Advertisement for orthosearch.org.uk
Results 1 - 20 of 721
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 12 | Pages 1637 - 1640
1 Dec 2012
Clark DA Upadhyay N Gillespie G Wakeley C Eldridge JD

Ensuring correct rotation of the femoral component is a challenging aspect of patellofemoral replacement surgery. Rotation equal to the epicondylar axis or marginally more external rotation is acceptable. Internal rotation is associated with poor outcomes. This paper comprises two studies evaluating the use of the medial malleolus as a landmark to guide rotation. We used 100 lower-leg anteroposterior radiographs to evaluate the reliability of the medial malleolus as a landmark. Assessment was made of the angle between the tibial shaft and a line from the intramedullary rod entry site to the medial malleolus. The femoral cut was made in ten cadaver knees using the inferior tip of the medial malleolus as a landmark for rotation. Rotation of the cut relative to the anatomical epicondylar axis was assessed using CT. The study of radiographs found the position of the medial malleolus relative to the tibial axis is consistent. Using the inferior tip of the medial malleolus in the cadaver study produced a mean external rotation of 1.6° (0.1° to 3.7°) from the anatomical epicondylar axis. Using the inferior tip of the medial malleolus to guide the femoral cutting jig avoids internal rotation and introduces an acceptable amount of external rotation of the femoral component


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 10 | Pages 1341 - 1347
1 Oct 2011
Monk AP Doll HA Gibbons CLMH Ostlere S Beard DJ Gill HS Murray DW

Patella subluxation assessed on dynamic MRI has previously been shown to be associated with anterior knee pain. In this MRI study of 60 patients we investigated the relationship between subluxation and multiple bony, cartilaginous and soft-tissue factors that might predispose to subluxation using discriminant function analysis.

Patella engagement (% of patella cartilage overlapping with trochlea cartilage) had the strongest relationship with subluxation. Patellae with > 30% engagement tended not to sublux; those with < 30% tended to sublux. Other factors that were associated with subluxation included the tibial tubercle-trochlea notch distance, vastus medialis obliquus distance from patella, patella alta, and the bony and cartilaginous sulcus angles in the superior part of the trochlea. No relationship was found between subluxation and sulcus angles for cartilage and bone in the middle and lower part of the trochlea, cartilage thicknesses and Wiberg classification of the patella.

This study indicates that patella engagement is a key factor associated with patellar subluxation. This suggests that in patients with anterior knee pain with subluxation, resistant to conservative management, surgery directed towards improving patella engagement should be considered. A clinical trial is necessary to test this hypothesis.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_11 | Pages 51 - 51
1 Nov 2022
Jagadeesh N Pammi S Kariya A Sales R
Full Access

Abstract. Background. The primary objective of the study is to determine the function outcome and survivorship of patellofemoral replacement. The secondary aim is to find the determinants of successful/poor outcome. Methods. This retrospective study involved 45 patients who underwent AVON patellofemoral replacement between January 2015 to December 2020 with the minimal follow-up off for 12 months. The functional outcome was measured using Oxford Knee score (OKS), EuroQol five dimension (EQ-5D). IWANO and Kellgren-Lawrence classification was used to analyse radiographs. To identify determinants of outcome, the following subgroups the presence or absence of normal alignment, tibiofemoral arthritis, trochlear dysplasia and previous surgery. Complications and revision rates were also recorded. Results. The mean follow-up period was 41.7 +/− 8.3 months with no patients lost in follow-up. Patellofemoral replacement significantly improved the Oxford Knee score (OKS), EuroQol five dimension (EQ-5D) (p<0.001). Four out of 45(8.9%) patients underwent revision surgery. Patients with normal alignment preoperatively did worse than those with abnormal alignment with patellar instability. Patients with grade two tibiofemoral arthritis, history of previous surgery did significantly worse with poorer functional outcome. Conclusion. Patellofemoral arthroplasty is reliable treatment option which improves patient function and quality of life with good survivorship in isolated patellofemoral arthritis in mid-term follow-up


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 34 - 34
1 Apr 2019
Bandi M Oswald A Siggelkow E
Full Access

