Advertisement for orthosearch.org.uk
Results 1 - 20 of 134
Results per page:
The Bone & Joint Journal
Vol. 100-B, Issue 1 | Pages 50 - 55
1 Jan 2018
Kono K Tomita T Futai K Yamazaki T Tanaka S Yoshikawa H Sugamoto K

Aims. In Asia and the Middle-East, people often flex their knees deeply in order to perform activities of daily living. The purpose of this study was to investigate the 3D kinematics of normal knees during high-flexion activities. Our hypothesis was that the femorotibial rotation, varus-valgus angle, translations, and kinematic pathway of normal knees during high-flexion activities, varied according to activity. Materials and Methods. We investigated the in vivo kinematics of eight normal knees in four male volunteers (mean age 41.8 years; 37 to 53) using 2D and 3D registration technique, and modelled the knees with a computer aided design program. Each subject squatted, kneeled, and sat cross-legged. We evaluated the femoral rotation and varus-valgus angle relative to the tibia and anteroposterior translation of the medial and lateral side, using the transepicodylar axis as our femoral reference relative to the perpendicular projection on to the tibial plateau. This method evaluates the femur medially from what has elsewhere been described as the extension facet centre, and differs from the method classically applied. . Results. During squatting and kneeling, the knees displayed femoral external rotation. When sitting cross-legged, femurs displayed internal rotation from 10° to 100°. From 100°, femoral external rotation was observed. No significant difference in varus-valgus angle was seen between squatting and kneeling, whereas a varus position was observed from 140° when sitting cross-legged. The measure kinematic pathway using our methodology found during squatting a medial pivoting pattern from 0° to 40° and bicondylar rollback from 40° to 150°. During kneeling, a medial pivot pattern was evident. When sitting cross-legged, a lateral pivot pattern was seen from 0° to 100°, and a medial pivot pattern beyond 100°. Conclusion. The kinematics of normal knees during high flexion are variable according to activity. Nevertheless, our study was limited to a small number of male patients using a different technique to report the kinematics than previous publications. Accordingly, caution should be observed in generalizing our findings. Cite this article: Bone Joint J 2018;100-B:50–5


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 8 | Pages 1133 - 1136
1 Nov 2004
Tokuhara Y Kadoya Y Nakagawa S Kobayashi A Takaoka K

Varus and valgus joint laxity of the normal living knee in flexion was assessed using MRI. Twenty knees were flexed to 90° and were imaged in neutral and under a varus-valgus stress in an open MRI system. The configuration of the tibiofemoral joint gap was studied in slices which crossed the epicondyles of the femur. When a varus stress was applied, the lateral joint gap opened by 6.7 ± 1.9 mm (mean ± . sd. ; 2.1 to 9.2) whereas the medial joint gap opened by only by a mean of 2.1 ± 1.1 mm (0.2 to 4.2). These discrepancies indicate that the tibiofemoral flexion gap in the normal knee is not rectangular and that the lateral joint gap is significantly lax. These results may be useful for adequate soft-tissue balancing and bone resection in total knee arthroplasty and reconstruction surgery on ligaments


Bone & Joint Research
Vol. 8, Issue 12 | Pages 593 - 600
1 Dec 2019
Koh Y Lee J Lee H Kim H Chung H Kang K

Aims

Commonly performed unicompartmental knee arthroplasty (UKA) is not designed for the lateral compartment. Additionally, the anatomical medial and lateral tibial plateaus have asymmetrical geometries, with a slightly dished medial plateau and a convex lateral plateau. Therefore, this study aims to investigate the native knee kinematics with respect to the tibial insert design corresponding to the lateral femoral component.

