Periprosthetic femoral shaft fractures are a significant complication of total hip arthroplasty. Plate osteosynthesis with or without onlay strut allograft has been the mainstay of treatment around well-fixed stems.
The rate of fracture and subsequent nonunion after radiation therapy for soft-tissue sarcomas and bone tumors has been demonstrated to quite high. There is a paucity of data describing the optimal treatment for these nonunions. Free vascularized fibular grafts (FVFG) have been used successfully in the treatment of large segmental bone defects in the axial and appendicular skeleton, however, their efficacy with respect to treatment of radiated nonunions remains unclear. The purpose of the study was to assess the 1) union rate, 2) clinical outcomes, and 3) complications following FVFG for radiation-induced femoral fracture nonunions. We identified 24 patients who underwent FVFG for the treatment of radiation-induced femoral fracture nonunion between 1991 and 2015. Medical records were reviewed in order to determine oncologic diagnosis, total preoperative radiation dose, type of surgical treatment for the nonunion, clinical outcomes, and postoperative complications. There were 11 males and 13 females, with a mean age of 59 years (range, 29 – 78) and a mean follow-up duration of 61 months (range, 10 – 183 months). Three patients had a history of diabetes mellitus and three were current tobacco users at the time of FVFG. No patient was receiving chemotherapy during recovery from FVFG. Oncologic diagnoses included unspecified soft tissue sarcomas (n = 5), undifferentiated pleomorphic sarcoma (UPS) (n = 3), myxofibrosarcoma (n = 3), liposarcoma (n = 2), Ewing's sarcoma (n = 2), lymphoma (n = 2), hemangiopericytoma, leiomyosarcoma, multiple myeloma, myxoid chondrosarcoma, myxoid liposarcoma, neurofibrosarcoma, and renal cell carcinoma. Mean total radiation dose was 56.3 Gy (range, 39 – 72.5), given at a mean of 10.2 years prior to FVFG. The average FVFG length was 16.4 cm. In addition to FVFG, 13 patients underwent simultaneous autogenous iliac crest bone grafting, nine had other cancellous autografting, one received cancellous allograft, and three were treated with synthetic graft products. The FVFG was fixed as an onlay graft using lag screws in all cases, additional fixation was obtained with an intramedullary nail (n = 19), dynamic compression plate (n = 2), blade plate (n = 2), or lateral locking plate (n = 1). Nineteen (79%) fractures went on to union at a mean of 13.1 months (range, 4.8 – 28.1 months). Musculoskeletal Tumor Society scores improved from eight preoperatively to 22 at latest follow-up (p < 0.0001). Among the five fractures that failed to unite, two were converted to proximal femoral replacements (PFR), two remained stable pseudarthroses, and one was converted to a total hip arthroplasty. A 6th case did unite initially, however, subsequent failure lead to PFR. Seven patients (29%) required a second operative grafting. There were five additional complications including three infections, one wound dehiscence, and one screw fracture. No patient required amputation. Free vascularized fibular grafts are a reliable treatment option for radiation-induced pathologic femoral fracture nonunions, providing a union rate of 79%. Surgeons should remain cognizant, however, of the elevated rate of infectious complications and need for additional operative grafting procedures.