Introduction. In knee biomechanics the concept of the envelope of motion (EOM) has proven to be a powerful method to characterize joint mechanics and the effect of surgical interventions. It is furthermore indispensable for numerical model validation. While commonly used for tibiofemoral kinematics, there is very little report of applying the concept to patellofemoral kinematics. EOM measurements require precise and reproducible displacement and load control in all degrees of freedom (DOF), which robotic testing has proven to provide. The objectives of this study were therefore to (1) develop a robotic method to assess patellofemoral EOM as a function of tibiofemoral EOM, (2) compare resulting patellofemoral kinematics to published data, and (3) determine which DOFs in the tibiofemoral EOM mostly account for the patellofemoral EOM. Material and Methods. The developed robotic (KUKA KR140 comp) method was evaluated using 8 post-mortem human leg specimens of both genders (age: 55±11 years, BMI: 23±5). Firstly, tibiofemoral neutral flexion was established as well as the EOM by applying anterior-posterior (±100 N), medial-lateral (±100 N), internal-external (±4 Nm) and varus-valgus (±12 Nm) loads under low compression (44 N) at 7 flexion angles. Secondly, patellofemoral flexion kinematics and EOM were measured during a robotic playback of the previously established tibiofemoral kinematics. During these measurements, the quadriceps tendon was loaded with a hanging weight (20 kg) via a pulley system directing the force to the anterior superior iliac spine. Kinematics were tracked optically (OptiTrack) and registered to CT scans using co-scanned aluminum cylinders and beads embedded in the patella. The overall patellofemoral EOM was calculated as the extent of patellar motion observed during manipulating the tibia inside the tibiofemoral EOM in all DOFs. Additionally, patellofemoral EOMs were calculated for tibial manipulations along individual DOFs to analyze the importance of these DOFs. Results. Trends and magnitudes of patella shift, tilt and rotation during knee flexion were similar to reported in-vivo measurements. Envelopes of patellar shift and tilt during internal-external tibiofemoral rotation closely resembled those reported for in-vitro results despite methodological differences. Tibiofemoral internal-external and varus-valgus rotation had the largest effect on patellofemoral EOM. EOMs in patellar shift and tilt were dominated by internal-external rotation in early flexion and varus-valgus rotation in late flexion. The EOM in patellar rotation was dominated by tibiofemoral varus-valgus rotation throughout flexion. Manipulating the tibia in a combined internal-external and varus-valgus rotation envelope yielded the same patellofemoral EOM as the overall patellofemoral EOM. Conclusion. This study has established a novel robotic method to assess the patellofemoral envelope of motion as a function of tibiofemoral EOM. Resulting patellofemoral kinematics resembled data reported in literature. It was furthermore shown that is sufficient to establish a combined internal-external and varus-valgus envelope of tibiofemoral motion as bases of the patellofemoral EOM, as including the anterior-posterior and medial-lateral tibiofemoral envelopes yielded no additional effect


Aims. The aim of this study was to evaluate medium-term outcomes and complications of the S-ROM NOILES Rotating Hinge Knee System (DePuy, USA) in revision total knee arthroplasty (rTKA) at a tertiary unit. Methods. A retrospective consecutive study of all patients who underwent a rTKA using this implant from January 2005 to December 2018. Outcome measures included reoperations, revision for any cause, complications, and survivorship. Patients and implant survivorship data were identified through both local hospital electronic databases and linked data from the National Joint Registry/NHS Personal Demographic Service. Kaplan-Meier survival analysis was used at ten years. Results. A total of 89 consecutive patients (89 knees) were included with 47 females (52.8%) and a median age of 74 years (interquartile range 66 to 79). The main indications were aseptic loosening with instability (39.4%; n = 35) and infection (37.1%; n = 33) with the majority of patients managed through two-stage approach. The mean follow-up was 7.4 years (2 to 16). The overall rate of reoperation, for any cause, was 10.1% (n = 9) with a rate of implant revision of 6.7% (n = 6). Only two cases required surgery for patellofemoral complications. Kaplan-Meier implant-survivorship analysis was 93.3% at ten years, using revision for any cause as an endpoint. Conclusion. This implant achieved high ten-year survivorship with a low complication rate, particularly patellofemoral complications. These can be avoided by ensuring central patella tracking and appropriate tension of the patellofemoral joint in this posterior hinge design. Cite this article: Bone Jt Open 2022;3(3):205–210


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 54 - 54
1 Mar 2021
Williams D Bartlam H Roevarran J Holt C
Full Access