Methods

Subject-specific finite element models were developed with tibiofemoral (TF) and patellofemoral joints for one female and four male subjects. Three different TF conformity designs were applied. Flat, convex, and conforming tibial insert designs were applied to the identical femoral component. A deep knee bend was considered as the loading condition, and the kinematic preservation in the native knee was investigated.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 3 | Pages 324 - 330
1 Mar 2006
Scarvell JM Smith PN Refshauge KM Galloway HR Woods KR

This prospective study used magnetic resonance imaging to record sagittal plane tibiofemoral kinematics before and after anterior cruciate ligament reconstruction using autologous hamstring graft. Twenty patients with anterior cruciate ligament injuries, performed a closed-chain leg-press while relaxed and against a 150 N load. The tibiofemoral contact patterns between 0° to 90° of knee flexion were recorded by magnetic resonance scans. All measurements were performed pre-operatively and repeated at 12 weeks and two years.

Following reconstruction there was a mean passive anterior laxity of 2.1 mm (sd 2.3), as measured using a KT 1000 arthrometer, and the mean Cincinnati score was 90 (sd 11) of 100. Pre-operatively, the medial and lateral contact patterns of the injured knees were located posteriorly on the tibial plateau compared with the healthy contralateral knees (p = 0.014), but were no longer different at 12 weeks (p = 0.117) or two years postoperatively (p = 0.909). However, both reconstructed and healthy contralateral knees showed altered kinematics over time. At two years, the contact pattern showed less posterior translation of the lateral femoral condyle during flexion (p < 0.01).


Bone & Joint Open
Vol. 1, Issue 7 | Pages 339 - 345
3 Jul 2020
MacDessi SJ Griffiths-Jones W Harris IA Bellemans J Chen DB

Aims. An algorithm to determine the constitutional alignment of the lower limb once arthritic deformity has occurred would be of value when undertaking kinematically aligned total knee arthroplasty (TKA). The purpose of this study was to determine if the arithmetic hip-knee-ankle angle (aHKA) algorithm could estimate the constitutional alignment of the lower limb following development of significant arthritis. Methods. A matched-pairs radiological study was undertaken comparing the aHKA of an osteoarthritic knee (aHKA-OA) with the mechanical HKA of the contralateral normal knee (mHKA-N). Patients with Grade 3 or 4 Kellgren-Lawrence tibiofemoral osteoarthritis in an arthritic knee undergoing TKA and Grade 0 or 1 osteoarthritis in the contralateral normal knee were included. The aHKA algorithm subtracts the lateral distal femoral angle (LDFA) from the medial proximal tibial angle (MPTA) measured on standing long leg radiographs. The primary outcome was the mean of the paired differences in the aHKA-OA and mHKA-N. Secondary outcomes included comparison of sex-based differences and capacity of the aHKA to determine the constitutional alignment based on degree of deformity. Results. A total of 51 radiographs met the inclusion criteria. There was no significant difference between aHKA-OA and mHKA-N, with a mean angular difference of −0.4° (95% SE −0.8° to 0.1°; p = 0.16). There was no significant sex-based difference when comparing aHKA-OA and mHKA-N (mean difference 0.8°; p = 0.11). Knees with deformities of more than 8° had a greater mean difference between aHKA-OA and mHKA-N (1.3°) than those with lesser deformities (-0.1°; p = 0.009). Conclusion. This study supports the arithmetic HKA algorithm for prediction of the constitutional alignment once arthritis has developed. The algorithm has similar accuracy between sexes and greater accuracy with lesser degrees of deformity. Cite this article: Bone Joint Open 2020;1-7:339–345


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 70 - 70
7 Aug 2023
Bartolin PB Shatrov J Ball SV Holthof SR Williams A Amis AA
Full Access

