which this accuracy is obtained. The presented system improves upon several objections to existing commercial CAOS UKA systems, and shows great potential both within surgery itself and its training. Furthermore, it is suggested the system could be readily extended to additional orthopaedic procedures requiring accurate and intuitive guidance


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 58 - 58
1 Mar 2017
Noble P Patel R Jones H Kim R Gold J Ismaily S
Full Access

INTRODUCTION. Stable fixation of cementless tibial trays remains a challenge due bone density variability within the proximal tibia and the spectrum of loads imposed by different activities. This study presents a novel approach to measuring the interface motion of cementless tibial components during functional loading and tests whether interface motion of cementless tibial trays varies around the implant periphery. METHODS. We developed a method to measure relative displacement of a tibial tray relative to the underlying bone using 3D digital image correlation (DIC) and multi-camera stereo photogrammetry. A clinically successful design of cementless total knee prosthesis (Zimmer Inc, Warsaw, IN) was implanted in 6 fresh cadaveric knees. A black-on-white stochastic pattern was applied to the outer surface of the tibia and the cementless prosthesis. High resolution digital images were prepared of the interface region and divided into 25 × 25 pixel regions of interest (ROI). Stereo images of the same ROI were generated using two cameras angled at 60 degrees using image correlation techniques. All specimens were mounted in a custom-built functional activity simulator and loaded with the forces and moments recorded during three common functional activities (standing from a seated position, walking, and stair descent), as reported in the Orthoload database, scaled by 50% for application to cadaveric bone. Prior to functional testing, each implant-tibia construct was preconditioned with 500 cycles of flexion from 5–100 degrees under a vertical tibial load of 1050 N at a frequency of 0.2 Hz. During loading, image data was acquired simultaneously (±20 μs) from the entire circumference of the tibial interface forming 4 stereo images using 8 cameras spaced at 90 degree intervals (Allied Vision Technologies, Exton, PA) using custom image acquisition software (Mathworks, Natick, MA) (Figure 1). The multiple stereo images were registered using the surface topography of each specimen as measured by laser scanning (FARO Inc., Montreal) (Figure 2). During post-processing, the circumferential tray/tibia interface was divided into 10 zones for subsequent analysis (Figure 3). Interface displacements were measured on a point-to-point basis at approximately 700 sites on each specimen using commercial DIC software (Dantec Dynamics, Skovlunde, Denmark) (Figure 4). RESULTS. The average 3D displacement over 10 circumferential zones of the tray was 83.6±41.5 μm (range: 30.8 to 214.9 μm). The anatomic components of tray migration were 0.4±40.8 μm medially (range: 172 μm lateral to 112 μm medial) and 3.1± 40.6 μm posteriorly (range: 86 μm posteriorly to 61 μm anteriorly). The largest tray displacement was observed in the inferior direction with an average inferior displacement of 37.6±63.8 μm (range: 206 μm inferiorly to 81μm superiorly). The largest displacements were observed posteriorly, with the posteromedial aspect subsiding more the posterolateral aspect. DISCUSSION. The stability of tibial trays cannot be accurately assessed by measuring interface motion at a few fixed peripheral sites. If discrete displacement transducers are used for pre-clinical testing, a set of 4–6 transducers should be placed at sites that vary with the pattern of interface motion of each design and the combination of loads and moments applied during testing


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 26 - 26
1 Jan 2016
Arnholt C Kocagoz S MacDonald D Gilbert J Parvizi J Malkani AL Klein GR Kraay M Rimnac C Kurtz S
Full Access

Introduction. The release of metal debris and ions has raised concerns in joint arthroplasty. In THA metal debris and ions can be generated by wear of metal-on-metal bearing surfaces and corrosion at modular taper interfaces, currently understood to be mechanically assisted crevice corrosion (MACC) [1]. More recently, inflammatory-cell induced corrosion (ICIC) has been identified as a possible source of metal debris and/or ions [2]. Although MACC has been shown to occur at modular junctions in TKA, little is known about the prevalence of other sources. The purpose of this study was to determine the sources of metallic debris and ion release in long-term implanted (in vivo > 15y) TKA femoral components. Specific attention was paid to instances of ICIC as well as damage at the implant-bone interface. Methods. 1873 retrieved TKA components were collected from 2002–2013 as part of a multi-center, IRB-approved retrieval program. Of these, 52 CoCr femoral condyles were identified as long term TKA (Average: 17.9±2.8y). These components were predominantly revised for loosening, PE wear and instability. 40/52 of the components were primary surgeries. Components were examined using optical microscopy to confirm the presence of 5 damage mechanisms (polyethylene failure, MACC corrosion of modular tapers, corrosion damage between cement and backside, third-body wear, and ICIC). Third-body wear was evaluated using a semi-quantitative scoring method based on the percentage of damaged area. A score of 1 had minimal damage and a score of 4 corresponded to severe damage. Polyethylene components were scored using the Hood method and CoCr components were scored similarly to quantify metal wear. The total area damaged by ICIC was quantified using photogrammetry. Images were taken using a digital SLR with a calibrated ruler in the same focal plane. Using known pixel dimensions, the ICIC damaged area was calculated. Results. Surface damage indicative of corrosion and/or CoCr debris release was identified in 92% (n=48) of the components. Third-body wear was the most prevalent damage mechanism identified in 77% (n=40/52; Figure 1) of these components. ICIC was identified in 38% (n=20/52, figure 2) of the components. The polyethylene damage scores were predominantly a score of 4 out of a maximum score of 4 (89%). The corresponding femoral components had moderate to severe damage scores, with 39% with a score of 2, 37% scoring 3 and 22% scoring 4 out of a maximum score of 4. The total ICIC damaged area was an average of 0.11 ± 0.12 mm. 2. (Range: 0.01–0.46mm. 2. ). Discussion. In this study, we sought to identify mechanisms that could lead to the release of CoCr debris/ions in TKA. Five different mechanisms of potential metal release were observed. The most prevalent were third-body wear and ICIC damage. However the clinical implications remain unclear for several mechanisms because none of the devices were revised due to adverse local tissue reactions or biologic reactions to CoCr. Although we documented the prevalence of each damage mechanism, the quantity of metal removal was not investigated, warranting future studies


Bone & Joint Research
Vol. 3, Issue 10 | Pages 289 - 296
1 Oct 2014
van IJsseldijk EA Harman MK Luetzner J Valstar ER Stoel BC Nelissen RGHH Kaptein BL

Introduction

Wear of polyethylene inserts plays an important role in failure of total knee replacement and can be monitored in vivo by measuring the minimum joint space width in anteroposterior radiographs. The objective of this retrospective cross-sectional study was to compare the accuracy and precision of a new model-based method with the conventional method by analysing the difference between the minimum joint space width measurements and the actual thickness of retrieved polyethylene tibial inserts.

Method

Before revision, the minimum joint space width values and their locations on the insert were measured in 15 fully weight-bearing radiographs. These measurements were compared with the actual minimum thickness values and locations of the retrieved tibial inserts after revision.