Abstract. Optical motion capture (OMC) is the current gold standard for motion analysis, however measuring patellofemoral kinematics is not possible using the technique. One approach to measuring in-vivo kinematics is to use biplane video X-ray (BVX) and 3D models generated from MRI to track the movement of the patellar. Understanding how the patellar is moving during different loaded dynamic activities can help with understanding the effects of different interventions when treating disease or injury. Objective. To develop a protocol and compare patellofemoral kinematics for different activities using biplane video X-ray (BVX). Methods. Two healthy volunteers performed level walk, lunge, and stair ascent activities while simultaneous capturing BVX and synchronised OMC. Participants undertook MR imaging (Magnetom 3T Prisma, Siemens) which was manually segmented into 3D bone models (Simpleware Scan IP, Synopsis). Bone position and orientation for the patellar and femur were calculated by manual matching of 3D Bone models to X-Rays (DSX Suite, C-Motion, Inc.). Patellofemoral kinematics were calculated using Visual 3D (C-Motion, Inc.). Results. Initial results show that patellar flexion(+) (PF) was greatest during lunge (52.1º) compared with stair ascent (49.4º) and stance phase of gait (5.4º), however stair ascent had the largest PF range of motion (ROM) of 48.8º. The lunge activity had the greatest ROM for patellar lateral rotation (12.8º) compared with stair ascent (8.7º) and gait (3.7º). Patellar lateral (+) tilt was found to be greatest during gait (8.4º) compared with stair ascent (6.7º) and lunge (6.8º). Conclusions. These results highlight the variability of patellofemoral kinematics between different loaded dynamic activities. When considering the influence and efficacy of patellofemoral interventions it is important to investigate different activities to fully understand their effects. Future work will look at more dynamic activities and to investigate further the effect of different activities on patellofemoral tracking. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 484 - 489
1 Apr 2011
Charalambous CP Abiddin Z Mills SP Rogers S Sutton P Parkinson R

The low contact stress patellofemoral replacement consists of a trochlear component and a modular patellar component which has a metal-backed mobile polyethylene bearing. We present the early results of the use of this prosthesis for established isolated patellofemoral arthritis in 51 consecutive patellofemoral replacements in 35 patients. The mean follow-up was 25 months (5 to 60). The estimated survival rate at three years was 63% (95% confidence interval 47 to 80) with revision as the endpoint and 46% (95% confidence interval 30 to 63) with revision and ongoing moderate or severe pain as the endpoint. The early results of the use of the low contact stress patellofemoral replacement are disappointing with a high rate of revision. We cannot therefore recommend its use


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 141 - 141
1 Mar 2017
Laster S Schwarzkopf R Sheth N Lenz N
Full Access

Background. Total knee arthroplasty (TKA) surgical techniques attempt to achieve equal flexion and extension gaps to produce a well-balanced knee. Anterior knee pain, which is not addressed by flexion-extension balancing, is one of the more common complaints for TKA patients. The variation in patellofemoral balance resulting from the techniques to achieve equal flexion and extension gaps has not been widely studied. Purpose of study. The purpose of the study is to determine the effects on cruciate retaining (CR) TKA patellofemoral balance when equal flexion and extension gaps are maintained while changing femur implant size and/or adjusting the femur and tibia implant proximal -distal and femur anterior-posterior positions. Methods. A computational analysis was performed simulating knee flexion of two CR TKA designs (JOURNEY II CR and LEGION HFCR; Smith & Nephew) using previously validated software (LifeMOD/KneeSim; LifeModeler). Deviations from the ideal implant position were simulated by adjusting tibiofemoral proximal-distal position and femur anterior-posterior position and size (Table 1). Positioning the femur more proximal was accompanied by equal anterior femur and proximal tibia shifts to maintain equal flexion and extension gaps. The forces in the medial and lateral retinaculum were collected and summed at every 15° knee flexion up to 135° to determine the total patellofemoral retinaculum load which was analyzed versus proximal-distal implant position, implant size, implant design, and knee flexion using an ANOVA in Minitab 16 (Minitab). Results. Patellofemoral retinaculum load was significantly affected by proximal-distal implant position, implant size, and knee flexion angle (p<.001) but was not significantly affected by implant design (p>0.2). Interactions with knee flexion angle were significant for both proximal-distal implant position (p<.001) and implant size (p=.003) indicating that their effects change with knee flexion (Figures 1 and 2). For 15°–30° knee flexion, more proximal tibiofemoral positions corresponding to a more anterior femur increased patellofemoral retinaculum load. Implant position had little effect at 45° knee flexion. For 60°–135° knee flexion, more proximal implant positions decreased patellofemoral retinaculum load. Increased femoral size caused increased patellofemoral retinaculum load with a larger effect for 15–45° knee flexion. Conclusions. Our results indicate that patellofemoral balance should be considered when selecting implant size and position for flexion-extension balancing. The more common adjustment of positioning implants more proximal decreases patellofemoral retinaculum load in flexion, but the anterior femoral shift to balance the flexion space overstuffs the patella near extension. Downsizing the femoral implant is an option to mitigate increased patellofemoral retinaculum load when shifting the femoral anterior. For figures/tables, please contact authors directly.


