Advertisement for orthosearch.org.uk
Results 1 - 20 of 50
Results per page:
Bone & Joint Research
Vol. 6, Issue 2 | Pages 73 - 81
1 Feb 2017
Ishihara K Okazaki K Akiyama T Akasaki Y Nakashima Y

Objectives. Osteophytes are products of active endochondral and intramembranous ossification, and therefore could theoretically provide significant efficacy as bone grafts. In this study, we compared the bone mineralisation effectiveness of osteophytes and cancellous bone, including their effects on secretion of growth factors and anabolic effects on osteoblasts. Methods. Osteophytes and cancellous bone obtained from human patients were transplanted onto the calvaria of severe combined immunodeficient mice, with Calcein administered intra-peritoneally for fluorescent labelling of bone mineralisation. Conditioned media were prepared using osteophytes and cancellous bone, and growth factor concentration and effects of each graft on proliferation, differentiation and migration of osteoblastic cells were assessed using enzyme-linked immunosorbent assays, MTS ((3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium)) assays, quantitative real-time polymerase chain reaction, and migration assays. Results. After six weeks, the area of mineralisation was significantly higher for the transplanted osteophytes than for the cancellous bone (43803 μm. 2. , . sd. 14660 versus 9421 μm. 2. , . sd. 5032, p = 0.0184, one-way analysis of variance). Compared with cancellous bone, the conditioned medium prepared using osteophytes contained a significantly higher amounts of transforming growth factor (TGF)-β1 (471 pg/ml versus 333 pg/ml, p = 0.0001, Wilcoxon rank sum test), bone morphogenetic protein (BMP)-2 (47.75 pg/ml versus 32 pg/ml, p = 0.0214, Wilcoxon rank sum test) and insulin-like growth factor (IGF)-1 (314.5 pg/ml versus 191 pg/ml, p = 0.0418, Wilcoxon rank sum test). The stronger effects of osteophytes towards osteoblasts in terms of a higher proliferation rate, upregulation of gene expression of differentiation markers such as alpha-1 type-1 collagen and alkaline phosphate, and higher migration, compared with cancellous bone, was confirmed. Conclusion. We provide evidence of favourable features of osteophytes for bone mineralisation through a direct effect on osteoblasts. The acceleration in metabolic activity of the osteophyte provides justification for future studies evaluating the clinical use of osteophytes as autologous bone grafts. Cite this article: K. Ishihara, K. Okazaki, T. Akiyama, Y. Akasaki, Y. Nakashima. Characterisation of osteophytes as an autologous bone graft source: An experimental study in vivo and in vitro. Bone Joint Res 2017;6:73–81. DOI: 10.1302/2046-3758.62.BJR-2016-0199.R1


Bone & Joint Research
Vol. 7, Issue 2 | Pages 157 - 165
1 Feb 2018
Sun Y Kiraly AJ Sun AR Cox M Mauerhan DR Hanley EN

Objectives. The objectives of this study were: 1) to examine osteophyte formation, subchondral bone advance, and bone marrow lesions (BMLs) in osteoarthritis (OA)-prone Hartley guinea pigs; and 2) to assess the disease-modifying activity of an orally administered phosphocitrate ‘analogue’, Carolinas Molecule-01 (CM-01). Methods. Young Hartley guinea pigs were divided into two groups. The first group (n = 12) had drinking water and the second group (n = 9) had drinking water containing CM-01. Three guinea pigs in each group were euthanized at age six, 12, and 18 months, respectively. Three guinea pigs in the first group were euthanized aged three months as baseline control. Radiological, histological, and immunochemical examinations were performed to assess cartilage degeneration, osteophyte formation, subchondral bone advance, BMLs, and the levels of matrix metalloproteinse-13 (MMP13) protein expression in the knee joints of hind limbs. Results. In addition to cartilage degeneration, osteophytes, subchondral bone advance, and BMLs increased with age. Subchondral bone advance was observed as early as six months, whereas BMLs and osteophytes were both observed mainly at 12 and 18 months. Fibrotic BMLs were found mostly underneath the degenerated cartilage on the medial side. In contrast, necrotic BMLs were found almost exclusively in the interspinous region. Orally administered CM-01 decreased all of these pathological changes and reduced the levels of MMP13 expression. Conclusion. Subchondral bone may play a role in cartilage degeneration. Subchondral bone changes are early events; formation of osteophytes and BMLs are later events in the OA disease process. Carolinas Molecule-01 is a promising small molecule candidate to be tested as an oral disease-modifying drug for human OA therapy. Cite this article: Y. Sun, A. J. Kiraly, A. R. Sun, M. Cox, D. R. Mauerhan, E. N. Hanley Jr. Effects of a phosphocitrate analogue on osteophyte, subchondral bone advance, and bone marrow lesions in Hartley guinea pigs. Bone Joint Res 2018;7:157–165. DOI:10.1302/2046-3758.72.BJR-2017-0253


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 116 - 116
1 Nov 2018
Sun YC Lian WS Ko JY Wang FS
Full Access

