Advertisement for orthosearch.org.uk
Results 1 - 20 of 6458
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 107 - 107
4 Apr 2023
Li C Ding Y Li S Lin S Wen Z Ouyang Z
Full Access

Osteoarthritis, the most common degenerative joint disease, significantly impairs life quality and labor capability of patients. Synovial inflammation, initiated by HMGB1 (High mobility group box 1)-induced activation of macrophage, precedes other pathological changes. As an upstream regulator of NF-κB (nuclear factor-kappa B) and MAPK (mitogen-activated protein kinase) signaling pathway, TAK1 (TGF-β activated kinase 1) participates in macrophage activation, while its function in osteoarthritis remains unveiled. This study aims to investigate the role of TAK1 in the pathogenesis of osteoarthritis via both in vitro and in vivo approaches. We performed immunohistochemical staining for TAK1 in synovial tissue, both in osteoarthritis patients and healthy control. Besides, immunofluorescence staining for F4/80 as macrophage marker and TAK1 were conducted as well. TAK1 expression was examined in RAW264.7 macrophages stimulated by HMGB1 via qPCR (Quantitative polymerase chain reaction) and Western blotting, and the effect of TAK1 inhibitor (5z-7 oxozeaenol) on TNF-α production was evaluated by immunofluorescence staining. Further, we explored the influence of intra-articular shRNA (short hairpin RNA) targeting TAK1 on collagenase-induced osteoarthritis in mice. Immunohistochemical staining confirmed significant elevation of TAK1 in osteoarthritic synovium, and immunofluorescence staining suggested macrophages as predominant residence of TAK1. In HMGB1-stimulated RAW264.7 macrophages, TAK1 expression was up-regulated both in mRNA and protein level. Besides, TAK1 inhibitor significantly impairs the production of TNF-α by macrophages upon HMGB1 stimulation. Moreover, intra-articular injection of lentivirus loaded with shRNA targeting TAK1 (sh-TAK1) reduced peri-articular osteophyte formation in collagenase-induced osteoarthritis in mice. TAK1 exerts a potent role in the pathogenesis of osteoarthritis by mediating the activation of macrophages


The Bone & Joint Journal
Vol. 96-B, Issue 10 | Pages 1298 - 1306
1 Oct 2014
Daniel J Pradhan C Ziaee H Pynsent PB McMinn DJW

We report a 12- to 15-year implant survival assessment of a prospective single-surgeon series of Birmingham Hip Resurfacings (BHRs). The earliest 1000 consecutive BHRs including 288 women (335 hips) and 598 men (665 hips) of all ages and diagnoses with no exclusions were prospectively followed-up with postal questionnaires, of whom the first 402 BHRs (350 patients) also had clinical and radiological review.

Mean follow-up was 13.7 years (12.3 to 15.3). In total, 59 patients (68 hips) died 0.7 to 12.6 years following surgery from unrelated causes. There were 38 revisions, 0.1 to 13.9 years (median 8.7) following operation, including 17 femoral failures (1.7%) and seven each of infections, soft-tissue reactions and other causes. With revision for any reason as the end-point Kaplan–Meier survival analysis showed 97.4% (95% confidence interval (CI) 96.9 to 97.9) and 95.8% (95% CI 95.1 to 96.5) survival at ten and 15 years, respectively. Radiological assessment showed 11 (3.5%) femoral and 13 (4.1%) acetabular radiolucencies which were not deemed failures and one radiological femoral failure (0.3%).

Our study shows that the performance of the BHR continues to be good at 12- to 15-year follow-up. Men have better implant survival (98.0%; 95% CI 97.4 to 98.6) at 15 years than women (91.5%; 95% CI 89.8 to 93.2), and women < 60 years (90.5%; 95% CI 88.3 to 92.7) fare worse than others. Hip dysplasia and osteonecrosis are risk factors for failure. Patients under 50 years with osteoarthritis fare best (99.4%; 95% CI 98.8 to 100 survival at 15 years), with no failures in men in this group.