The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 124 - 128
1 Nov 2013
Hofmann AA Shaeffer JF McCandless JB Magee TH

Isolated patellofemoral arthritis is a common condition and there are varying opinions on the most effective treatments. Non-operative and operative treatments have failed to demonstrate effective long-term treatment for those in an advanced stage of the condition. Newer designs and increased technology in patellofemoral replacement (PFR) have produced more consistent outcomes. This has led to a renewed enthusiasm for this procedure. Newer PFR prostheses have addressed the patellar maltracking issues plaguing some of the older designs. Short-term results with contemporary prostheses and new technology are described here. . Cite this article: Bone Joint J 2013;95-B, Supple A:124–8


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 12 | Pages 1591 - 1595
1 Dec 2006
Price AJ Oppold PT Murray DW Zavatsky AB

The Oxford medial unicompartmental knee replacement was designed to reproduce normal mobility and forces in the knee, but its detailed effect on the patellofemoral joint has not been studied previously. We have examined the effect on patellofemoral mechanics of the knee by simultaneously measuring patellofemoral kinematics and forces in 11 cadaver knee specimens in a supine leg-extension rig. Comparison was made between the intact normal knee and sequential unicompartmental and total knee replacement. Following medial mobile-bearing unicompartmental replacement in 11 knees, patellofemoral kinematics and forces did not change significantly from those in the intact knee across any measured parameter. In contrast, following posterior cruciate ligament retaining total knee replacement in eight knees, there were significant changes in patellofemoral movement and forces. The Oxford device appears to produce near-normal patellofemoral mechanics, which may partly explain the low incidence of complications with the extensor mechanism associated with clinical use


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_III | Pages 421 - 421
1 Jul 2010
Monk AP Simpson DJ Ostlere S Dodd CAF Doll H Price AJ Beard DJ Gill HS Murray DW Gibbons CLMH
Full Access

Introduction: Patellofemoral joint subluxation is associated with pain and dysfunction. The causes of patel-lofemoral subluxation are poorly understood and multi-factorial, arising from abnormalities of both bone and soft tissues. This study aims to identify which anatomical variables assessed on Magnetic Resonance (MR) images are most relevant to patellofemoral subluxation. Method: A retrospective analysis of MR studies of 60 patients with suspected patellofemoral subluxation was performed. All patients were graded for the severity/ magnitude of radiological subluxation using a dynamic MR scan (Grade 0 [nil] to Grade 3 [subluxed]. The patient scans were assessed using a range of anatomical variables, these included:. Patella alta,. Patella type (Wiberg classification),. Trochlea sulcus angles for bone and cartilage,. The shortest horizontal distance between the most distal part of the vastus medialis obliquis (VMO) muscle to the supra-medial aspect of the patella,. Trochlea and patella cartilage thickness (maximum depth),. The horizontal distance between the tibial tubercle and the midpoint of the femoral trochlea (TTD),. Patella Engagement – represented as the percentage of the patella height that is captured in the trochlea groove when the knee is in full extension,. A Discriminant Analysis test for multi-variant analysis was applied to establish the relationship between each bony/soft tissue anatomical variable and the severity/magnitude of patellofemoral subluxation. Results: The distance of the VMO from the patella (p < 0.001), TTD (p < 0.001) and Patella Engagement (p < 0.001) showed highly significant relationships with patellofemoral subluxation. Conclusions: The following three anatomical variables are associated with patellofemoral subluxation: the distance of the VMO muscle from the patella, TTD and Patella Engagement. This is the first study to establish that patella engagement is related to PFJ subluxation showing that the lower the percentage engagement of the patella in the trochlea, the greater the severity/magnitude of patellofemoral subluxation. The finding provides greater insight into the aetiology and understanding of the mechanism of symptomatic PFJ subluxation