Osteophyte deposition and subchondral bone damage are notable features of osteoarthritis (OA). Deregulated mineralization contributes to osteophyte and subchondral irregularity. The microRNA-29 (miR-29) family is associated with arthritic disorders. This study is aimed to investigate miR-29a function to OA osteophyte formation and subchondral integrity. Intact and damaged articular cartilage in patients with end-stage knee OA who required total knee arthroplasty were harvested to probe miR-29a, cartilage, and mineralized matrix expression using RT-PCR and in situ hybridization. Osteophyte volume and subchondral morphometry of collagenase-induced OA knees in mice were quantified using μCT and histomorphometry. Increased bone matrix expression (collagen I and bone alkaline phosphatase) and reduced cartilage matrix (collagen II and aggrecan) along with low miR-29a expression existed in human OA specimens. Aged miR-29a knockout mice showed spontaneous osteophyte formation and articular cartilage erosion. In primary articular chondrocytes, miR-29a deficiency significantly reduced cartilage matrix synthesis, whereas von Kossa staining-positive mineralized matrix production was increased. Of interest, the severity of collagenase-induced osteophyte accumulation and subchondral damage along with serum cartilage breakdown products CTX-II and COMP levels were significantly compromised in mice overexpressing miR-29a. Intra-articularly injecting miR-29a significantly reduced osteophyte volume and subchondral integrity and retained cartilage morphology in collagenase-injured knees. Reduced miR-29a signalling worsens osteophyte and subchondral destruction in OA through increasing mineralized matrix formation of chondrocytes. Restoring miR-29a shields joints from cartilage degradation, osteophyte and subchondral destruction. This study conveys new mechanistic underlying OA osteophyte pathogenesis and shines light on the remedial potential of miR-29a to OA


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 63 - 63
1 Jan 2017
Prakash R Malik S Hussain S Budair B Ranjitkar S Prakash D
Full Access

During revision THR, the surgery is often difficult and compromised due to lack of patient's bone especially in the pelvis. Any extra bone in the acetabulum is expected to be of advantage to the patient and the surgeon. The aim of this study was to see if preservation of medial acetabular osteophyte in uncemented total hip replacement had any adverse effect on the prosthesis survival or patient satisfaction. Conventional acetabular preparation involves reaming down to the true floor. This not only medialises the centre of rotation of the hip but also reduces the acetabular offset. In contrast the main surgeon preserved the acetabular offset by preserving some osteophytic bone between the true floor of the acetabulum and the acetabular cup. This is achieved by reaming the acetabular cavity conservatively while achieving secure primary fixation of the prosthesis. We report the outcome of a single surgeon series of such cases. The endpoint was assessed as the need for revision of the acetabular cup. A total of 106 consecutive patients were identified who underwent uncemented THR from 2005 to 2010. The medial osteophyte was measured on immediate post-operative x-rays, from the “teardrop” to the nearest point of the acetabular cup, by 3 surgeons (one consultant and 2 registrars). The patients were contacted for a telephone interview and their clinical notes, including x-rays, were reviewed. Outcome was available for 79 patients. 74 patients were available for follow-up and 5 patients died unrelated to THR. Average follow-up was for 8.3 years (range 5.5–10.8). Average age was 62 years. The average medial osteophyte was 1.98 mm (range 0–14mm). One patient had late infection and one had dislocation. There was not a single failure of the acetabular component. The patient satisfaction was high at 8.8 out of 10. Preservation of medial osteophyte in the acetabulum whilst doing uncemented THR has the advantage of retaining the patient's own bone stock which can be of great advantage to the surgeon as well as the patient should revision THR be required in future. Our study has shown that this can be achieved without compromising the survival of the prosthesis or the patient satisfaction. This technique may increase the range of motion of the hip by reducing the risk of bony or soft tissue impingement, and also reduce the risk of dislocation. Furthermore, not recreating the native centre of rotation of the hip does not seem to have any adverse effect for the patients, who are very happy with the outcome. We recommend that whilst doing uncemented THR, the acetabulum should not be reamed to the true floor as has been the conventional teaching, but attempt should be made to preserve some medial osteophyte where possible, at the same ensuring that good primary fixation of the cup is achieved. This is to give the patient and surgeon the advantage of extra available bone should revision surgery be required in the future


Senescent chondrocyte and subchondral osteoclast overburden aggravate inflammatory cytokine and pro-catabolic proteinase overproduction, accelerating extracellular matrix degradation and pain during osteoarthritis (OA). Fibronectin type III domain containing 5 (FNDC5) is found to promote tissue homeostasis and alleviate inflammation. This study aimed to characterize what role Fndc5 may play in chondrocyte aging and OA development. Serum and macroscopically healthy and osteoarthritic cartilage were biopsied from patients with knee OA who received total knee replacement. Murine chondrocytes were transfected with Fndc5 RNAi or cDNA. Mice overexpressing Fndc5 (Fndc5Tg) were operated to have destabilized medial meniscus mediated (DMM) joint injury as an experimental OA model. Cellular senescence was characterized using RT-PCR analysis of p16INK4A, p21CIP1, and p53 expression together with ß-galactosidase activity staining. Articular cartilage damage and synovitis were graded using OARSI scores. Osteophyte formation and mechanical allodynia were quantified using microCT imaging and von Frey filament, respectively. Osteoclast formation was examined using tartrate-resistant acid phosphatase staining. Senescent chondrocyte and subchondral osteoclast overburden together with decreased serum FNDC5 levels were present in human osteoarthritic cartilage. Fndc5 knockdown upregulated senescence program together with increased IL-6, MMP9 and Adamts5 expression, whereas Alcian blue-stained glycosaminoglycan production were inhibited. Forced Fndc5 expression repressed senescence, apoptosis and IL-6 expression, reversing proliferation and extracellular matrix production in inflamed chondrocytes. Fndc5Tg mice showed few OA signs, including articular cartilage erosion, synovitis, osteophyte formation, subchondral plate sclerosis and mechanical allodynia together with decreased IL-6 production and few senescent chondrocytes and subchondral osteoclast formation during DMM-induced joint injury. Mechanistically, Fndc5 reversed histone H3K27me3-mediated IL-6 transcription repression to reduce reactive oxygen species production. Fndc5 loss correlated with OA development. It was indispensable in chondrocyte growth and anabolism. This study sheds light onto the anti-ageing and anti-inflammatory actions of Fndc5 to chondrocytes; and highlights the chondroprotective function of Fndc5 to compromise OA