Abstract. Introduction. Previous research has shown that, notwithstanding ligament healing, properly selected MCL reconstruction can restore normal knee stability after MCL rupture. The hypothesis of this work was that it is possible to restore knee stability (particularly valgus and AMRI) with simplified and/or less-invasive MCL reconstruction methods. Methods. Nine unpaired human knees were cleaned of skin and fat, then digitization screws and optical trackers were attached to the femur and tibia. A Polaris stereo camera measured knee kinematics across 0. o. -100. o. flexion when the knee was unloaded then with 90N anterior-posterior force, 9Nm varus-valgus moment, 5Nm internal-external rotation, and external+anterior (AMRI) loading. The test was conducted for the following knee conditions: intact, injured: transected superficial and deep MCL (sMCL and dMCL), and five reconstructions: (long sMCL, long sMCL+dMCL, dMCL, short sMCL+dMCL, short sMCL), all based on the medial epicondyle isometric point and using 8mm tape as a graft, with long sMCL 60mm below the joint line (anatomical), short sMCL 30mm, dMCL 10mm (anatomical). Results. No significant changes were found in anterior or posterior translation, or varus at any stage. MCL deficiency caused increased valgus, external rotation and AMRI instabilities. All reconstructions restored valgus stability. The isolated long sMCL allowed residual external rotation and AMRI instability, while the short sMCL did stabilise AMRI. Both 2-strand reconstructions (dMCL+sMCL) restored stability. Conclusion. All tested techniques, except long sMCL, restored valgus and AMRI stability of the knee. The single femoral tunnel is satisfactory for both the dMCL and sMCL grafts


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 73 - 73
1 Jul 2022
Aspinall S Godsiff S Wheeler P Hignett S Fong D
Full Access

Abstract. 20% of patients are severely dis-satisfied following total knee arthroplasty (TKA). Arthrofibrosis is a devastating complication preventing normal knee range of motion (ROM), severely impacting patient's daily living activities. A previous RCT demonstrated superiority of a high intensity stretching programme using a novel device the STAK tool compared with standard physiotherapy in TKA patients with arthrofibrosis. This study analyses the results when the previous “standard physiotherapy” group were subsequently treated with the STAK tool. Methods. 15 patients post TKA with severe arthrofibrosis and mean ROM 71° were recruited, (three cases had previously failed manipulation under anaesthetic (MUA). Patients received 8 weeks standard physiotherapy, then treatment with the STAK at home for 8 weeks. ROM, extension, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and Oxford Knee Scores (OKS) were collected at various time-points. Results. Following standard physiotherapy there were small improvements in ROM (8°) (p<0.01), but no significant improvements in extension, OKS or WOMAC (p=0.39). Following the STAK treatment all outcomes significantly improved (p<0.01). STAK group; mean ROM (21° versus 8°, p < 0.001), extension 9° versus 2° (p < 0.01), WOMAC (18 points versus 3, p < 0.01), and OKS (8 points versus 4, p<0.01). No patients suffered any complications relating to the STAK. Conclusions. The STAK is effective in increasing ROM, extension and function, whilst reducing pain and stiffness. The device can be considered a cost-effective and valuable treatment following TKA. This is likely to increase the overall satisfaction rate and has potential to reduce the need for MUA


Bone & Joint Open
Vol. 2, Issue 5 | Pages 351 - 358
27 May 2021
Griffiths-Jones W Chen DB Harris IA Bellemans J MacDessi SJ

Aims. Once knee arthritis and deformity have occurred, it is currently not known how to determine a patient’s constitutional (pre-arthritic) limb alignment. The purpose of this study was to describe and validate the arithmetic hip-knee-ankle (aHKA) algorithm as a straightforward method for preoperative planning and intraoperative restoration of the constitutional limb alignment in total knee arthroplasty (TKA). Methods. A comparative cross-sectional, radiological study was undertaken of 500 normal knees and 500 arthritic knees undergoing TKA. By definition, the aHKA algorithm subtracts the lateral distal femoral angle (LDFA) from the medial proximal tibial angle (MPTA). The mechanical HKA (mHKA) of the normal group was compared to the mHKA of the arthritic group to examine the difference, specifically related to deformity in the latter. The mHKA and aHKA were then compared in the normal group to assess for differences related to joint line convergence. Lastly, the aHKA of both the normal and arthritic groups were compared to test the hypothesis that the aHKA can estimate the constitutional alignment of the limb by sharing a similar centrality and distribution with the normal population. Results. There was a significant difference in means and distributions of the mHKA of the normal group compared to the arthritic group (mean -1.33° (SD 2.34°) vs mean -2.88° (SD 7.39°) respectively; p < 0.001). However, there was no significant difference between normal and arthritic groups using the aHKA (mean -0.87° (SD 2.54°) vs mean -0.77° (SD 2.84°) respectively; p = 0.550). There was no significant difference in the MPTA and LDFA between the normal and arthritic groups. Conclusion. The arithmetic HKA effectively estimated the constitutional alignment of the lower limb after the onset of arthritis in this cross-sectional population-based analysis. This finding is of significant importance to surgeons aiming to restore the constitutional alignment of the lower limb during TKA. Cite this article: Bone Jt Open 2021;2(5):351–358