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 31 - 31
7 Aug 2023
Myatt D Marshall M Ankers T Robb C
Full Access

Abstract. Unicompartment knee replacement (UKR) has been an effective treatment of isolated medial compartment osteoarthritis (OA). There has been several studies which suggest that patellofemoral (PFJ) wear may not be a relative contraindication for UKR with no statistical difference in failure rates. There is currently conflicting evidence on the role of BMI. We will review if BMI and PFJ wear impacts on the post operative functional scores following UKR. A retrospective review of a prospectively collected database was performed. Data was collected between 26/6/2014 and 25/8/2022. 159 UKR procedures were identified. BMI and PFJ cartilage wear were collected. Oxford knee scores (OKS) were collected at > 2 years. PFJ wear was split into International Cartilage Research Society (ICRS) grades I&II and III&IV. 159 UKR procedures were identified, of these 115 had 2 year follow up. There were 77 who had OKS recorded at 2 years. For PFJ wear there was no statistical difference in the median OKS at 2 years 45 vs 43.5 (p=0.408). Assessing the BMI the median was 29kg/m. 2. , range 20–43kg/m. 2. Spearman's rank was performed to assess the correlation between BMI and >2 year OKS, this demonstrated a moderately negative correlation p(df)=−0.339 (CI 95% −0.538, −0.104) p=0.004. There is no statistically significant difference in >2 year OKS following UKR regardless of PFJ wear. There is a moderately negative correlation between BMI and >2 year OKS which was significant p=0.004. Therefore BMI is a more important consideration when counselling patients for UKR


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 73 - 73
1 Apr 2019
Fukunaga M Kawagoe Y Kajiwara T Nagamine R
Full Access

Many recent knee prostheses are designed aiming to the physiological knee kinematics on tibiofemoral joint, which means the femoral rollback and medial pivot motion. However, there have been few studies how to design a patellar component. Since patella and tibia are connected by a patellar tendon, tibiofemoral and patellofemoral motion or contact forces might affect each other. In this study, we aimed to discuss the optimal design of patellar component and simulated the knee flexion using four types of patellar shape during deep knee flexion. Our simulation model calculates the position/orientation, contact points and contact forces by inputting knee flexion angle, muscle forces and external forces. It can be separated into patellofemoral and tibiofemoral joints. On each joint, calculations are performed using the condition of point contact and force/moment equilibrium. First, patellofemoral was calculated and output patellar tendon force, and tibiofemoral was calculated with patellar tendon force as external force. Then patellofemoral was calculated again, and the calculation was repeated until the position/orientation of tibia converged. We tried four types of patellar shape, circular dome, cylinder, plate and anatomical. Femoral and tibial surfaces are created from Scorpio NRG PS (Stryker Co.). Condition of knee flexion was passive, with constant muscle forces and varying external force acting on tibia. Knee flexion angle was from 80 to 150 degrees. As a result, the internal rotation of tibia varied much by using anatomical or plate patella than dome or cylinder shape. Although patellar contact force did not change much, tibial contact balances were better on dome and cylinder patella and the medial contact forces were larger than lateral on anatomical and plate patella. Thus, the results could be divided into two types, dome/cylinder and plate/anatomical. It might be caused by the variations of patellar rotation angle were large on anatomical and plate patella, though patellar tilt angles were similar in all the cases. We have already reported that the anatomical shape of patella would contact in good medial-lateral balance when tibia moved physiologically, therefore we have predicted the anatomical patella might facilitate the physiological tibiofemoral motion. However, the results were not as we predicted. Actually our previous and this study are not in the same condition; we used a posterior-stabilized type of prosthesis, and the post and cam mechanism could not make the femur roll back during deep knee flexion. It might be better to choose dome or cylinder patella to obtain the stability of tibiofemoral joint, and to choose anatomical or plate to the mobility


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 119 - 119
1 Feb 2017
Fitzwater F Shalhoub S Clary C Akhbari B Maletsky L
Full Access