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 75 - 75
1 Nov 2018
Babel H Omoumi P Stoffel C Jolles B Favre J
Full Access

While osteophytes are a hallmark feature of knee osteoarthritis (OA), there is limited information regarding their location. In particular, it is unknown whether osteophytes develop in patient-specific locations or if there are consistent osteophyte locations among OA knees. This lack of data mainly stems from the fact that osteophytes have been mostly assessed with scores quantifying their size or severity but not their location. Given the important role that bone could play in OA development and the option it offers for OA treatment, there is a need to better understand the osteophyte locations. This study aimed to develop a method to compare osteophyte locations among knees and determine the overlapping ratio. CT arthrogram of 11 medial-compartment OA tibias (Kellgren-Lawrence grade ≥ 3) were segmented to locate the osteophytes and a bone matching technique was used to report the osteophyte locations of the 11 knees on a single reference tibia. This newly proposed method was highly reproducible (intra-operator ICC = 0.89). When used to compare the 11 tibias, it showed that more than 60% of the overall subosteophytal area, defined as the reference bone area covered by at least one osteophyte from one knee, was common to less than two tibias. Moreover, less than 20% of the overall subosteophytal area was common to five or more tibias. The results of this study suggest that osteophyte locations are specific to each knee. Future work should determine the relationships with mechanical loading, as this could explain the high inter-patient variability


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 104 - 104
11 Apr 2023
Vadgaonkar A Faymonville C Obertacke U
Full Access

Osteoarthritis (OA) is the most common disorder of the Sternoclavicular Joint (SCJ). In our case-control study, we evaluated the relationship between clavicular length and OA at the SCJ. CT scans of adults presenting to the Emergency Department of our hospital were examined to look for OA, defined as the presence of osteophytes, subchondral cysts, or cortical sclerosis at the SCJ. Medial-most and lateral-most points of the clavicle were marked on the slices passing through the SC and AC joints respectively. Using x, y, and z-axis coordinates from the DICOM metadata, clavicular length was calculated as the distance between these two points with 3D geometry. Preliminary data of 334 SCJs from 167 patients (64% males, 36% females) with a mean age of 48.5 ± 20.5 years were analysed. Multivariate regression models revealed that age and clavicular length were independent risk factors for OA while gender did not reach statistical significance. A 1mm increase in length was associated with 9% and 7% reduction in the odds of developing OA on the left and the right respectively. Comparing the mean clavicular length using t-test showed a significantly shorter clavicle in the group with OA (145.8 vs 152.7, p=0.0001, left and 144.2 vs 150.3, p=0.0007, right). Our data suggest that the risk of developing OA at the SCJ is higher for shorter clavicles. This could be of clinical relevance in cases of clavicular fracture where clavicular shortening might lead to a higher risk of developing OA. Biomechanical studies are needed to find out the mechanism of this effect


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 37 - 37
2 Jan 2024
Lian W
Full Access

Development of osteoarthritis (OA) correlates with epigenetic alteration in chondrocytes. H3K27me3 demethylase UTX is known to regulate tissue homeostasis, but its role in the homeostasis of articulating joint tissue is poorly understood. Forced UTX expression upregulated H3K27me3 enrichment at the Sox9 promoter region to inhibit key extracellular matrix (ECM) molecules, like e.g. type II collagen, aggrecan, and glycosaminoglycans in articular chondrocytes. Utx loss in vitro altered the H3K27me3-binding epigenomic landscape, which contributes to mitochondrial activity, cellular senescence, and cartilage development. Functional target genes of Utx comprise insulin-like growth factor 2 (Igf2) and polycomb repressive complex 2 (PRC2) core components Eed and Suz12. Specifically, Utx deletion promoted Tfam transcription, mitochondrial respiration, ATP production and Igf2 transcription, but inhibited Eed and Suz12 expression. Igf2 inhibition or forced Eed or Suz12 expression increased H3K27 trimethylation and H3K27me3 enrichment at the Sox9 promoter, compromising Utx loss-induced ECM overproduction. Overexpression of Utx in murine knee joints aggravated OA development, including articular cartilage damage, synovitis, osteophyte formation, and subchondral bone loss. Transgenic mice with a chondrocytespecific Utx knockout develop thicker articular cartilage as compared to wild-type controls and show fewer gonarthrotic symptoms during destabilized medial meniscus- and collagenase-induced joint injury. In summary, UTX represses chondrocytic activity and accelerates cartilage degradation during OA, while Utx loss promotes cartilage integrity through epigenetic stimulation of mitochondrial biogenesis and Igf2 transcription. This highlights a novel noncanonical role of Utx that regulates articular chondrocyte anabolism and OA development