Non-union is agonising for patients, complex for surgeons and a costly burden to our healthcare service; as such, its management must be well defined. There is debate as to the requirements for the successful treatment of such patients, in particular, the need for additional biological therapies to ensure union. This study's primary aim was to determine if operative treatment alone was an effective treatment for the non-union of long bones in the upper and lower limbs compared to the pre-existing literature using biological therapies. A single-centre retrospective cohort study using prospectively collected data was performed. Inclusion was defined as patients 16 years or older with a radiologically confirmed non-union of the upper or lower limb long bones managed with surgical treatment alone between 2014–2019, with at least a 12 month follow up. Patients with bone defects or whose non-unions were treated with biological therapies were excluded from this study. The primary aim was assessed via the outcomes of union, time to union and RUST score.Introduction
Materials and Methods
Polymicrobial infections are expected to complicate the treatment of bone and joint infections. Septic nonunions often occur after initial open fractures, which prophylactically receive broad-spectrum antibiotics. However, no data that describes frequencies of polymicrobial infections and pathogens evident in course of the treatment of septic nonunions is published. Therefore, this study aims at investigating the frequency and pathogen types in polymicrobial infections. Surgically treated Patients with long bone septic nonunion admitted between January 2010 and March 2018 were included in the study. Following parameters were examined: age, gender, American Society of Anesthesiologists (ASA) score, body mass index (BMI), and anatomical location of the infected nonunion. Microbiological culture data, polymerase-chain-reaction results of tissue samples, sonication, and joint fluid of the initial and follow-up revision surgeries were assessed. No exclusion criteria were determined.Introduction
Methods
Treatment of infected and non-infected non-unions remain a major challenge after orthopedic fracture-related surgery. In clinical practice, several revision surgeries are usually required, including a radical debridement and exchange of implants, to control or even eradicate the infection to finally achieve bone healing. However, a clear treatment algorithm in clinical practice may be difficult to follow due to the heterogeneous patient population. Thus, so controlled settings for research purposes is better achieved in standardized animal studies. So far, there exists no multi-stage animal model that can be realistically transferred to the clinical situation in humans. The importance of such a model is obvious in order to be able to investigate different therapy concepts for infected and non-infected non unions. In 20 female Sprague-Dawley rats, a critical size defect by a femur osteotomy with 5 mm width was done. The periosteum at the fracture zone was cauterized proximal and distal to the osteotomy to achieve an hypovascularized situation. After randomization, 10 animals were intramedullary infected with a multisensible Staph. aureus strain (103 CFU). After 5 weeks, a second surgery was performed with removing the K-wire, debridement of the osteotomy-gap and re-osteosynthesis with an angle-stable plate. After further 8 weeks all rats were euthanized and underwent biomechanical testing to evaluate bone consolidation or delayed union, respectively. Additional micro-CT analysis, histological, and histomorphometric analysis were done to evaluate bone consolidation or delayed union, respectively, by the score of Lane and Sandhu and to quantify callus formation and the mineralized area of the callus.Aim
Methods
Recently the evolution of prosthesis technology allows the surgeon to replace entire limbs. These special prostheses or megaprostheses were born for the treatment of severe oncological bone loss. Recently, however, the indications and applications of these devices are expanding to other orthopaedic and trauma situations. Since some years we are implanting megaprostheses in non-oncological conditions such as septic post-traumatic failures represented by complex non-unions and critical size bone defects. The purpose of this study is to retrospectively evaluate the clinical outcome of this treatment and register all the complications and infection recurrence. Between January 2008 and January 2016 we have treated 55 patients with septic post-traumatic bone defects In 48/55 cases we perform a 2 steps procedure: 1° step: resection, debridment, devices removal and antibiotic spacer implantation; 2° step: spacer removal and megaprosthesis implantation. In 7/55 patients in whom all the femur was infected, we performed a one step procedure by the complete removal of the femur and a megaprosthesis (Total Femur) implantation.INTRODUCTION
MATERIAL AND METHOD
Scaphoid non-union results the typical humpback deformity, pronation of the distal fragment, and a bone defect in the non-union site with shortening. Bone grafting, whether open or arthroscopic, relies on fluoroscopic and direct visual assessment of reduction. However, because of the bone defect and irregular geometry, it is difficult to determine the precise width of the bone gap and restore the original bone length, and to correct interfragmentary rotation. Correction of alignment can be performed by computer-assisted planning and intraoperative guidance. The use of computer navigation in guiding reduction in scaphoid non-unions and displaced fractures has not been reported. We propose a method of anatomical reconstruction in scaphoid non-union by computer-assisted preoperative planning combined with intraoperative computer navigation. This could be done in conjunction with a minimally invasive, arthroscopic bone grafting technique. A model consisting of a scaphoid bone with a simulated fracture, a forearm model, and an attached patient tracker was used. 2 titanium K-wires were inserted into the distal scaphoid fragment. 3D images were acquired and matched to those from a computed tomography (CT) scan. In an image processing software, the non-union was reduced and pin tracts were planned into the proximal fragment. The K-wires were driven into the proximal fragment under computer navigation. Reduction was assessed by direct measurement. These steps were repeated in a cadaveric upper limb. A scaphoid fracture was created and a patient tracker was inserted into the radial shaft. A post-fixation CT was obtained to assess reduction.Objective