Introduction. During primary total knee arthroplasty (TKA), surgeons occasionally encounter compromised bone and fixation cannot be achieved using a primary femoral component. Revision knee replacement components incorporate additional features to improve fixation, such as modular connection to sleeves or stems, and feature additional varus-valgus constraint in the post-cam mechanism to compensate for soft tissue laxity. The revision femoral component can be used in place of the primary femur to address fixation challenges; however, it is unclear if additional features of the revision femoral components adversely affect knee kinematics when compared to primary TKA components. The objective of this study was to compare weight-bearing tibiofemoral and patellofemoral kinematics between primary and revision femoral component with the primary tibial insert for a single knee replacement system. The hypothesis of the study was that kinematics for revision femoral components will be similar to kinematics of the primary femoral components. Methods. Eight cadaveric knees (age: 59±10 years, BMI 23.3±3.5) were implanted with a primary TKA system (ATTUNE™ Posterior Stabilized Total Knee Replacement System). Each knee was mounted and aligned in the Kansas Knee Simulator (Fig. 1) [1]. A deep knee bend was performed which flexed the knee from full extension to 110° flexion, while the medial-lateral translation, internal-external, and varus-valgus rotations at the ankle were unconstrained. The femoral component was then replaced with a revision femoral component of the same TKA system, articulating on the same primary insert component, and the deep knee bend was repeated. The translations of the lowest points (LP) of the medial and lateral femoral condyles along the superior-inferior axis of the tibia were calculated. In addition, tibiofemoral and patellofemoral kinematics were calculated for each cycle based on the Grood-Suntay coordinate system [2] [1]. The change in LP and patellofemoral kinematics from the primary to revision femurs were calculated. Student t-tests were performed at 5° increments of knee flexion to identify significant differences between the two implant types. Results. No significant differences were observed between primary and revision femur for both LP and patellofemoral kinematics (Fig 2,3). The revision femoral anterior-posterior lowest point translations were similar to that of the primary femur. Deviations in patellofemoral spin, tilt, and flexion were less than one degree throughout the range of flexion. Patellofemoral translations were less than .5 mm during mid-flexion and greatest deviations were observed during early flexion. Less than .5° deviation was observed in tibiofemoral VV and IE rotations. Discussion. Typical knee revision systems have compromised knee mechanics to improve femoral fixation, yielding poorer functional outcomes and high rates of reoperation [3, 4]. The primary and revision femoral components in this knee system have identical condylar articular geometry which explains the similarity in patellofemoral and tibiofemoral kinematics. Small difference in tibiofemoral kinematics could be a result of implant fixations using bone cement which slightly alters implant alignments between primary and revision surgeries. The revision femur resulted in similar kinematics and can be used during primary TKA when a stem is need for additional implant fixation without affecting the knee contact mechanics. For figures, please contact authors directly


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 10 | Pages 1466 - 1470
1 Oct 2010
Didden K Luyckx T Bellemans J Labey L Innocenti B Vandenneucker H

The biomechanics of the patellofemoral joint can become disturbed during total knee replacement by alterations induced by the position and shape of the different prosthetic components. The role of the patella and femoral trochlea has been well studied. We have examined the effect of anterior or posterior positioning of the tibial component on the mechanisms of patellofemoral contact in total knee replacement. The hypothesis was that placing the tibial component more posteriorly would reduce patellofemoral contact stress while providing a more efficient lever arm during extension of the knee. We studied five different positions of the tibial component using a six degrees of freedom dynamic knee simulator system based on the Oxford rig, while simulating an active knee squat under physiological loading conditions. The patellofemoral contact force decreased at a mean of 2.2% for every millimetre of posterior translation of the tibial component. Anterior positions of the tibial component were associated with elevation of the patellofemoral joint pressure, which was particularly marked in flexion > 90°. From our results we believe that more posterior positioning of the tibial component in total knee replacement would be beneficial to the patellofemoral joint


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 8 | Pages 1081 - 1084
1 Aug 2005
Han I Chang CB Lee S Lee MC Seong SC Kim TK