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 107 - 107
4 Apr 2023
Li C Ding Y Li S Lin S Wen Z Ouyang Z
Full Access

Osteoarthritis, the most common degenerative joint disease, significantly impairs life quality and labor capability of patients. Synovial inflammation, initiated by HMGB1 (High mobility group box 1)-induced activation of macrophage, precedes other pathological changes. As an upstream regulator of NF-κB (nuclear factor-kappa B) and MAPK (mitogen-activated protein kinase) signaling pathway, TAK1 (TGF-β activated kinase 1) participates in macrophage activation, while its function in osteoarthritis remains unveiled. This study aims to investigate the role of TAK1 in the pathogenesis of osteoarthritis via both in vitro and in vivo approaches. We performed immunohistochemical staining for TAK1 in synovial tissue, both in osteoarthritis patients and healthy control. Besides, immunofluorescence staining for F4/80 as macrophage marker and TAK1 were conducted as well. TAK1 expression was examined in RAW264.7 macrophages stimulated by HMGB1 via qPCR (Quantitative polymerase chain reaction) and Western blotting, and the effect of TAK1 inhibitor (5z-7 oxozeaenol) on TNF-α production was evaluated by immunofluorescence staining. Further, we explored the influence of intra-articular shRNA (short hairpin RNA) targeting TAK1 on collagenase-induced osteoarthritis in mice. Immunohistochemical staining confirmed significant elevation of TAK1 in osteoarthritic synovium, and immunofluorescence staining suggested macrophages as predominant residence of TAK1. In HMGB1-stimulated RAW264.7 macrophages, TAK1 expression was up-regulated both in mRNA and protein level. Besides, TAK1 inhibitor significantly impairs the production of TNF-α by macrophages upon HMGB1 stimulation. Moreover, intra-articular injection of lentivirus loaded with shRNA targeting TAK1 (sh-TAK1) reduced peri-articular osteophyte formation in collagenase-induced osteoarthritis in mice. TAK1 exerts a potent role in the pathogenesis of osteoarthritis by mediating the activation of macrophages


In osteoarthritis, chondrocytes acquire a hypertrophic phenotype that contributes to matrix degradation. Inflammation is proposed as trigger for the shift to a hypertrophic phenotype. Using in vitro culture of human chondrocytes and cartilage explants we could not find evidence for a role of inflammatory signalling activation. We found, however, that tissue repair macrophages may contribute to the onset of hypertrophy (doi: 10.1177/19476035211021907) Intra-articularly injected triamcinolone acetonide to inhibit inflammation in a murine model of collagenase-induced osteoarthritis, increased synovial macrophage numbers and osteophytosis, confirming the role of macrophages in chondrocyte hypertrophy occurring in osteophyte formation (doi: 10.1111/bph.15780). In search of targets to inhibit chondrocyte hypertrophy, we combined existing microarray data of different cartilage layers of murine growth plate and murine articular cartilage after induction of collagenase-induced osteoarthritis. We identified common differentially expressed genes and selected those known to be associated to inflammation. This revealed EPHA2, a tyrosine kinase receptor, as a new target. Using in silico, in vitro and in vivo models we demonstrated that inhibition of EPHA2 might be a promising treatment for osteoarthritis. Recently, single cell RNA-seq. has revealed detailed information about different populations of chondrocytes in articular cartilage during osteoarthritis. We re-analysed a published scRNA-seq data set of healthy and osteoarthritic cartilage to obtain the differentially expressed genes in the population of hypertrophic chondrocytes compared to the other chondrocytes, applied pathway analyses and then used drug databases to search for upstream inhibitors of these pathways. This drug repurposing approach led to the selection of 6 drugs that were screened and tested using several in vitro models with human chondrocytes and cartilage explants. In this lecture I will present this sequence of studies to highlight different approaches and models that can be used in the quest for a disease modifying drug for osteoarthritis


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 149 - 149
1 Nov 2021
Smeriglio P Indelli PF Bhutani N
Full Access