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 15 - 15
1 Oct 2020
Li G Zhou C Rao Z Bedair H
Full Access

Introduction. Medial pivoting motion of the knee has been widely assumed in total knee arthroplasty (TKA) research, but was not consistently observed in recent studies of in vivo knee motion. This study investigated the in vivo motion characters of the knee by analyzing the axial tibial rotation and tibiofemoral articular contact motion during a weightbearing flexion and a treadmill gait. Methods. In vivo kinematics of eight living human knees during a weightbearing flexion and a treadmill gait was determined using a combined MRI and dual fluoroscopic imaging system technique. The axial tibial rotation and the tibiofemoral cartilage contact point motion on both the tibial plateau and femoral condyle surfaces were analyzed. Results. While internal tibial rotation was observed with flexion of the knee during the two activities, larger excursions of the tibiofemoral contact points were measured on the medial femoral condyle surface than on the lateral side during the weightbearing flexion of the knee. The contact point excursions were also larger on the medial tibial plateau surface than on the lateral side during the treadmill gait. The contact points moved anteriorly with flexion and posteriorly with extension of the knee on the medial tibial surface during the gait, that was opposite to the femoral rollback observed during the weightbearing knee flexion. Conclusion. The data indicates that the in-vivo knee motion is activity- and loading-dependent and cannot be described using a single motion character. The knee could potentially rotate with respect to an axis located at the lateral side of the knee and the traditional “medial pivoting” motion character of the knee was not observed in these in-vivo activities. The data could provide important implications for the improvement of TKA designs and implantation techniques that are aimed to restore normal knee function


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIX | Pages 102 - 102
1 Jul 2012
van Duren B Pandit H Tilley S Price M Gill H Murray D Thomas N
Full Access

Introduction. Traditional TKR designs exhibit abnormal and unpredictable kinematics: with posterior subluxation in extension and anterior slide with flexion. These can contribute to restricted knee flexion and reduced quadriceps efficiency. Newer designs attempt to provide “guided motion” with the aim of mimicking normal knee kinematics. The Journey (Smith & Nephew) BCS TKR incorporates both an anterior and a posterior cam/post mechanism while Triathlon PS TKR (Stryker) incorporates a posterior cam/post mechanism. This study compares the in-vivo kinematics of these two designs and compares it with normal knee. Methods. Knee kinematics of 10 patients with Journey-BCS TKR and 11 patients with Triathlon PS TKR; all with excellent clinical outcome (average age: 65) were analysed. Patients underwent fluoroscopic assessment of the knee during a step-up and deep knee bend exercise. 2D fluoroscopic images were recorded. Data was analysed for patella tendon angle (PTA) and contact points using a 3D model fitting technique. This data was compared to normal knee kinematics (n=20). Results. The average maximum KFA achieved by the implant groups was 125° (Journey), 114° (Triathlon) and 141° for the normal group. The average angle of anterior cam/post engagement was 13° knee flexion angle (KFA) and the posterior cam/post mechanism at 45° KFA for Journey and 63° for Triathlon. For the Journey, in the step-up exercise both medial and lateral condylar contact points translated anteriorly with extension. For the lunge both condylar contact points translated posteriorly. Triathlon knees exhibited a medial pivot motion. The PTA for Journey showed a similar trend to normal knees. Conclusions. In the Journey TKR, both anterior and posterior cam-post mechanisms engaged and helped produce consistent femoral translation throughout knee flexion without paradoxical movement. This was similar to normal knee kinematics albeit with slight offset. The Triathlon produced posterior translation but did not completely eliminate paradoxical movement