We sought to determine the degree of correlation between the condition of the patellar articular cartilage and patellofemoral symptoms and function in osteoarthritic patients undergoing total knee arthroplasty. The depth of the osteoarthritic lesion, as graded by the Outerbridge classification and its size and location were assessed to determine the condition of the patellar cartilage in 80 consecutive osteoarthritic knees undergoing total knee arthroplasty. The association between the condition of the cartilage and patellofemoral symptoms and function was investigated by correlation analysis. The depth and size of the lesion had a significant but weak correlation with anterior knee pain (r = −0.300 and −0.289; p = 0.007 and 0.009, respectively), whereas location had no significant association (p > 0.05). None had a significant association with patellofemoral functional parameters (chair-rising, stair-climbing, and quadriceps power) (p > 0.05). Our study indicates that patellofemoral symptoms and function are not completely determined by the condition of the cartilage. Caution should be taken when the symptoms and functional limitations are attributed to a lesion in the patellofemoral joint in making a decision regarding patellar resurfacing in total knee arthroplasty


The Bone & Joint Journal
Vol. 98-B, Issue 10_Supple_B | Pages 11 - 15
1 Oct 2016
Konan S Haddad FS

Aims. Medial unicompartmental knee arthroplasty (UKA) is associated with successful outcomes in carefully selected patient cohorts. We hypothesised that severity and location of patellofemoral cartilage lesions significantly influences functional outcome after Oxford medial compartmental knee arthroplasty. Patients and Methods. We reviewed 100 consecutive UKAs at minimum eight-year follow-up (96 to 132). A single surgeon performed all procedures. Patients were selected based on clinical and plain radiographic assessment. All patients had end-stage medial compartment osteoarthritis (OA) with sparing of the lateral compartment and intact anterior cruciate ligaments. None of the patients had end-stage patellofemoral OA, but patients with anterior knee pain or partial thickness chondral loss were not excluded. There were 57 male and 43 female patients. The mean age at surgery was 69 years (41 to 82). At surgery the joint was carefully inspected for patellofemoral chondral loss and this was documented based on severity of cartilage loss (0 to 4 Outerbridge grading) and topographic location (medial, lateral, central, and superior or inferior). Functional scores collected included Oxford Knee Score (OKS), patient satisfaction scale and University College Hospital (UCH) knee score. Intraclass correlation was used to compare chondral damage to outcomes. Results. All patients documented significant improvement in pain and improved functional scores at mid-term follow-up. There were four revisions (mean 2.9 years, 2 to 4; standard deviation (. sd). 0.9) in this cohort, three for tibial loosening and one for femoral loosening. There was one infection that was treated with debridement and insert exchange. The mean OKS improved from 23.2 (. sd. 7.1) to 39.1 (. sd. 6.9); p < 0.001. The cohort with central and lateral grade 3 patellofemoral OA documented lower mean satisfaction with pain (90, . sd.  11.8) and function (87.5, . sd. 10.3) on the patient satisfaction scale. On the UCH scale, patients reported significantly decreased mean overall scores (7.3, . sd. 1.2 vs 9, . sd. 2.3) as well as stair climb task (3.5, . sd. 0.3 vs 5, . sd. 0.1) when cartilage lesions were located centrally or laterally on the PFJ. Patients with medial chondral PFJ lesions behave similar to patients with no chondral lesions. Conclusion. Topographical location and severity of cartilage damage of the patella can significantly influence function after successful Oxford medial UKA. Surgeons should factor this in when making their operative decision, and undertake to counsel patients appropriately. Cite this article: Bone Joint J 2016;98-B(10 Suppl B):11–15


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 350 - 350
1 Sep 2012
Aksahin E Guzel A Yuksel H Celebi L Erdogan A Aktekin C Bicimoglu A
Full Access