Introduction and Objective. Osteoarthristis (OA) has been associated with many genes and yet the genetic basis for this disease has never formally been established. Recent realization that epigenetic changes could be the underlying pathological mechanisms has helped to explain many complex multifactorial diseases with no clear genetic cause. We therefore asked whether epigenetics could also play a role in OA. We have previously shown that the DNA epigenetic modification, specifically the hydroxymethylation on cytosine (5hmC), undergoes a fivefold increase on OA-associated genes which are activated at OA onset. In this study, we further uncovered a set of 5hmC-mediated gene targets and their mechanistic link to OA progression. Materials and Methods. We surgically induced OA on 4 to 6 months old Tet1−/− mice (Tet1tm1.1Jae, the Jackson laboratory) and wild-type littermates by performing destabilization of the medial meniscus (DMM) surgery. Joints were collected for histological assessment through blinded grading with the OARSI scoring system. Human articular chondrocytes were harvested from OA cartilage samples obtained during total knee arthroplasty or from grossly normal cartilage pieces obtained during notchplasty or debridement from patients undergoing anterior cruciate ligament (ACL) reconstruction with no history of OA symptoms, under approved Human subjects Institutional Review Board protocols. Bioinformatic analyses of RNA-sequencing and CCGG sequencing (reduced representation 5hmC profiling) were performed to identify TET1 target genes associated with OA progression. Several measurements were used to assess the effect of TET1 ablation on the phenotype of mouse cartilage tissue and human chondrocytes including, histological evaluation, and quantitative bone assessment by micro-CT imaging and multiplex cytokine analyses in the serum of mice in vivo (mouse 39-plex assay) and in the supernatant of human chondrocyte cultures (human 62-plex assay). Results. We used a mouse model with surgically induced OA and found that OA onset was accompanied by a gain of ∼40,000 differentially hydroxymethylated sites prior the notable histological onset of the disease. We additionally revealed that these changes are mediated by the ten-eleven-translocation enzyme 1 (TET1), since Tet1−/− mice lost 98% of 5hmC sites upon OA induction. Remarkably, Tet1−/− mice were protected from OA development including degeneration of the cartilage surface and osteophyte formation. Silencing of TET1 expression in human OA chondrocytes reduced the expression in a set of genes, which may represent the pathological gene targets that exacerbate OA including MMP3 and MMP13 and several inflammatory cytokines. Therefore, our study reveals the unexpected beneficial role of TET1 inhibition in blocking OA progression. In fact, intra-articular injections of a dioxygenases’ inhibitor, 2 hydroxyglutarate, on mice after surgical induction of OA stalled disease progression. Furthermore, treatment of human OA chondrocytes with the same inhibitor also phenocopied TET1 loss, implicating a therapeutic potential of TET inhibition in OA patients. Conclusions. Collectively, our study not only demonstrate the role of TET1 in OA; the 5hmC-mediated gene targets acting on multiple OA pathways were identified and can be modulated as therapeutic intervention to treat OA


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 109 - 109
1 Mar 2021
Zoetebier B Sivasubramaniyan K Puricelli M Fu Y Hendriks J Kock L van Osch G Karperien M
Full Access

Osteoarthritis is the most common chronic condition of the joints. It is characterized by the degeneration of articular cartilage, formation of osteophytes and alterations in the synovium. This process has a severe impact on the quality of life of the patients and the currently available treatments are unsatisfactory and often merely focused on pain relief. In our group we are working on the development of in situ cross-linkable hydrogel platforms that could be used for resurfacing the damaged articular cartilage using a minimally invasive arthroscopic procedure. Stable fixation of the gel at the joint surface, facilitating the ingrowth of local stem and progenitor cell populations and supporting intrinsic repair mechanisms are considered minimal design parameters. To achieve this, we are exploring the use of enzymatically cross-linkable natural polymer-tyramine conjugates. Dextran-tyramine conjugates were prepared by activation of dextran-OH and subsequent reaction with tyramine. Hyaluronic acid-tyramine and protein-tyramine conjugates were prepared using DMTMM coupling. In situ crosslinking is achieved by mixing the polymer conjugates with the enzyme HRP and minute, non-toxic amounts of H2O2 as oxidizing agent. Support of cartilage formation was studied after mixing of the polymer conjugates with mesenchymal stem cells, chondrocytes or combinations of both prior to crosslinking. Cell ingrowth was studied by implanting the hydrogels in an ex-vivo cartilage defect while mechanically loading the explant in a bioreactor and cell migration in the hydrogels was evaluated by tracking the sprouting of fluorescently labelled cell-spheroids. We prepared dextran-tyramine conjugates with a degree of substitution of 10 tyramine residues per 100 monosaccharide units. The conjugated hyaluronic acid-tyramine had a degree of substitution of 10% of the carboxylic acid groups, while for the proteins the substitution was dependent on the protein type. Enzymatically crosslinked hydrogels, based on dextran and hyaluronic acid, with the addition of co-cross linkable proteins show excellent properties for application in the regeneration of damaged cartilage


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 340 - 340
1 Jul 2014
Vadalà G Musumeci M Giacalone A Russo F Denaro V
Full Access

Summary Statement. Intra-articular injection of humanised monoclonal anti-VEGF antibody (Bevacizumab, Avastin®) in a osteoarthritis rabbit model is related to positive restorative effects in terms of histopathologic evaluation. Introduction. Vascular endothelial growth factor (VEGF) is generally undetectable in adult human articular cartilage under physiological conditions. Upon exposure to pathological stimulation such as inflammation, hypoxia or accumulating mechanical stress, VEGF would be up regulated in hypertrophic chondrocytes of arthritic cartilage leading to osteophyte formation, disregulation of chondrocyte apoptosis and induction of catabolic factors, including matrix metalloproteinases (MMPs). This in vivo study aims to investigate the potential role of VEGF inhibition to treat Osteoarthritis (OA), through intra-articular injection of Bevacizumab, a humanised monoclonal anti-VEGF antibody, in a OA rabbit model. Methods. OA was induced in twelve adult male New Zealand rabbits surgically by monolateral Anterior Cruciate Ligament Transection (ACLT). The rabbits were randomly divided into two equal groups (experimental and control). Intra-articular injections of Bevacizumab or saline (control) were given 4 weeks after ACLT and were administered once a week for 4 time. Animal were sacrificed at 2 and 3 month time point an knee analyzed histologically and grossly. Histopathological variables such as the number of fibroblasts and inflammatory cells, collagenous matrix deposition, synovial hyperplasia, granulation tissue formation, vascular proliferation were evaluated. Results:The macroscopic evaluation of the knee in the experimental group revealed smooth joint surfaces of articular cartilage and no osteophyte formation compared to the control group that showed marked arthritis including synovial hypertrophy and osteophyte formation. Histologic assessment demonstrated, in the experimental group, significantly higher scores concerning number of microvessels, synovial hyperplasia, macrophage infiltration, collagenous matrix deposition, chondrocytes proliferation and apoptosis compared to the control group. Conclusion. In conclusion, VEGF modulation via intra-articular injection of Bevacizumab in a rabbit model of knee OA, resulted in reduction of articular cartilage degeneration through setting up an appropriate environment that prevent chondrocyte hypertrophy, apoptosis and osteophytes formation by blocking the intrinsic VEGF catabolic pathway, endochondral ossification, and the extrinsic VEGF-induced vascular invasion. VEGF-signaling inhibtion through Bevacizumab represent a potential way to treat OA