The Bone & Joint Journal
Vol. 101-B, Issue 3 | Pages 331 - 339
1 Mar 2019
McEwen P Balendra G Doma K

Aims. The results of kinematic total knee arthroplasty (KTKA) have been reported in terms of limb and component alignment parameters but not in terms of gap laxities and differentials. In kinematic alignment (KA), balance should reflect the asymmetrical balance of the normal knee, not the classic rectangular flexion and extension gaps sought with gap-balanced mechanical axis total knee arthroplasty (MATKA). This paper aims to address the following questions: 1) what factors determine coronal joint congruence as measured on standing radiographs?; 2) is flexion gap asymmetry produced with KA?; 3) does lateral flexion gap laxity affect outcomes?; 4) is lateral flexion gap laxity associated with lateral extension gap laxity?; and 5) can consistent ligament balance be produced without releases?. Patients and Methods. A total of 192 KTKAs completed by a single surgeon using a computer-assisted technique were followed for a mean of 3.5 years (2 to 5). There were 116 male patients (60%) and 76 female patients (40%) with a mean age of 65 years (48 to 88). Outcome measures included intraoperative gap laxity measurements and component positions, as well as joint angles from postoperative three-foot standing radiographs. Patient-reported outcome measures (PROMs) were analyzed in terms of alignment and balance: EuroQol (EQ)-5D visual analogue scale (VAS), Knee Injury and Osteoarthritis Outcome Score (KOOS), KOOS Joint Replacement (JR), and Oxford Knee Score (OKS). Results. Postoperative limb alignment did not affect outcomes. The standing hip-knee-ankle (HKA) angle was the sole positive predictor of the joint line convergence angle (JLCA) (p < 0.001). Increasing lateral flexion gap laxity was consistently associated with better outcomes. Lateral flexion gap laxity did not correlate with HKA angle, the JLCA, or lateral extension gap laxity. Minor releases were required in one third of cases. Conclusion. The standing HKA angle is the primary determinant of the JLCA in KTKA. A rectangular flexion gap is produced in only 11% of cases. Lateral flexion gap laxity is consistently associated with better outcomes and does not affect balance in extension. Minor releases are sometimes required as well, particularly in limbs with larger preoperative deformities. Cite this article: Bone Joint J 2019;101-B:331–339


Bone & Joint Open
Vol. 4, Issue 3 | Pages 210 - 218
28 Mar 2023
Searle HKC Rahman A Desai AP Mellon SJ Murray DW

Aims

To assess the incidence of radiological lateral osteoarthritis (OA) at 15 years after medial unicompartmental knee arthroplasty (UKA) and assess the relationship of lateral OA with symptoms and patient characteristics.

Methods

Cemented Phase 3 medial Oxford UKA implanted by two surgeons since 1998 for the recommended indications were prospectively followed. A 15-year cumulative revision rate for lateral OA of 5% for this series was previously reported. A total of 163 unrevised knees with 15-year (SD 1) anterior-posterior knee radiographs were studied. Lateral joint space width (JSWL) was measured and severity of lateral OA was classified as: nil/mild, moderate, and severe. Preoperative and 15-year Oxford Knee Scores (OKS) and American Knee Society Scores were determined. The effect of age, sex, BMI, and intraoperative findings was analyzed. Statistical analysis included one-way analysis of variance and Kruskal-Wallis H test, with significance set at 5%.


The Bone & Joint Journal
Vol. 105-B, Issue 12 | Pages 1271 - 1278
1 Dec 2023
Rehman Y Korsvold AM Lerdal A Aamodt A

Aims

This study compared patient-reported outcomes of three total knee arthroplasty (TKA) designs from one manufacturer: one cruciate-retaining (CR) design, and two cruciate-sacrificing designs, anterior-stabilized (AS) and posterior-stabilized (PS).