Cite this article: Bone Joint J 2014;96-B:1298–1306.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 143 - 143
2 Jan 2024
Pattappa G
Full Access

The biological understanding for the disease progression osteoarthritis (OA) has uncovered specific biomarkers from either synovial fluid, articular chondrocytes or synoviocytes that can be used to diagnose the disease. Examples of these biomarkers include interleukin-1β (IL-1β) or collagen II fragments (1, 2). In parallel, isolation of chondrocytes or bone marrow derived mesenchymal stromal cells (MSCs) has yielded cell-based strategies that have shown long- term beneficial effects in a specific cohort of patients, specifically in traumatic cartilage lesions (2). This latter finding shows that patient stratification of OA is an important tool to both match patients for a specific treatment and to develop novel therapies, especially disease modifying drugs. In order to create disease stage specific therapies, the use of next generation analysis tools such as RNAseq and metabolomics, has the potential to decipher specific cellular and molecular endotypes. Alongside greater understanding of the clinical phenotype (e.g. imaging, pain, co- morbidities), therapies can be designed to alleviate the symptoms of OA at specific points of the disease in patients. This talk will outline the current biological understanding of OA and discuss how patient stratification could assist in the design of innovative therapies for the disease. Acknowledgements: This presentation was supported by the COST action, CA21110 – Building an open European Network on Osteoarthritis Research (NetwOArk)


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1216 - 1222
1 Nov 2024
Castagno S Gompels B Strangmark E Robertson-Waters E Birch M van der Schaar M McCaskie AW

Aims. Machine learning (ML), a branch of artificial intelligence that uses algorithms to learn from data and make predictions, offers a pathway towards more personalized and tailored surgical treatments. This approach is particularly relevant to prevalent joint diseases such as osteoarthritis (OA). In contrast to end-stage disease, where joint arthroplasty provides excellent results, early stages of OA currently lack effective therapies to halt or reverse progression. Accurate prediction of OA progression is crucial if timely interventions are to be developed, to enhance patient care and optimize the design of clinical trials. Methods. A systematic review was conducted in accordance with PRISMA guidelines. We searched MEDLINE and Embase on 5 May 2024 for studies utilizing ML to predict OA progression. Titles and abstracts were independently screened, followed by full-text reviews for studies that met the eligibility criteria. Key information was extracted and synthesized for analysis, including types of data (such as clinical, radiological, or biochemical), definitions of OA progression, ML algorithms, validation methods, and outcome measures. Results. Out of 1,160 studies initially identified, 39 were included. Most studies (85%) were published between 2020 and 2024, with 82% using publicly available datasets, primarily the Osteoarthritis Initiative. ML methods were predominantly supervised, with significant variability in the definitions of OA progression: most studies focused on structural changes (59%), while fewer addressed pain progression or both. Deep learning was used in 44% of studies, while automated ML was used in 5%. There was a lack of standardization in evaluation metrics and limited external validation. Interpretability was explored in 54% of studies, primarily using SHapley Additive exPlanations. Conclusion. Our systematic review demonstrates the feasibility of ML models in predicting OA progression, but also uncovers critical limitations that currently restrict their clinical applicability. Future priorities should include diversifying data sources, standardizing outcome measures, enforcing rigorous validation, and integrating more sophisticated algorithms. This paradigm shift from predictive modelling to actionable clinical tools has the potential to transform patient care and disease management in orthopaedic practice. Cite this article: Bone Joint J 2024;106-B(11):1216–1222


Bone & Joint Research
Vol. 12, Issue 7 | Pages 397 - 411
3 Jul 2023
Ruan X Gu J Chen M Zhao F Aili M Zhang D

Osteoarthritis (OA) is a chronic degenerative joint disease characterized by progressive cartilage degradation, synovial membrane inflammation, osteophyte formation, and subchondral bone sclerosis. Pathological changes in cartilage and subchondral bone are the main processes in OA. In recent decades, many studies have demonstrated that activin-like kinase 3 (ALK3), a bone morphogenetic protein receptor, is essential for cartilage formation, osteogenesis, and postnatal skeletal development. Although the role of bone morphogenetic protein (BMP) signalling in articular cartilage and bone has been extensively studied, many new discoveries have been made in recent years around ALK3 targets in articular cartilage, subchondral bone, and the interaction between the two, broadening the original knowledge of the relationship between ALK3 and OA. In this review, we focus on the roles of ALK3 in OA, including cartilage and subchondral bone and related cells. It may be helpful to seek more efficient drugs or treatments for OA based on ALK3 signalling in future


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 87 - 87
19 Aug 2024
Logishetty K Verhaegen J Hutt J Witt J
Full Access