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 94 - 94
1 Dec 2020
Ambrosio L Vadalà G Cattani C Bernardini R Giacalone A Papalia R Denaro V
Full Access

Cartilage neoangiogenesis holds a key role in the development of osteoarthritis (OA) by promoting cartilage degradation with proteoglycan loss, subchondral bone sclerosis, osteophyte formation and synovial hyperplasia. This study aimed to assess the in vivo efficacy of bevacizumab, an antibody against vascular endothelial growth factor (VEGF) in an OA animal model. 24 New Zealand white rabbits underwent anterior cruciate ligament transection in order to spontaneously develop knee OA. Animals were divided into four groups: one receiving a sham intraarticular knee injection (saline) and three groups treated with 5, 10, and 20 mg intraarticular bevacizumab injections. The biological effect of the antibody on cartilage and synovium was evaluated through histology and quantified with the Osteoarthritis Research Society International (OARSI) scores. Immunohistochemical analysis was conducted to investigate type 2 collagen, aggrecan, and matrix metalloproteinase 13 (MMP-13) expression in both cartilage and synovium. Intraarticular bevacizumab led to a significant reduction of cartilage degeneration and synovial OA alterations. Immunohistochemistry showed a significantly reduced MMP-13 expression in all experimental groups, with the one receiving 20 mg bevacizumab showing the lowest. Furthermore, the antibody showed to increment the production of aggrecan and type 2 collagen after administration of 5, 10, and 20 mg. The group treated with 20 mg showed the highest levels of type 2 collagen expression, while aggrecan content was even higher than in the healthy cartilage. Intraarticular bevacizumab has demonstrated to effectively arrest OA progression in our model, with 20 mg being the most efficacious dose. By inhibiting cartilage and synovial neoangiogenesis, bevacizumab may serve as a possible disease-modifying osteoarthritis drug (DMOAD) in the next future


Bone & Joint Research
Vol. 7, Issue 3 | Pages 252 - 262
1 Mar 2018
Nishida K Matsushita T Takayama K Tanaka T Miyaji N Ibaraki K Araki D Kanzaki N Matsumoto T Kuroda R

Objectives. This study aimed to examine the effects of SRT1720, a potent SIRT1 activator, on osteoarthritis (OA) progression using an experimental OA model. Methods. Osteoarthritis was surgically induced by destabilization of the medial meniscus in eight-week-old C57BL/6 male mice. SRT1720 was administered intraperitoneally twice a week after surgery. Osteoarthritis progression was evaluated histologically using the Osteoarthritis Research Society International (OARSI) score at four, eight, 12 and 16 weeks. The expression of SIRT1, matrix metalloproteinase 13 (MMP-13), a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5), cleaved caspase-3, PARP p85, and acetylated nuclear factor (NF)-κB p65 in cartilage was examined by immunohistochemistry. Synovitis was also evaluated histologically. Primary mouse epiphyseal chondrocytes were treated with SRT1720 in the presence or absence of interleukin 1 beta (IL-1β), and gene expression changes were examined by real-time polymerase chain reaction (PCR). Results. The OARSI score was significantly lower in mice treated with SRT1720 than in control mice at eight and 12 weeks associated with the decreased size of osteophytes at four and eight weeks. The delayed OA progression in the mice treated with SRT1720 was also associated with increased SIRT1-positive chondrocytes and decreased MMP-13-, ADAMTS-5-, cleaved caspase-3-, PARP p85-, and acetylated NF-κB p65-positive chondrocytes and decreased synovitis at four and eight weeks. SRT1720 treatment partially rescued the decreases in collagen type II alpha 1 (COL2A1) and aggrecan caused by IL-1β, while also reducing the induction of MMP-13 by IL-1β in vitro. Conclusion. The intraperitoneal injection of SRT1720 attenuated experimental OA progression in mice, indicating that SRT1720 could be a new therapeutic approach for OA. Cite this article: K. Nishida, T. Matsushita, K. Takayama, T. Tanaka, N. Miyaji, K. Ibaraki, D. Araki, N. Kanzaki, T. Matsumoto, R. Kuroda. Intraperitoneal injection of the SIRT1 activator SRT1720 attenuates the progression of experimental osteoarthritis in mice. Bone Joint Res 2018;7:252–262. DOI: 10.1302/2046-3758.73.BJR-2017-0227.R1