Methods

Patients scheduled for primary TKA were included in a single-centre, prospective, three-armed, blinded randomized trial (n = 216; 72 per group). After intraoperative confirmation of posterior cruciate ligament (PCL) integrity, patients were randomly allocated to receive a CR, AS, or PS design from the same TKA system. Insertion of an AS or PS design required PCL resection. The primary outcome was the mean score of all five subscales of the Knee injury and Osteoarthritis Outcome Score (KOOS) at two-year follow-up. Secondary outcomes included all KOOS subscales, Oxford Knee Score, EuroQol five-dimension health questionnaire, EuroQol visual analogue scale, range of motion (ROM), and willingness to undergo the operation again. Patient satisfaction was also assessed.


Bone & Joint Research
Vol. 7, Issue 1 | Pages 20 - 27
1 Jan 2018
Kang K Son J Suh D Kwon SK Kwon O Koh Y

Objectives. Patient-specific (PS) implantation surgical technology has been introduced in recent years and a gradual increase in the associated number of surgical cases has been observed. PS technology uses a patient’s own geometry in designing a medical device to provide minimal bone resection with improvement in the prosthetic bone coverage. However, whether PS unicompartmental knee arthroplasty (UKA) provides a better biomechanical effect than standard off-the-shelf prostheses for UKA has not yet been determined, and still remains controversial in both biomechanical and clinical fields. Therefore, the aim of this study was to compare the biomechanical effect between PS and standard off-the-shelf prostheses for UKA. Methods. The contact stresses on the polyethylene (PE) insert, articular cartilage and lateral meniscus were evaluated in PS and standard off-the-shelf prostheses for UKA using a validated finite element model. Gait cycle loading was applied to evaluate the biomechanical effect in the PS and standard UKAs. Results. The contact stresses on the PE insert were similar for both the PS and standard UKAs. Compared with the standard UKA, the PS UKA did not show any biomechanical effect on the medial PE insert. However, the contact stresses on the articular cartilage and the meniscus in the lateral compartment following the PS UKA exhibited closer values to the healthy knee joint compared with the standard UKA. Conclusion. The PS UKA provided mechanics closer to those of the normal knee joint. The decreased contact stress on the opposite compartment may reduce the overall risk of progressive osteoarthritis. Cite this article: K-T. Kang, J. Son, D-S. Suh, S. K. Kwon, O-R. Kwon, Y-G. Koh. Patient-specific medial unicompartmental knee arthroplasty has a greater protective effect on articular cartilage in the lateral compartment: A Finite Element Analysis. Bone Joint Res 2018;7:20–27. DOI: 10.1302/2046-3758.71.BJR-2017-0115.R2


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1231 - 1239
1 Nov 2024
Tzanetis P Fluit R de Souza K Robertson S Koopman B Verdonschot N

Aims

The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population.

Methods

We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the root mean square deviation between pre-diseased and postoperative ligament strains and kinematics.


Aims

Classifying trochlear dysplasia (TD) is useful to determine the treatment options for patients suffering from patellofemoral instability (PFI). There is no consensus on which classification system is more reliable and reproducible for the purpose of guiding clinicians’ management of PFI. There are also concerns about the validity of the Dejour Classification (DJC), which is the most widely used classification for TD, having only a fair reliability score. The Oswestry-Bristol Classification (OBC) is a recently proposed system of classification of TD, and the authors report a fair-to-good interobserver agreement and good-to-excellent intraobserver agreement in the assessment of TD. The aim of this study was to compare the reliability and reproducibility of these two classifications.

Methods

In all, six assessors (four consultants and two registrars) independently evaluated 100 axial MRIs of the patellofemoral joint (PFJ) for TD and classified them according to OBC and DJC. These assessments were again repeated by all raters after four weeks. The inter- and intraobserver reliability scores were calculated using Cohen’s kappa and Cronbach’s α.