There is some evidence to suggest that outcomes of THA in patients with minimal radiographic osteoarthritis may not be associated with predictable outcomes. The aim of this study was to:. Assess the outcome of patients with hip pain who underwent THA with no or minimal radiographic signs of osteoarthritis,. Identify patient comorbidities and multiplanar imaging findings which are predictive of outcome,. Compare the outcome in these patients to the expected outcome of THA in hip OA. A retrospective review of 107 hips (102 patients, 90F:12M, median age 40.6, IQR 35.1–45.8 years, range 18–73) were included for analysis. Plain radiographs were evaluated using the Tonnis grading scale of hip OA. Outcome measures were all-cause revision; iHOT12; EQ-5D; Oxford Hip Score; UCLA Activity Scale; and whether THA had resulted in the patient's hip pain and function being Better/Same/Worse. The median Oxford Hip Score was 33.3 (IQR 13.9, range 13–48), and 36/107 (33.6%) hips achieved an OHS≥42. There was no association between primary hip diagnosis and post-operative PROMs. A total of 91 of the 102 patients (89.2%, 93 hips) reported that their hip pain and function was Better than prior to THA and would have the surgery again, 7 patients (6.8%, 10 hips) felt the Same, and 4 patients (3.9%, 4 hips) felt Worse and would not have the surgery again. Younger patients undergoing total hip arthroplasty with no or minimal radiographic osteoarthritis had lower postoperative Oxford Hip Scores than the general population; though most felt symptomatically better and knowing what they know now, would have surgery again. Those with chronic pain syndrome or hypermobility were likely to benefit less. Those with subchondral cysts or joint space narrowing on CT imaging were more likely to achieve higher functional scores and satisfaction


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 88 - 88
19 Aug 2024
Kendall J Forlenza EM DeBenedetti A Levine BR Valle CJD Sporer S
Full Access

An intra-articular steroid injection can be a useful diagnostic tool in patients presenting with debilitating hip pain and radiographically mild osteoarthritis. The clinical and patient reported outcomes associated with patients who have radiographically mild osteoarthritis and undergo total hip arthroplasty (THA) remain poorly studied. Patients undergoing primary, elective THA at a single academic medical center by a fellowship-trained adult reconstruction surgeon between 2017–2023 were identified. Only those patients who underwent an intra-articular corticosteroid injection into the operative hip within one year of surgery were included. Patients were divided into two cohorts based on the severity of their osteoarthritis as determined by preoperative radiographs; those with Kellgren-Lawrence (KL) grade I-II arthritis were classified as “mild” whereas those with KL grade III-IV arthritis were classified as “severe”. Clinical and patient reported outcomes at final follow-up were compared between cohorts. The final cohorts included 25 and 224 patients with radiographically mild and severe osteoarthritis, respectively. There were no baseline differences in age, gender or time between intra-articular corticosteroid injection and THA between cohorts. There were no significant differences in the preoperative or postoperative HOOS JR values between patients with mild or severe arthritis (all p>0.05). There were no significant differences in the change in HOOS JR scores from the preoperative to final follow-up timepoints between cohorts. There were no significant differences in the percentage of patients who achieved the minimal clinically important difference (MCID) on the HOOS JR questionnaire between cohorts. Patients with radiographically mild osteoarthritis who feel relief of their hip pain following an intra-articular corticosteroid injection report similar preoperative debility and demonstrate similar improvements in patient reported outcome scores following THA compared to patients with radiographically severe osteoarthritis


Bone & Joint Research
Vol. 12, Issue 12 | Pages 734 - 746
12 Dec 2023
Chen M Hu C Hsu Y Lin Y Chen K Ueng SWN Chang Y

Aims. Therapeutic agents that prevent chondrocyte loss, extracellular matrix (ECM) degradation, and osteoarthritis (OA) progression are required. The expression level of epidermal growth factor (EGF)-like repeats and discoidin I-like domains-containing protein 3 (EDIL3) in damaged human cartilage is significantly higher than in undamaged cartilage. However, the effect of EDIL3 on cartilage is still unknown. Methods. We used human cartilage plugs (ex vivo) and mice with spontaneous OA (in vivo) to explore whether EDIL3 has a chondroprotective effect by altering OA-related indicators. Results. EDIL3 protein prevented chondrocyte clustering and maintained chondrocyte number and SOX9 expression in the human cartilage plug. Administration of EDIL3 protein prevented OA progression in STR/ort mice by maintaining the number of chondrocytes in the hyaline cartilage and the number of matrix-producing chondrocytes (MPCs). It reduced the degradation of aggrecan, the expression of matrix metalloproteinase (MMP)-13, the Osteoarthritis Research Society International (OARSI) score, and bone remodelling. It increased the porosity of the subchondral bone plate. Administration of an EDIL3 antibody increased the number of matrix-non-producing chondrocytes (MNCs) in cartilage and exacerbated the serum concentrations of OA-related pro-inflammatory cytokines, including monocyte chemotactic protein-3 (MCP-3), RANTES, interleukin (IL)-17A, IL-22, and GROα. Administration of β1 and β3 integrin agonists (CD98 protein) increased the expression of SOX9 in OA mice. Hence, EDIL3 might activate β1 and β3 integrins for chondroprotection. EDIL3 may also protect cartilage by attenuating the expression of IL-1β-enhanced phosphokinase proteins in chondrocytes, especially glycogen synthase kinase 3 alpha/beta (GSK-3α/β) and phospholipase C gamma 1 (PLC-γ1). Conclusion. EDIL3 has a role in maintaining the cartilage ECM and inhibiting the development of OA, making it a potential therapeutic drug for OA. Cite this article: Bone Joint Res 2023;12(12):734–746


