Vitamin E stabilization of radiation crosslinked UHMWPE is done by (1) blending into the resin powder, consolidating and irradiating or (2) diffusing into already consolidated and irradiated UHMWPE and terminally gamma sterilizing. With blending, a higher radiation dose is required for crosslinking to the same level as virgin UHMWPE. With diffusion, the vitamin E amount used is not limited by the crosslink density, but, vitamin E is exposed to terminal sterilization dose of 25–40 kGy, less than the 100–150 kGy used with blending, which may decrease the grafting of the antioxidant onto the polymer. We investigated the efficiency of grafted vitamin E against squlene-initiated accelerated aging. Medical grade GUR1050 UHMWPE with vitamin E (0.1 wt%) was irradiated to 150 kGy. Tibial knee insert preforms were irradiated to 100 kGy, diffused with vitamin E using a doping and homogenization procedure. This UHMWPE was used either before or after gamma sterilization. One set of machined blocks (10 × 10 × 6 mm; n = 6) were extracted in boiling hexane for 4 days, then dried. The extracted blocks were doped with squalene at 120°C for 2 hours. One block each was analyzed after doping. The rest were accelerated aged at 70°C and 5 atm. of oxygen for 6 (n = 2) and 14 days (n = 3). Thin sections (150 micron thick) were microtomed and analyzed by Fourier Transform Infrared Spectroscopy to determine a vitamin E index (1245–1275 cm−1 normalized to 1850–1985 cm−1) and an oxidation index (1700 cm−1 normalized to 1370 cm−1) after extraction with boiling hexane for 16 hours and drying.Introduction
Methods
Recent findings about UHMWPE oxidation from in vivo stresses lead to the need of a better understanding of which anti-oxidant additivation method is the best option for the use in orthopaedic field. A GUR 1050 crosslinked Vitamin E - blended UHMWPE has been investigated, to provide an accurate outline of its properties. DSC and FTIR measurements, together with ageing and tensile tests were performed on compression moulded blocks, as well as biocompatibility tests, including implantation on rabbits. Moreover, wear simulations on finished components (Delta acetabular liners) have been completed. All the test procedures have been repeated for a reference material, a GUR 1050 crosslinked and remelted standard UHMWPE (commercial name UHMWPE X-Lima), and the outcomes have been compared to the crosslinked Vitamin E - blended UHMWPE ones. On the additivated UHMWPE, we found a ultimate tensile strength of 43 MPa, a yield strength value of 25 MPa, and an elongation to breakage equal to 320%. The degree of cristallinity was 45 ± 2%, and no signal of creation of oxidation products was detected up to 2000 h of permanence in oxidant ambient after the ageing test. The reference material showed comparable mechanical resistance values (∗ = 40 MPa, y = 20 MPa, 350% elongation), a cristallinity of 46 ± 2%, and the creation of oxidation products starting from 700 h in oxidant ambient. The biocompatibility tests indicate that the additivated material is biocompatible, as the reference X-Lima UHMWPE. Wear tests gave a wear rate of 5,09 mg/million cycles against 6,13 mg/million cycles of the reference material, and no sign of run in wear rate. Our results indicate that there is no change in mechanical properties in respect to the reference material. This is confirmed by DSC measurements, that show no change in cristallinity. The blend between polymer and additive assures an uniform concentration of Vitamin E across the whole thickness of the moulded block, and ageing test results on additivated UHMWPE have shown that the material possess a superior resistance to degradation phenomena. Biocompatibility assess that the presence of Vitamin E is not detrimental for the in vivo use of the material, and wear results indicate a better wear resistance of the material, especially in the first stages of the wear process. From these considerations, it can be concluded that the material, in respect to the standard UHMWPE, is highly resistant to oxidation phenomena, therefore it is expected to have superior in vivo endurance performance.
The lifetime of UHMWPE implants may be limited by wear and oxidative degeneration. Wear produced particles are in general biologically active, and may induce osteolysis. As threshold of PE wear rate below which osteolysis is rarely observed is postulated to be less tahn 0.1 mm per year. Moreover, PE delamination and breakage are consequences of the embrittlement of the PE due to oxidation. Both demonstrate, that improving the clinical behaviour of UHMWPE means reduction of wear particles. The first can be achieved by cross-linking the second by the anti-oxidative stabiliser vitamin E. The highly cross-linked PE vitamys ® used for the isoelastic monobloc cup RM Pressfit (Mathys AG Bettlach, Bettlach, Switzerland) is mixed with 0.1% of synthetic vitamin E and is the first and only highly cross-linked PE used in total hip replacement that meets all requirements for the best grade UHMWPE in yield strength, ultimate tensile strength and elongation at break. With the first implantation of RM Pressfit vitamys® a prospective multicentre study was started. So far 256 cases in 7 clinics from Europe and New Zealand are included. This report presents the first clinical experiences of one Swiss clinic from the multicentre study. Prospective data collection includes Harris Hip score (HHS), patient satisfaction and radiographic analysis. Clinical and radiographic follow-up is done after 6 weeks, 6, 12 and 24 months, and thereafter for long-term results. Standardized documentation of surgery and postoperative course is performed.INTRODUCTION
METHODS AND MATERIAL