Bone & Joint Open
Vol. 4, Issue 12 | Pages 948 - 956
15 Dec 2023
Vella-Baldacchino M Webb J Selvarajah B Chatha S Davies A Cobb JP Liddle AD

Aims

With up to 40% of patients having patellofemoral joint osteoarthritis (PFJ OA), the two arthroplasty options are to replace solely the patellofemoral joint via patellofemoral arthroplasty (PFA), or the entire knee via total knee arthroplasty (TKA). The aim of this study was to assess postoperative success of second-generation PFAs compared to TKAs for patients treated for PFJ OA using patient-reported outcome measures (PROMs) and domains deemed important by patients following a patient and public involvement meeting.

Methods

MEDLINE, EMBASE via OVID, CINAHL, and EBSCO were searched from inception to January 2022. Any study addressing surgical treatment of primary patellofemoral joint OA using second generation PFA and TKA in patients aged above 18 years with follow-up data of 30 days were included. Studies relating to OA secondary to trauma were excluded. ROB-2 and ROBINS-I bias tools were used.


Bone & Joint Open
Vol. 5, Issue 8 | Pages 628 - 636
2 Aug 2024
Eachempati KK Parameswaran A Ponnala VK Sunil A Sheth NP

Aims

The aims of this study were: 1) to describe extended restricted kinematic alignment (E-rKA), a novel alignment strategy during robotic-assisted total knee arthroplasty (RA-TKA); 2) to compare residual medial compartment tightness following virtual surgical planning during RA-TKA using mechanical alignment (MA) and E-rKA, in the same set of osteoarthritic varus knees; 3) to assess the requirement of soft-tissue releases during RA-TKA using E-rKA; and 4) to compare the accuracy of surgical plan execution between knees managed with adjustments in component positioning alone, and those which require additional soft-tissue releases.

Methods

Patients who underwent RA-TKA between January and December 2022 for primary varus osteoarthritis were included. Safe boundaries for E-rKA were defined. Residual medial compartment tightness was compared following virtual surgical planning using E-rKA and MA, in the same set of knees. Soft-tissue releases were documented. Errors in postoperative alignment in relation to planned alignment were compared between patients who did (group A) and did not (group B) require soft-tissue releases.


Bone & Joint Research
Vol. 13, Issue 7 | Pages 321 - 331
3 Jul 2024
Naito T Yamanaka Y Tokuda K Sato N Tajima T Tsukamoto M Suzuki H Kawasaki M Nakamura E Sakai A

Aims

The antidiabetic agent metformin inhibits fibrosis in various organs. This study aims to elucidate the effects of hyperglycaemia and metformin on knee joint capsule fibrosis in mice.

Methods

Eight-week-old wild-type (WT) and type 2 diabetic (db/db) mice were divided into four groups without or with metformin treatment (WT met(-/+), Db met(-/+)). Mice received daily intraperitoneal administration of metformin and were killed at 12 and 14 weeks of age. Fibrosis morphology and its related genes and proteins were evaluated. Fibroblasts were extracted from the capsules of 14-week-old mice, and the expression of fibrosis-related genes in response to glucose and metformin was evaluated in vitro.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 7 | Pages 864 - 869
1 Jul 2008
Amis AA Oguz C Bull AMJ Senavongse W Dejour D

Objective patellar instability has been correlated with dysplasia of the femoral trochlea. This in vitro study tested the hypothesis that trochleoplasty would increase patellar stability and normalise the kinematics of a knee with a dysplastic trochlea. Six fresh-frozen knees were loaded via the heads of the quadriceps. The patella was displaced 10 mm laterally and the displacing force was measured from 0° to 90° of flexion. Patellar tracking was measured from 0° to 130° of knee flexion using magnetic sensors. These tests were repeated after raising the central anterior trochlea to simulate dysplasia, and repeated again after performing a trochleoplasty on each specimen. The simulated dysplasia significantly reduced stability from that of the normal knee (p < 0.001). Trochleoplasty significantly increased the stability (p < 0.001), so that it did not then differ significantly from the normal knee (p = 0.244). There were small but statistically significant changes in patellar tracking (p< 0.001). This study has provided objective biomechanical data to support the use of trochleoplasty in the treatment of patellar instability associated with femoral trochlear dysplasia