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 147 - 147
11 Apr 2023
Baker M Clinton M Lee S Castanheira C Peffers M Taylor S
Full Access

Osteoarthritis (OA) of the equine distal interphalangeal joint (DIPJ) is a common cause of lameness. MicroRNAs (miRNAs) from biofluids such as plasma and synovial fluid make promising biomarker and therapeutic candidates. The objectives of this study are (1) Identify differentially expressed (DE) miRNAs in mild and severe equine DIPJ OA synovial fluid samples and (2) Determine the effects of DE miRNAs on equine chondrocytes in monolayer culture. Synovial fluid samples from five horses with mild and twelve horses with severe DIPJ OA were submitted for RNA-sequencing; OA diagnosis was made from MRI T2 mapping, macroscopic and histological evaluation. Transfection of equine chondrocytes (n=3) was performed using the Lipofectamine® RNAiMAX system with a negative control and a miR-92a mimic and inhibitor. qPCR was used to quantify target mRNA genes. RNA-seq showed two miRNAs (miR-16 and miR-92a) were significantly DE (p<0.05). Ingenuity Pathway Analysis (IPA) identified important downstream targets of miR-92a involved in the pathogenesis of osteoarthritis and so this miRNA was used to transfect equine chondrocytes from three donor horses diagnosed with OA. Transfection was successfully demonstrated by a 1000-20000 fold increase in miR-92a expression in the equine chondrocytes. There was a significant (p<0.05) increase in COMP, COL3A1 and Sox9 in the miR-92a mimic treatment and there was no difference in ADAMTS-5 expression between the miR-92 mimic and inhibitor treatment. RNA-seq demonstrated miR-92a was downregulated in severe OA synovial fluid samples which has not previously been reported in horses, however miR-92a is known to play a role in the pathogenesis of OA in other species. Over expression of miR-92a in equine chondrocytes led to significantly increased COMP and Sox9 expression, consistent with a chondrogenic phenotype which has been identified in human and murine chondrocytes


In osteoarthritis, chondrocytes acquire a hypertrophic phenotype that contributes to matrix degradation. Inflammation is proposed as trigger for the shift to a hypertrophic phenotype. Using in vitro culture of human chondrocytes and cartilage explants we could not find evidence for a role of inflammatory signalling activation. We found, however, that tissue repair macrophages may contribute to the onset of hypertrophy (doi: 10.1177/19476035211021907) Intra-articularly injected triamcinolone acetonide to inhibit inflammation in a murine model of collagenase-induced osteoarthritis, increased synovial macrophage numbers and osteophytosis, confirming the role of macrophages in chondrocyte hypertrophy occurring in osteophyte formation (doi: 10.1111/bph.15780). In search of targets to inhibit chondrocyte hypertrophy, we combined existing microarray data of different cartilage layers of murine growth plate and murine articular cartilage after induction of collagenase-induced osteoarthritis. We identified common differentially expressed genes and selected those known to be associated to inflammation. This revealed EPHA2, a tyrosine kinase receptor, as a new target. Using in silico, in vitro and in vivo models we demonstrated that inhibition of EPHA2 might be a promising treatment for osteoarthritis. Recently, single cell RNA-seq. has revealed detailed information about different populations of chondrocytes in articular cartilage during osteoarthritis. We re-analysed a published scRNA-seq data set of healthy and osteoarthritic cartilage to obtain the differentially expressed genes in the population of hypertrophic chondrocytes compared to the other chondrocytes, applied pathway analyses and then used drug databases to search for upstream inhibitors of these pathways. This drug repurposing approach led to the selection of 6 drugs that were screened and tested using several in vitro models with human chondrocytes and cartilage explants. In this lecture I will present this sequence of studies to highlight different approaches and models that can be used in the quest for a disease modifying drug for osteoarthritis


Bone & Joint Research
Vol. 12, Issue 9 | Pages 536 - 545
8 Sep 2023
Luo P Yuan Q Yang M Wan X Xu P