Aim. The purpose of this study was to analyze the patellofemoral kinematics in neglected adult developmental dysplasia of the hip patients with patellofemoral symptoms and tried to clarify the affect of the severity of dislocation, the amount of limb length discrepancy, the deviation of mechanical axis and the changes in femoral anteversion on patellofemoral alignment. Methods. The dynamic patellofemoral CT results of 39 patients with DDH suffering from knee pain were reviewed. The mean age was 40.07 (range: 22–61). 14 of them were bilateral and 25 were unilateral neglected DDH patients. The CT results of 12 patients suffering from unilateral patellofemoral pain following the treatment of locked intramedullary nailing was taken as control group. In this patients atraumatic and asymptomatic normal site was taken as control group. Results. In unilateral neglected DDH patients there was significantly higher medial patellar displacement in 0, 15, 30, 60 degrees flexion in the knee at the site of dislocation. Again in uninvolved site medial patellar displacement in 15, 30, 60 degrees flexion was higher with respect to control group. In the involved extremity the PTA angle in 0, 15, 30, 60 degrees flexion were significantly higher than in control group. This increase in PTA angle corresponding to medial patellar tilt was observed only in involved extremity. In the knees of patients with bilateral DDH there was significant medial patellar displacement in every flexion degrees with respect to control group. Besides in bilateral DDH patients, the PTA angle in 15, 30, 60 degrees flexion were significantly higher than control group corresponding to medial patellar tilt. The amount of leg length discrepancy and the severity of dislocation as well as mechanical axis deviation were not affecting the patellofemoral parameters in both unilateral and bilateral DDH patients. Conclusion. Both in unilateral and bilateral DDH patients there are major changes in patellar tracking on femur during knee flexion. Increased medial shift and medial patellar tilt were seen in these patient groups. The neglected DDH patients suffering from knee pain should be analyzed not only for tibiofemoral abnormalities but also for patellofemoral malignment


The Journal of Bone & Joint Surgery British Volume
Vol. 68-B, Issue 1 | Pages 42 - 44
1 Jan 1986
Devereaux M Parr G Lachmann S Thomas D Hazleman B

Pain in front of the knee is common in athletes and is often called patellofemoral arthralgia, but it is difficult to prove that the pain arises in that joint. Thermograms of 30 athletes clinically considered to have patellofemoral arthralgia were compared with those of a similar number of unaffected athletes matched for age and sex. A comparison was also made with thermograms of two older groups of 30 patients with knee involvement from either rheumatoid arthritis or osteoarthritis. Twenty-eight of the athletes with patellofemoral arthralgia had a diagnostic pattern on thermography. The anterior knee view showed a rise in temperature on the medial side of the patella and the medialis knee view showed that this temperature rise radiated from the patellar insertion of the vastus medialis into the muscle itself. The possible aetiological role of quadriceps muscle imbalance in athletes with patellofemoral arthralgia is discussed in relation to these findings


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 141 - 141
1 Jan 2016
Fukunaga M Hirokawa S
Full Access

There have been a large number of studies reporting the knee joint force during level walking, however, the data of during deep knee flexion are scarce, and especially the data about patellofemoral joint force are lacking. Deep knee flexion is a important motion in Japan and some regions of Asia and Arab, because there are the lifestyle of sitting down and lying on the floor directly. Such data is necessary for designing and evaluating the new type of knee prosthesis which can flex deeply. Therefore we estimated the patellofemoral and tibiofemoral forces in deep knee flexion by using the masculoskeltal model of the lower limb. The model for the calculation was constructed by open chain of three bar link mechanism, and each link stood for thigh, lower leg and foot. And six muscles, gluteus maximus, hamstrings, rectus, vastus, gastrocnemius and soleus were modeled as the lines connecting the both end of insertion, which apply tensile force at the insertion on the links. And the model also included the gravity forces, thigh-calf contact forces on the Inputting the data of floor reacting forces and joint angles, the model calculated the muscle forces by the moment equilibrium conditions around each joint, and some assumptions about the ratio of the biarticular muscles. And then, the joint forces were estimated from the muscle forces, using the force equilibrium conditions on patella and tibia. The position/orientation of each segments, femur, patella and tibia, were decided by referring the literature. The motion to be analyzed was standing up from kneeling posture. The joint angles during the motion are shown in Fig.1. This motion included the motion from kneeling to squatting, rising the knee from the floor by flexing hip joint, and the motion from squatting to standing. The test subject was a healthy male, age 23[years], height 1.7[m], weight 65[kgw]. Results were shown in Fig.2. The patellofemoral force was little at standing posture, the end of the motion, however, was as large as tibiofemoral force during the knee joint angle was over 130 degrees. The reason of this was that the patellofemoral joint force was heavily dependent on the quadriceps forces, and the quadriceps tensile force was large at deep knee flexion, at kneeling or squatting posture. The maximum tibiofemoral force was 3.5[BW] at the beginning of standing up from squatting posture. And the maximum patellofemoral force was 3.8[BW] at the motion from kneeling to squatting posture. The conclusion was that the patellofemoral joint force might not be ignored in deep knee flexion and the design of the knee prosthesis should be include the strength design of patellofemoral joint