Bone & Joint Research
Vol. 3, Issue 2 | Pages 32 - 37
1 Feb 2014
Singh A Goel SC Gupta KK Kumar M Arun GR Patil H Kumaraswamy V Jha S

Introduction. Osteoarthritis (OA) is a progressively debilitating disease that affects mostly cartilage, with associated changes in the bone. The increasing incidence of OA and an ageing population, coupled with insufficient therapeutic choices, has led to focus on the potential of stem cells as a novel strategy for cartilage repair. Methods. In this study, we used scaffold-free mesenchymal stem cells (MSCs) obtained from bone marrow in an experimental animal model of OA by direct intra-articular injection. MSCs were isolated from 2.8 kg white New Zealand rabbits. There were ten in the study group and ten in the control group. OA was induced by unilateral transection of the anterior cruciate ligament of the knee joint. At 12 weeks post-operatively, a single dose of 1 million cells suspended in 1 ml of medium was delivered to the injured knee by direct intra-articular injection. The control group received 1 ml of medium without cells. The knees were examined at 16 and 20 weeks following surgery. Repair was investigated radiologically, grossly and histologically using haematoxylin and eosin, Safranin-O and toluidine blue staining. Results. Radiological assessment confirmed development of OA changes after 12 weeks. Rabbits receiving MSCs showed a lower degree of cartilage degeneration, osteophyte formation, and subchondral sclerosis than the control group at 20 weeks post-operatively. The quality of cartilage was significantly better in the cell-treated group compared with the control group after 20 weeks. Conclusions. Bone marrow-derived MSCs could be promising cell sources for the treatment of OA. Neither stem cell culture nor scaffolds are absolutely necessary for a favourable outcome. Cite this article: Bone Joint Res 2014;3:32–7


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 28 - 28
1 Apr 2018
Rustenburg C Emanuel K Peeters M Lems W Vergroesen PP Smit T
Full Access

Intervertebral disc degeneration is a common cause of low-back pain, the musculoskeletal disorder with the largest impact world-wide. The complex disease is however not yet well understood, and no treatment is available. This is somewhat in contrast with osteoarthritis, a subject of more extensive research. Intervertebral disc degeneration may though be a type of osteoarthritis, as other vertebrates have a diarthrodial joint instead of an intervertebral disc. We describe the parallel in view of the anatomy, composition and degeneration of the intervertebral disc and articular joint. Not only different embryonic origin and anatomy suggest significant differences between the intervertebral disc and the synovial joint, but their biomechanical properties also partly differ, as articulation is one of the key properties of a synovial joint and does not occur in the intervertebral disc. However, both tissues provide flexibility and are able to endure compressive loads, and both cell behavior and extracellular matrix appear much the same, mainly existing of chondrocytes, proteoglycans and collagen type II, suggesting that the environment of the cell is more important to its behavior than embryonic origin. Moreover, great similarities are found in the inflammatory cytokines, which are mainly IL-1β and TNF-α, and matrix-degrading factors (i.e. MMPs and ADAMTSs) involved in the cascade of degeneration, resulting in overlapping clinical and radiological features such as loss of joint space, subchondral sclerosis, and the formation of osteophytes, causing pain and morning stiffness. Therefore, we state that disc degeneration can result in the osteoarthritic intervertebral disc. This point of view may enhance the synergy between both fields of research, and potentially provide new regenerative strategies for intervertebral disc degeneration


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 17 - 17
1 Apr 2018
Lian WS Wu RW Ko JY Wang FS
Full Access

Subchondral bone deterioration and osteophyte formation attributable to excessive mineralization are prominent features in the progression of end-stage knee osteoarthritis (OA). The cellular events underlying subchondral bone integrity diminishment remained elusive. This study was undertaken to characterize behavior and intracellular signaling of subchondral mesenchymal stem cells (SMSCs) and bone-marrow MSCs (BMMSCs) in OA knees isolated from patients with end-stage knee OA underwent total knee arthroplasty. The SMSCs isolated from subchondral bone explants expressed remarkable surface antigens CD73, CD105, CD90, CD166, CD44, CD29, instead of MHC II, CD45, and CD31. The cell cultures exhibited high proliferation capacity concomitant with low population doubling time compared to those of BMMSCs. Incubation in differentiation media, the SMSCs showed high osteogenic and chondrogenic lineage commitment and low adipogenic differentiation potential. They also exhibited high expression of embryonic stem cell marker OCT3/4, osteogenic factors Wnt3a, β-catenin and microRNA-29a (miR-29a) in conjunction with low expression of joint-deleterious factors HDAC4, TGF-β1, IL-1β, TNFα, and MMP3. Loss of miR-29a function lowered HDAC4 level, mineralized matrix accumulation and osteogenic marker expression of SMSCs. miR-29a reduced HDAC4 translation through targeting the 3”-untranslated region of HDAC4, which concomitantly sustained Wnt3a and β-catenin signaling. Collectively, high osteogenic lineage commitment existed in the SMSCs in OA knee microenvironment. miR-29a modulation of HDAC4 and Wnt3a signaling contributed to the increases in osteogenesis. This study shines a light no the biological role of MSCs in subchondral compartment in the end-stage OA development and highlights a new source of MSCs for joint tissue repair