Osteoarthritis (OA) is mainly caused by ageing, strain, trauma, and congenital joint abnormalities, resulting in articular cartilage degeneration. During the pathogenesis of OA, the changes in subchondral bone (SB) are not only secondary manifestations of OA, but also an active part of the disease, and are closely associated with the severity of OA. In different stages of OA, there were microstructural changes in SB. Osteocytes, osteoblasts, and osteoclasts in SB are important in the pathogenesis of OA. The signal transduction mechanism in SB is necessary to maintain the balance of a stable phenotype, extracellular matrix (ECM) synthesis, and bone remodelling between articular cartilage and SB. An imbalance in signal transduction can lead to reduced cartilage quality and SB thickening, which leads to the progression of OA. By understanding changes in SB in OA, researchers are exploring drugs that can regulate these changes, which will help to provide new ideas for the treatment of OA. Cite this article: Bone Joint Res 2023;12(9):536–545


Bone & Joint Research
Vol. 12, Issue 1 | Pages 33 - 45
16 Jan 2023
Li B Ding T Chen H Li C Chen B Xu X Huang P Hu F Guo L

Aims. Circular RNA (circRNA) is involved in the regulation of articular cartilage degeneration induced by inflammatory factors or oxidative stress. In a previous study, we found that the expression of circStrn3 was significantly reduced in chondrocytes of osteoarthritis (OA) patients and OA mice. Therefore, the aim of this paper was to explore the role and mechanism of circStrn3 in osteoarthritis. Methods. Minus RNA sequencing, fluorescence in situ hybridization, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the expression of circStrn3 in human and mouse OA cartilage tissues and chondrocytes. Chondrocytes were then stimulated to secrete exosomal miR-9-5p by cyclic tensile strain. Intra-articular injection of exosomal miR-9-5p into the model induced by destabilized medial meniscus (DMM) surgery was conducted to alleviate OA progression. Results. Tensile strain could decrease the expression of circStrn3 in chondrocytes. CircStrn3 expression was significantly decreased in human and mouse OA cartilage tissues and chondrocytes. CircStrn3 could inhibit matrix metabolism of chondrocytes through competitively ‘sponging’ miRNA-9-5p targeting Kruppel-like factor 5 (KLF5), indicating that the decrease in circStrn3 might be a protective factor in mechanical instability-induced OA. The tensile strain stimulated chondrocytes to secrete exosomal miR-9-5p. Exosomes with high miR-9-5p expression from chondrocytes could inhibit osteoblast differentiation by targeting KLF5. Intra-articular injection of exosomal miR-9-5p alleviated the progression of OA induced by destabilized medial meniscus surgery in mice. Conclusion. Taken together, these results demonstrate that reduction of circStrn3 causes an increase in miR-9-5p, which acts as a protective factor in mechanical instability-induced OA, and provides a novel mechanism of communication among joint components and a potential application for the treatment of OA. Cite this article: Bone Joint Res 2023;12(1):33–45


The Bone & Joint Journal
Vol. 105-B, Issue 9 | Pages 971 - 976
1 Sep 2023
Bourget-Murray J Piroozfar S Smith C Ellison J Bansal R Sharma R Evaniew N Johnson A Powell JN

Aims. This study aims to determine difference in annual rate of early-onset (≤ 90 days) deep surgical site infection (SSI) following primary total knee arthroplasty (TKA) for osteoarthritis, and to identify risk factors that may be associated with infection. Methods. This is a retrospective population-based cohort study using prospectively collected patient-level data between 1 January 2013 and 1 March 2020. The diagnosis of deep SSI was defined as per the Centers for Disease Control/National Healthcare Safety Network criteria. The Mann-Kendall Trend test was used to detect monotonic trends in annual rates of early-onset deep SSI over time. Multiple logistic regression was used to analyze the effect of different patient, surgical, and healthcare setting factors on the risk of developing a deep SSI within 90 days from surgery for patients with complete data. We also report 90-day mortality. Results. A total of 39,038 patients underwent primary TKA for osteoarthritis during the study period. Of these, 275 patients developed a deep SSI within 90 days of surgery, representing a cumulative incidence of 0.7%. The annual infection rate did not significantly decrease over the seven-year study period (p = 0.162). Overall, 13,885 (35.5%) cases were excluded from the risk analysis due to missing data. Risk factors associated with early-onset deep SSI included male sex, American Society of Anesthesiologists grade ≥ 3, blood transfusion, acute length of stay, and surgeon volume < 30 TKAs/year. Early-onset deep SSI was not associated with increased 90-day mortality. Conclusion. This study establishes a reliable baseline infection rate for early-onset deep SSI after TKA for osteoarthritis using robust Infection Prevention and Control surveillance data, and identifies several potentially modifiable risk factors. Cite this article: Bone Joint J 2023;105-B(9):971–976


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 65 - 65
2 Jan 2024
Maleitzke T
Full Access

Osteoarthritis (OA) is the most common joint disease, affecting approximately 16% of the adult population worldwide. The chronic inflammation in the joint leads to the breakdown of cartilage, which leads to permanent pain and limitations in everyday life at an early stage of the disease. To date, there is no therapy that can interrupt the inflammatory state or reverse cartilage damage. The PROTO consortium (funded by the EU Horizon Europe program, Grant 101095635) aims to prevent the development of OA by correcting a pathological biomechanical pattern by a digital training intervention and to treat early stage OA with an innovative allogeneic cell therapy


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 101 - 101
1 Dec 2022
Bohm E Carsen S Pauyo T Chen X Dudevich A Levinson W
Full Access

Knee arthroscopy with debridement is commonly performed to treat osteoarthritis and degenerative meniscal tears in older adults; however robust evidence does not support sustained benefit from this procedure. Current Canadian guidelines advise against its use as first line treatment. Characterizing the use of this low value procedure will facilitate efforts to maximize quality of care, minimize harm and decrease healthcare costs. We sought to understand:. 1). the volume and variations of arthroscopic knee debridement across Canada. 2). The costs associated with potentially unnecessary arthroscopy. 3). The characteristics of surgeons performing knee arthroscopy in older adults. Data were derived from National Ambulatory Care Reporting System (NACRS), the Discharge Abstract Database (DAD) and the National Physician Database for years 2011-12 to 2019-20. The study included all elective knee arthroscopies (CCI codes 1.VG.80.DA,1.VG.80.FY and 1.VG.87.DA) performed in day surgery and acute care settings in 9 provinces and 3 territories of Canada. Quebec was not included in the analysis due to different reporting methods. We set a threshold of 60 years of age at which it would be highly unlikely that a patient would undergo arthroscopy to treat anything other than osteoarthritis or degenerative meniscal tear. Trends at national and provincial levels were analyzed using regression. Costs were estimated separately using the 2020 case mix groups (CMG) and comprehensive ambulatory care classification system (CACS) methodologies. Surgeons were classified by decade of graduation from medical school (1989 and prior, 1990-99, 2000-09 and 2010+) and categorized based on the proportion of their patient population who were above (“high proportion inappropriate”) or below (“low proportion inappropriate”) the overall national proportion of ≥ 60 years of age. The number of knee arthroscopies decreased by 37% (42,785 in 2011-12 to 27,034 in 2019-20) overall and 39% (11,103 in 2011-12 to 6,772 in 2019-20) in those 60 years and older (p 25% of patients 60 years and older. Fifty four percent of surgeons who graduated prior to 1989 were considered high proportion inappropriate, whereas only 30.1% of surgeons who graduated in 2010 or later were considered high proportion inappropriate (p < 0 .0001). Knee arthroscopy continues to be a common procedure in patients over 60 despite strong evidence for lack of benefit. Lower rates in this population in some provinces are encouraging for potential opportunity for improvement. Efforts at practice change should be targeted at surgeons in practice the longest. Canada spends over $12,000,000 per year on this procedure, decreasing its use could allow these resources to be directed to other areas of orthopaedics that provide higher value care


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 14 - 14
1 Dec 2022
Werdyani S Liu M Furey A Gao Z Rahman P Zhai G
Full Access

Osteoarthritis (OA) is the most common form of arthritis and one of the ten most disabling diseases in developed countries. Total joint replacement (TJR) is considered by far as the most effective treatment for end-stage OA patients. The majority of patients achieve symptomatic improvement following TJR. However, about 22% of the TJR patients either do not improve or deteriorate after surgery. Several potential non-genetic predictors for the TJR outcome have been investigated. However, the results were either inconclusive or had very limited predictive power. The aim of this study was to identify genetic variants for the poor outcome of TJR in primary OA patients by a genome-wide association study (GWAS). Study participants were total knee or hip replacement patients due to primary OA who were recruited to the Newfoundland Osteoarthritis Study (NFOAS) before 2017. The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) was used to assess pain and functional impairment pre- and 3.99±1.38 years post-surgery. Two non-responder classification criteria were used in our study. One was defined by an absolute WOMAC change score. Participants with a change score less than 7/20 points for pain were considered as pain non-responders; and those with less than 22/68 points for function were classified as function non-responders. The second one was the Outcome Measures in Arthritis Clinical Trials and the Osteoarthritis Research Society International (OMERACT-OARSI) criteria. Blood DNA samples were genotyped using the Illumina GWAS microarrays genotyping platform. The quality control (QC) filtering was performed on GWAS data before the association of the genetic variants with non-responders to TJR was tested using the GenABEL package in R with adjustment for the relatedness of the study population and using the commonly accepted GWAS significance threshold p < 5*10. −8. to control multiple testing. In total, 316 knee and 122 hip OA patients (mean age 65.45±7.62 years, and 58% females) passed the QC check. These study participants included 368 responders and 56 non-responders to pain, and 364 responders and 68 non-responders to function based on the absolute WOMAC point score change classification. While 377 responders and 56 non-responders to pain, and 366 responders and 71 non-responders to function were identified by the OMERACT-OARSI classification criteria. Interestingly, the same results were obtained by both classification methods, and we found that the G allele of rs4797006 was significantly associated with pain non-responders with odds ratio (OR) of 5.12 (p<7.27×10. -10. ). This SNP is in intron one of the melanocortin receptor 5 (MC5R) gene on chr18. This gene plays central roles in immune response, pain sensitivity, and negative regulation of inflammatory response to antigenic stimulus. The A allele of rs200752023 was associated with function non-responders with OR of 4.41 (p<3.29×10. -8. ). The SNP is located in intron three of the RNA Binding Fox-1 Homolog 3 (RBFOX3) gene on chr17 which has been associated with numerous neurological disorders. Our data suggested that two chromosomal regions are associated with TJR poor outcomes and could be the novel targets for developing strategies to improve the outcome of the TJR