Methods
We performed this Institutional Review Board-approved study to evaluate the efficacy of antibiotic-impregnated cement nailing for management of this condition. The study included 41 patients with infected non-unions of femur (23) and tibia (18) treated from 01.2009 to 09.2014. 32 (78%) patients were male and 9 (22%) patients were female. Mean age was 41.8 (range 20–78) years old. Mean time from the injury to AB-cement nailing was 21.2 (range 6–91) months. Mean follow-up duration was 18 (8–36) month. 6/23 femoral and 9/18 tibial fractures were initially open. Other fractures were closed and infected non-union developed as complication of previous surgeries: IM-nailing, ORIF or Ilizarov external fixation. Sinuses were revealed in all patients, but have closed by the time of AB-cement nailing in 30 cases. Pre- and intraoperative cultures revealed Aim
Method
To present the results achieved with the use of external fixation techniques in treating 52 cases of post-traumatic and post-surgical septic non-union in a low resources setting. From 2006 to 2014 52 patients were treated for post-traumatic septic non-union of the lower and upper limb bones. Clinical records and radiographs were reviewed; telephone interviews were done for patients unable to reach our institution. There were 39 males and 13 females, with an average age at the time of admission of 29 years (the youngest patient was 8 years old, the oldest 81). Tibia was involved in 43 cases (24 right side, 19 left side), femur in 9 (4 right, 5 left) and left humerus in 1. All the patients, except two, had been treated in other institutions before admission. At presentation, 19 patients had an external fixator in situ, 18 patients had infected osteosynthesis, 15 had exposed necrotic bone, with loss of soft tissues. In 20 cases hardware removal, debridement and sequestrectomy were followed by application of an external fixator. In 31 cases bone transport was done; the fixator was monolateral in 27 cases. In 1 case sequestrectomy and external fixation were followed by a vascularized fibula graft. Bifocal bone transport was utilized in one patient while the bone transport procedure was associated to limb lengthening in 10 patients. Plastic surgery was required in 13 patients. Rotational flaps, vascularized free flaps and extensive skin grafts were all used. The site of non union was cured in all the patients, in an average time of 11 months (from 4 to 32). Two patients required an amputation a few months after the end of the treatment. There was need for fixator adjustment and screws replacement in 21 patients. Non-union at the docking point was observed in 5 patients; it was septic in two of them. There was need of skin-plasty in 2 cases for skin invagination. In 3 cases an extensive skin ulcer was observed during the transport procedure. Limb length discrepancy was corrected in 10 patients. A residual limb shortening was observed in 14 patients. Ankle fusion, knee fusion, foot drop, sensory loss in the foot, reduced range of joint motion were also observed. The external fixator plays a pivotal role in the treatment of septic non unions, especially in low resources setting. The treatment is long and costly. Strict medical supervision is necessary during the entire process.
The development of new prostheses due to large resections has offered important opportunities to orthopedic surgeons mainly in oncology. A medline research can easily underline how poor is the international experience about this cases in nonunion: 75 results for megaprosthesis just 7 works in nonunion. It is proposed the experience of our department, which deals specifically with the treatment of nonunion, in cases of repeated failures to treatment. One of the most significant problems in the treatment of relapsing nonunion is the consequent worsening of joint function. Critical bone defects, sepsis, joint fractures and unclear relapsing nonunions are the most common cases for a megaprosthesis treatment. In these cases, even if it obtains the healing of nonunion the functional result would be presumptively poor. This radiological or clinical situation drove us, in such cases, to drastic solutions following the principles of cancer cases. We implanted megaprosthesis with either techniques: 1 stage or 2 stages depending on the clinical findings. In nonunion the main decision making was the septic or aseptic status. we treated 32 patients with megaprosthesis replacing the nearest joint to the nonunion segment or both the proximal e distal one as follows: proximal femur, distal femur, proximal tibia, and total femur. The mean follow-up of patients is 12 months (2 yrs max, min 3 months). Clinical and serial radiographic evaluations with standard methods (RX in 45 days, 3-6-12-24 months) was performed; as well as monitoring of blood parameters for 2 months.Introduction:
Materials and Methods:
The management of upper limb nonunions can be challenging and often with unpredictable outcomes. In the study we present the results of treatment of upper limb nonunions treated in our institution with BMP-7 biological enhancement. Between 2004 and 2011 all consecutive patients who met the inclusion criteria were followed up prospectively. Union was assessed with regular radiological assessment. At the final follow up clinical assessment included the disabilities of the Arm, Shoulder and Hand (DASH) score, range of movement and patient satisfaction. The mean follow up was 12 months (12–36). In total 42 patients met the inclusion criteria with a mean age of 47. Anatomical distribution of the nonunion sites included 19 cases of mid/proximal radius/ulna, 14 humerus, 6 distal radius and 3 clavicles. 5 patients had septic nonunion, 35 had atrophic nonunion, 11 had previous open fractures, and 10 had bone loss (range 1–3 cm). The mean number of operations performed and the mean time from injury to BMP application was 1.5 and 26 months, respectively. 40 patients had both clinical and radiological union whereas 2 had partial radiological union but a pain free range of motion. BMP was applied in isolation in 1 case and 41 cases the application was combined with autologous bone grafting. The range of movement of the affected limb, DASH score and patient satisfaction were optimum at the final follow up. This study supports the use of BMP-7 as a bone stimulating adjunct for the treatment of complex and challenging upper limb nonunions.