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 272 - 272
1 Jul 2014
Elliott W Sawardeker P Kam C Ouellette A Latta L
Full Access

Summary. Increased lateral ulnotrochlear joint space due to improper sizing in radial head arthroplasty may result in medial collateral ligament laxity, leading to increased osteophytes and arthritis. Introduction. Radial head (RH) arthroplasty is a common response to comminuted RH fractures. Typical complications include improper sizing, leading to changes in joint kinematics. Evidence of these changes should be visible through fluoroscopic images of affected joints. The two examined changes in this study are the ulnar deviation from distal radial translation (DRT), and the widening of the lateral ulnotrochlear joint space (LUT). Methods. Eight fresh-frozen cadaver arms were used. Initial images were taken with the native RH intact. The Kocher approach exposed the radiocapitellar (RC) joint capsule, preserving all ligaments. The RH was excised and Integra Katalyst CoCr (Plainsboro, NJ) telescoping, bipolar, RH inserted. Images were taken with implant sizings: −2mm, 0mm, +2mm, and +4mm, (from native) using 1mm washers preventing implant bipolarity. AP fluoroscopic images of the elbow were taken at full extension. Joint spaces were measured using image analysis, normalised using known radio-opaque lengths. Four LUT measurements were made, two medially and two laterally, and normalised by measuring the RH implant diameter. Each set (medial and lateral) were averaged together and the resulting value used for all comparisons. Images of distal ulnar deviation at the wrist were taken with the wrist in supination, the hand rotated medially. Measurements were from the distal medial radial tip to the distal lateral ulnar tip. Images were normalised by placing a scalpel in the same plane as measurement. Results. DRT values were difference paired for each arm using the 0mm values as baselines. One-way ANOVA of the paired values resulted in significant DT with sizing increases (p<0.01). The quotient of DRT and sizing determined comparative impact with the LUT increase. LUT joint gap measurements were percentage paired, with natives as the baseline, and One-way ANOVA used. A significant increase in LUT spacing occurred with increased sizings (p<0.01). Discussion. Increased ulnar deviation can increase loading on the TFCC, leading to possible TFCC tear, increased articular cartilage wear from carpal misalignment, and eventual wrist instability and arthritis. The percentage of the radial lengthening is represented in DRT. Over-sizing results in small percentages of increased radial length at the wrist, therefore deviation at the elbow must take place, either through rotation of the ulna, or translation. Either of these can be seen through LUT measurements. Previous measurements of the LUT space were made by Frank (2009), with similar results. This was being used as a method of improper sizing detection using radiographs. The percentage difference of LUT space for corresponding sizing: there is an increase in LUT space for every sizing; maybe due to loosening of the soft tissue from arthroplasty. Increased LUT space indicates the medial translation of proximal ulna. This can result in Medial Collateral Ligament laxity, leading to increased osteophytes, and arthritis. Use and non-treatment, can create a chronic, painful, disorder


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 34 - 34
1 Apr 2018
Sun YC Lian WS Ko JY Wang FS
Full Access

Introduction. Osteoarthritis (OA) of the knee, a prevalently degenerative joint disorder provoked by articular cartilage loss, accounts for the leading cause of total knee arthroplasty. Autophagy is an indispensable intracellular event that maintains chondrocyte survival and metabolism. MicroRNAs are non-coding small RNAs participating in tissue morphogenesis, remodeling, and homeostasis. This study was undertaken to investigate the effect of microRNA-128 (miR-128) knockdown on the development of OA knees. Materials/Methods. Knee joints in rats were subjected to anterior cruciate ligament transection (ACLT) for inducing OA. Articular cartilage, synovium, and subchondral bone microarchitecture were assessed by OARSI scoring system, histomorphometry, and μCT imaging. Chondrocyte autophagy in terms of the expression of autophagic markers Atg4, Atg12, microtubule-associated protein 1 light chain 3 (LC3), and autophagosome formation was verified. Expression of microRNA, mRNA and signaling transduction were quantified with in situ hybridization, RT- quantitative PCR, and immunoblotting. Results. Chondrocytes in the affected knees showed weak expression of autophagic markers Atg4, Atg12, and LC3-II abundances in conjunction with significant increases in OARSI scores and a 2.5-fold elevation in miR-128 expression. The gain of miR-128 signaling in intact joints through intra-articular injection of miR-128 precursor resulted in 1.8–2.1-fold elevations in serum cartilage breakdown products CTX-II and COMP concentrations. miR-128 overexpression caused the joints to show evident chondrocyte apoptosis as evidenced by TUNEL staining concomitant with severe cartilage damage. Of note, antisense oligonucleotide knockdown of miR-128 (miR-128-AS) enabled the affected knee joints to show minor responses to the ACLT escalation of autophagy dysfunction in chondrocytes, cartilage breakdown histopathology, and OARSI scores. Administration with miR-128-AS also attenuated the ACLT-induced synovial membrane thickening, hyper-angiogenesis, and hypercellularity, which subsequently alleviated osteophyte accumulation, subchondral plate destruction, and trabecular microstructure loss. Conclusion. miR-128 signaling impairs chondrocyte autophagy, which ramps up chondrocyte apoptosis and OA knee development. This study highlights an emerging miR-128 knockdown strategy that sustains cartilage microarchitecture integrity and thereby delays OA knee pathogenesis