Bone & Joint Research
Vol. 13, Issue 4 | Pages 137 - 148
1 Apr 2024
Lu Y Ho T Huang C Yeh S Chen S Tsao Y

Aims. Pigment epithelium-derived factor (PEDF) is known to induce several types of tissue regeneration by activating tissue-specific stem cells. Here, we investigated the therapeutic potential of PEDF 29-mer peptide in the damaged articular cartilage (AC) in rat osteoarthritis (OA). Methods. Mesenchymal stem/stromal cells (MSCs) were isolated from rat bone marrow (BM) and used to evaluate the impact of 29-mer on chondrogenic differentiation of BM-MSCs in culture. Knee OA was induced in rats by a single intra-articular injection of monosodium iodoacetate (MIA) in the right knees (set to day 0). The 29-mer dissolved in 5% hyaluronic acid (HA) was intra-articularly injected into right knees at day 8 and 12 after MIA injection. Subsequently, the therapeutic effect of the 29-mer/HA on OA was evaluated by the Osteoarthritis Research Society International (OARSI) histopathological scoring system and changes in hind paw weight distribution, respectively. The regeneration of chondrocytes in damaged AC was detected by dual-immunostaining of 5-bromo-2'-deoxyuridine (BrdU) and chondrogenic markers. Results. The 29-mer promoted expansion and chondrogenic differentiation of BM-MSCs cultured in different defined media. MIA injection caused chondrocyte death throughout the AC, with cartilage degeneration thereafter. The 29-mer/HA treatment induced extensive chondrocyte regeneration in the damaged AC and suppressed MIA-induced synovitis, accompanied by the recovery of cartilage matrix. Pharmacological inhibitors of PEDF receptor (PEDFR) and signal transducer and activator of transcription 3 (STAT3) signalling substantially blocked the chondrogenic promoting activity of 29-mer on the cultured BM-MSCs and injured AC. Conclusion. The 29-mer/HA formulation effectively induces chondrocyte regeneration and formation of cartilage matrix in the damaged AC. Cite this article: Bone Joint Res 2024;13(4):137–148


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 3 - 3
2 Jan 2024
Sohn R Assar T Braun S Brenneis M Kaufhold I Zaucke F Pongratz G Jenei-Lanzl Z
Full Access

Osteoarthritis (OA) is the most common degenerative joint disorder. Its multifactorial etiology includes age, sex, joint overloading, genetic or nervous influences. In particular, the autonomic nervous system is increasingly gaining in importance. Its two branches, the sympathetic (SNS) and parasympathetic nervous system, are well-balanced under healthy conditions. OA patients seem to be prone to an autonomic imbalance and therefore, we analyzed their autonomic status. More than 200 participants including patients with early and late stage knee OA (before and 1 year after knee replacement surgery) and healthy probands (age-matched) were analyzed. Heart rate variability was measured via electrocardiogram to assess long-term sympathetic (low-frequency=LF) and parasympathetic (high-frequency=HF, pRR50) activities or general variability (RMSSD, SDRR). Serum cortisol concentrations were measured by ELISA. Perceived chronic stress (PSQ) was assessed via questionnaire. Multivariant regression was performed for data analysis. LF/HF value of early OA was slightly increased compared to healthy controls but significantly higher compared to late OA patients before (p>0.05) and after TKR (p>0.01). HF in late OA patients before TKR was significantly decreased compared to patients after TKR (p>0.001) or healthy controls (p>0.05). Healthy probands exhibited the highest SDRR values, early OA patients had slightly lower levels and late OA patients before TKR displayed significantly reduced SDRR (p>0.001). The same differences were observed in pRR50 and RMSSD. Serum cortisol concentrations and PSQ scores increased in late OA patients before TKR. At the time point of TKR, women with beta blocker medication had significantly higher age (71 ± 9 years) than those without (63 ± 12 years)(p>0.01). An autonomic dysfunction with sympathetic dominance occurs in OA patients. The fact that beta blocker medication in women delayed the need of TKR indicates that SNS inhibition might counteract OA. Future therapeutic interventions for OA should consider a systemic approach with special regard on the ANS


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 66 - 66
17 Apr 2023
Sharp V Scott C Hing C Masieri F
Full Access

Establishing disease biomarkers has been a long-sought after goal to improve Osteoarthritis (OA) diagnosis, prognosis, clinical and pharmaceutical interventions. Given the role of the synovium in contributing to OA, a meta-analysis was performed to determine significant synovial biomarkers in human OA tissue, compared to non-OA patients. Outcomes will direct future research on marker panels for OA disease modelling in vitro/in vivo, aiding clinical research into OA disease targets. A PRISMA compliant search of databases was performed to identify potential biomarker studies analysing human, OA, synovial samples compared to non-OA/healthy participants. The Risk of Bias In Non-Randomised Studies of Interventions (ROBINS-I) tool assessed methodological quality, with outcome analysed by Grading of Recommendations Assessment, Development and Evaluation (GRADE). Meta-analyses were conducted for individual biomarkers using fixed or random effect models, as appropriate. Where three or more studies included a specific biomarker, Forest Plot comparisons were generated. 3230 studies were screened, resulting in 34 studies encompassing 25 potential biomarkers (1581 OA patients and 695 controls). Significant outcomes were identified for thirteen comparisons. Eleven favoured OA (IL-6, IL-10, IL-13, IP-10, IL-8, CCL4, CCL5, PIICP, TIMP1, Leptin and VEGF), two favoured non-OA controls (BMP-2 and HA). Notably, PIICP showed the largest effect (SMD 6.11 [3.50, 8.72], p <0.00001, I. 2. 99%), and TIMP1 resulted critically important (0.95 [0.65, 1.25], p <0.00001, I. 2. 82%). Leptin and CCL4 showed lower effects (SMD 0.81 [0.33, 1.28], p =0.0009; 0.59 [0.32, 0.86], p <0.0001, respectively). Thirteen significant synovial biomarkers showed links with OA bioprocesses including collagen turnover, inflammatory mediators and ECM components. Limitations arose due to bias risk from incomplete or missing data, publication bias of inconclusive results, and confounding factors from patient criteria. These findings suggest markers of potential clinical viability for OA diagnosis and prognosis that could be correlated with specific disease stages


Bone & Joint Research
Vol. 11, Issue 8 | Pages 518 - 527
17 Aug 2022
Hu W Lin J Wei J Yang Y Fu K Zhu T Zhu H Zheng X

Aims. To evaluate inducing osteoarthritis (OA) by surgical destabilization of the medial meniscus (DMM) in mice with and without a stereomicroscope. Methods. Based on sample size calculation, 70 male C57BL/6 mice were randomly assigned to three surgery groups: DMM aided by a stereomicroscope; DMM by naked eye; or sham surgery. The group information was blinded to researchers. Mice underwent static weightbearing, von Frey test, and gait analysis at two-week intervals from eight to 16 weeks after surgery. Histological grade of OA was determined with the Osteoarthritis Research Society International (OARSI) scoring system. Results. Surgical DMM with or without stereomicroscope led to decrease in the mean of weightbearing percentages (-20.64% vs -21.44%, p = 0.792) and paw withdrawal response thresholds (-21.35% vs -24.65%, p = 0.327) of the hind limbs. However, the coefficient of variation (CV) of weight-bearing percentages and paw withdrawal response thresholds in naked-eye group were significantly greater than that in the microscope group (19.82% vs 6.94%, p < 0.001; 21.85% vs 9.86%, p < 0.001). The gait analysis showed a similar pattern. Cartilage degeneration was observed in both DMM-surgery groups, evidenced by increased OARSI scores (summed score: 11.23 vs 11.43, p = 0.842), but the microscope group showed less variation in OARSI score than the naked-eye group (CV: 21.03% vs 32.44%; p = 0.032). Conclusion. Although surgical DMM aided by stereomicroscope is technically difficult, it produces a relatively more homogeneous OA model in terms of the discrete degree of pain behaviours and histopathological grading when compared with surgical DMM without stereomicroscope. Cite this article: Bone Joint Res 2022;11(8):518–527