Infected nonunion of the femur or tibia diaphysis requires resection of infected bone, stabilization of bone and reconstruction of bone defect. External fixation of the femur is poorly tolerated by patients. In 2004 authors introduced in therapy for infected nonunions of tibia and femur diaphysis coating of IMN with a layer of antibiotic loaded acrylic cement (ALAC) containing 5% of culture specific antibiotic. Seven patients with infected nonunion of the diaphysis of femur (2) and tibia (2) were treated, aged 20–63 years, followed for 2–9 years (average 5,5 years). All have been infected with S. aureus (MSSA: 2 and MRSA: 4) or Staph. epidermidis (1) and in one case with MRSA and Pseudomonas aeruginosa. All patients underwent 3 to 6 operations before authors IMN application. Custom-made IMN coated with acrylic cement (Palamed) loaded fabrically with gentamycin with admixture of 5% of culture-specific antibiotic: vancomycin (7 cases) and meropeneme (1 case) was used for bone stabilization. Static interlocking of IMN was applied in 4 cases and dynamic in 2 cases. In 1 case the femur was stabilized with IMN without interlocking screws. In 2 cases IMN was used for fixation of nonunion at docking site after bone transport. In 3 cases ALAC was used as temporary defect filling and dead space management. In one case after removal of IMN coated with ALAC, a new custom made Gamma nail and tubular bone allograft ranging 11 cm was used for defect reconstruction. Infection healing was achieved in all 7 cases, bone union was achieved in 4 from 7 cases. In 1 case of segmental diaphyseal defect ranging over 12 cm infection was healed, but bone defect was not reconstructed. This patient is waiting for total femoral replacement. In another case of segmental defect of 11 cm infection is healed, but allograft substitution and remodeling by host bone is poor. In the 3rd case of lacking bone healing, the 63 year old patients was noncooperative and not willing to walk in walker with weight bearing. This patient refused further treatment. Custom-made intramedullary nail coated with a layer of acrylic cement loaded with 5% of culture specific antibiotic can provide local infection control, offer comfortable bone stabilization, and replace standard IM nail in therapy for difficult to treat infected diaphyseal nonunion of femur or tibia.
Introduction. Ultra-high molecular weight polyethylene (UHMWPE) tape, which comprised threads of UHMWPE fibers with the thickness less than 0.5 mm, was developed as a flexible fixation device. We describe new techniques using UHMWPE tape for the reattachment of the osteotomised fragment and the repair of intraoperative calcar fractures in total hip arthroplasty (THA). Patients & Methods. We reviewed the medical records and radiographs of the studied subjects after approval of this study by the institutional review board committee. Experiment 1: Between October 2011 and May 2012, 60 consecutive primary THAs were performed with the mini-trochanteric approach, which involved reattaching the osteotomised fragment using UHMWPE tape (Nesplon; Alfresa Pharma, Osaka, Japan). [Fig.1] By splitting the anterior one-fourth of the gluteus medius, the minitrochanteric osteotomy, a half-ellipsoid body about 15 mm long, 10 mm wide, and 5 mm deep, is performed using a curved chisel. After implanting of the prosthesis, the osteotomised fragment is reattached by using two 3-mm wide Nesplon tapes. Using 2.4 mm Kirshner wire, two sets of drill holes are created below the trochanteric bed of the femur. Nesplon tapes are passed through each drill hole and penetrated over the trochanteric fragment. Nesplon tape is tied using a double-loop sliding knot in conjunction with a special tightening gun tensioner up to 20 kgf. [Fig.2] The radiographic results were retrospectively analyzed to determine the incidence of nonunion and complications related to trochanteric site. Hip functional results were rated according to the Japanese Orthopedic Association (JOA) hip score. Experiment 2: Between July 2011 and May 2012, 5-mm wide Nesplon tapes were used for restoration of intraoperative femoral fractures in 4 primary THAs. For the repair of intraoperative proximal femoral fractures, 5-mm wide Nesplon tape is tightened with cerclage wiring technique using the gun tensioner up to 30 kgf. [Fig.3] The postoperative radiographic changes were analyzed. Results. Experiment 1: