Advertisement for orthosearch.org.uk
Results 1 - 12 of 12
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 80 - 80
1 Dec 2020
Kahveci A Cengiz BC Alcan V Zinnuroğlu M Gürses S
Full Access

Differences at motor control strategies to provide dynamic balance in various tasks in diabetic polyneuropatic (DPN) patients due to losing the lower extremity somatosensory information were reported in the literature. It has been stated that dynamics of center of mass (CoM) is controlled by center of pressure (CoP) during human upright standing and active daily movements. Indeed analyzing kinematic trajectories of joints unveil motor control strategies stabilizing CoM. Nevertheless, we hypothesized that imbalance disorders/CoM destabilization observed at DPN patients due to lack of tactile information about the base of support cannot be explained only by looking at joint kinematics, rather functional foot usage is proposed to be an important counterpart at controlling CoM. In this study, we included 14 DPN patients, who are diagnosed through clinical examination and electroneuromyography, and age matched 14 healthy subjects (HS) to identify control strategies in functional reach test (FRT). After measuring participants’ foot arch index (FAI) by a custom-made archmeter, they were tested by using a force plate, motion analysis system, surface electromyography and pressure pad, all working in synchronous during FRT. We analyzed data to determine effect of structural and functional foot pathologies due to neuropathy on patient performance and postural control estimating FAI, reach length (FR), FR to height (H) ratio (FR/H; normalized FR with respect to height), displacement of CoM and CoP in anteroposterior direction only, moment arm (MA, defined as the difference between CoP and CoM at the end of FRT), ankle, knee and hip joint angles computed at the sagittal plane for both extremities. Kinematic metrics included initial and final joint angles, defined with respect to start and end of reaching respectively. Further difference in the final and initial joint angles was defined as Δ. FAI was founded significantly lower in DPN patients (DPN: 0.3404; HS: 0.3643, p= <0.05). The patients’ FR, FR/H and absolute MA and displacement of CoM were significantly shorter than the control group (p= <0.05). Displacement of CoP between the two groups were not significant. Further we observed that CoM was lacking CoP in DPN patients (mean MA: +0.88 cm), while leading CoP in HS (mean MA: −1.59 cm) at the end of FRT. All initial angles were similar in two groups, however in DPN patients final right and left hip flexion angle (p=0.016 and p=0.028 respectively) and left ankle plantar flexion angle (p=0.04) were smaller than HS significantly. DPN patients had significantly less (p=0.029) hip flexion (mean at right hip angle, Δ=25.0°) compared to HS (Δ=33.53°) and ankle plantar flexion (DPN mean at right ankle angle, Δ=6.42°, HS mean Δ=9.07°; p=0.05). The results suggest that movement of both hip and ankle joints was limited simultaneously in DPN patients causing lack of CoM with respect to CoP at the end of reaching with significantly lower FAI. These results lead to the fact that cutaneous and joint somatosensory information from foot and ankle along with the structure of foot arch may play an important role in maintaining dynamic balance and performance of environmental context. In further studies, we expect to show that difference at control strategies in DPN patients due to restricted functional foot usage might be a good predictor of how neuropathy evolves to change biomechanical aspects of biped erect posture


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 36 - 36
1 Nov 2021
Balzani LAD Albo E Tirone B Torre G Stelitano G Capperucci C Denaro V
Full Access

Introduction and Objective. Carpal tunnel syndrome (CTS) is a very common compressive neuropathy involving the median nerve. The typical symptoms are paraesthesia, dysesthesia and loss of strength; in severe case, this compression deteriorates the sensorimotor control of the hand and interferes with the adjustment of the forces at the level of the fingers, thus affecting the components that are the basis of dexterity and control of fine movements. For these reasons, the CTS has repercussions on various activities of daily life, including writing skills. Word processing via PC and mobile device (touch-typing) require a fine control of the hand-wrist movement and of the opposition of the thumb, while in handwriting, gripping and gripping movements are carried out in a protracted manner. In modern society, present skills play a role of fundamental importance from an educational, professional and social point of view. The aim of the study is to describe the effects of carpal tunnel release (CTR) on handwriting and digital writing performance. Materials and Methods. We recruited patients suffering from carpal tunnel syndrome (CTS) who were candidates for CTR surgery and collected clinical and demographic data, including age, occupation, duration of symptoms and electromyography outcomes. The first trial session was carried out before surgery and the subsequent ones at 1, 2, 3, 4, 8 and 12 weeks after the CTR. These trials involved copying a 500-character paragraph by handwriting, personal computer (PC) and mobile device, for which a dedicate Google Colab web page was computed. We used as parameters the speed, expressed in words per minute (wpm), and the accuracy of copying, which was measured in number of errors (en). Moreover in each session the patient filled in the QuickDASH (Disabilities of the Arm, Shoulder, and Hand) questionnaire. We used the one-way anova to evaluate the change in the three performances and in the QuickDASH score in follow-up sessions. We used the two-way anova to detect a possible interactions between speed improvement and groups of variables, namely gender, writing frequency, schooling, diabetes, dysthyroidism and metabolic syndrome. Results. We recruited 20 patients of whom 7 dropped out for personal reasons and 13 had completed all trial sessions. The PC writing performance had an average speed and accuracy of 15.1 ± 6.8 wpm and 13.1 ± 8.2 en, respectively, while post-operatively it returned values of 17.6 ± 5.0 wpm and 9.9 ± 5.6 en. Regarding touch-typing, a pre-operative average of 16.9 ± 5.8 wpm and 14.3 ± 14.4 en was recorded, while post-operatively an average of 21.7 ± 6.5 wpm and 11.5 ± 14.7 en was reported. Handwriting performance initially had a mean of 20.5 ± 7.1 wpm and 0.1 ± 0.6 en and after three months returned a mean of 22.4 ± 4.0 wpm and 0 ± 0 n. The QuickDASH score had a pre-operative mean of 39.1 ± 9.1 and post-operative mean of 17 ± 6 points. The only statistically significant improvements were those related to touch-typing (P = 0.022) and QuickDASH score (P < 0.001). There was no significant interaction between gender, comorbidity, writing frequency, level of schooling and recovery of writing ability. Conclusions. The data collected showed, in agreement with previous studies, that CTS has a significant impact on the patient's writing ability, who benefits from the surgical treatment, especially in terms of touch-typing and general manual dexterity. In addition, the recovery of writing ability did not show significant correlation with other variables


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 87 - 87
1 Mar 2021
Bommireddy L Crimmins A Gogna R Clark DI
Full Access

Abstract. Objectives. Operative management of distal humerus fractures is challenging. In the past, plates were manually contoured intraoperatively, however this was associated with high rates of fixation failure, nonunion and metalwork removal. Anatomically pre-contoured distal humerus locking plates have since been developed. Owing to the rarity of distal humeral fractures, literature regarding outcomes of anatomically pre-contoured locking plates is lacking and patient numbers are often small. The purpose of this study is to investigate the outcomes of these patients. Methods. We retrospectively identified patients with distal humeral fractures treated at our institution from 2009–2018. Inclusion criteria were patients with a distal humeral fracture, who underwent two-column plate fixation with anatomically pre-contoured locking plates. Clinical records and radiographs were reviewed to elicit outcome measures, including range of motion, complications and reoperation rate. Results. We identified 50 patients with mean age of 55 years (range 17–96 years). Mean length of follow up was 5.2 years. AO fracture classification Type A occurred most frequently (46%), followed by Type B (22%) and Type C (32%). Low energy mechanisms of injury predominated in 72% of patients. Mean time from injury to fixation was seven days. Mean range of motion at the elbow was 13–123o postoperatively. The overall reoperation rate was 22%, the majority of which required subsequent removal of prominent metalwork (18%). The incidence of nonunion, heterotopic ossification, deep infection and neuropathy requiring decompression was 2% each. Fixation failure occurred in only one patient however the fracture went on to heal. Conclusions. Previously reported reoperation rates with manually contoured plates were as high as 44%, which is twice our reported rate. Modern locking plates are no longer subject to implant failure (previously 27% reported metalwork failure rate). Likewise, heterotopic ossification and non-union have also reduced, highlighting that modern plates have significantly improved overall patient outcomes. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 101 - 101
1 Aug 2012
Pearson R Shu K Divyateja H Seagrave M Game F Jeffcoate W Scammell B
Full Access

Background. Charcot neuropathic osteoarthropathy is a rare, destructive process affecting the bones and joints of feet in patients with diabetic peripheral neuropathy. The aetiology of Charcot remains unknown, although it has been suggested that it is triggered by the occurrence of inflammation in the foot of a susceptible individual, and that the inflammation results in increased osteoclastic activity. Hypothesis. The increased bone turnover in acute Charcot is associated with increased concentrations of pro-inflammatory cytokines, related signalling peptides and bone turnover markers. Methods. 17 patients newly presenting with acute Charcot in diabetes and 16 non-diabetic patients without neuropathy undergoing elective forefoot surgery provided informed consented to participate. Samples of bone were taken by needle biopsy, and were stained with H&E to determine bone architecture and bone remodelling. Serum ALP, CTX, OPG and sRANKL TNF, IL1-beta, IL6 and CRP were measured by immunoassay. Blood was taken from the dorsal foot vein of both the affected and the unaffected foot, as well as an antecubital vein. Results. Classic histopathology features of fracture and bone remodelling were evident in Charcot bone biopsies. Systemic circulating concentrations in the Charcot group antecubital vein for both IL6 and OPG were significantly greater than in controls (p<0.05). There were no significant differences between the dorsal vein concentrations of any analyte when the affected and unaffected feet were compared. However, in patients with an acute Charcot foot the concentration of OPG, ALP and CTX was higher in sera from the dorsal vein of affected foot when compared to controls (p<0.05), this difference was highly significant for IL6 (p<0.001). Conclusion. The elevation in CTX observed in the affected foot in patients with an acute Charcot foot reflects the bone breakdown and remodelling which is present. The higher circulating concentration of IL-6 in the Charcot patient group, reflects the inflammation which is present and which is thought to be central to the development of the condition. Although OPG values were significantly greater in Charcot than control group, circulating concentrations of OPG are known to be higher in diabetes


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 273 - 273
1 Jul 2014
Alizadehkhaiyat O Vishwanathan K Frostick S
Full Access

Summary Statement. Discovery system produced effective functional improvement in both primary and revision total elbow replacement. The incidence of major complications was in an acceptable range. Introduction. The search for the ideal elbow prosthesis continues as instability and loosening remain the prime reasons for total elbow replacement (TER) failure. The Discovery Elbow System (Biomet) is one of the latest generations of linked prosthesis and has been used in UK since 2003. We report outcome of TER using this system. Methods. A total of 100 TERs (75 primary, 25 revisions) were performed between 2003 and 2010. The main primary underlying pathologies for TER were advanced rheumatoid arthritis (N=58), osteoarthritis (N=35), acute fractures (N=7). There were 60 female and 40 male patients with an average age of 62 years. The outcome assessment included pain, patient satisfaction, Liverpool Elbow Score (LES), range of movement, and imaging during a mean follow-up period of 48.5 months. Major complications are also reported. Results. For the whole patient group (primary + revision), the LES was significantly (p<0.001) improved from 3.79+/−1.71 to 6.36+/−1.85There were significant improvements in elbow flexion from 100°+/−24 to 118°+17, supination from 38°+/−26 to 50°+/−25 and pronation from 48°+/−22 to 61°+/−21. Mean improvement in flexion-extension and pronation-supination arc was 20° and 25°, respectively. 64% of cases were completely pain-free and at the final follow-up (compared to 7% preoperatively). Only 6% of patients scored “Not Satisfied” at the final follow-up. LES improvement was significantly higher in the primary TER compared to revision TER (p<0.05). Imaging reviewed for 60 cases showed loosening in 4% of patients. Other main complications included deep infection (N=2), ulnar neuropathy (N=3), pre-prosthetic fracture (N=2), and prosthetic failure (N=1). Discussion. TER using the Discovery Elbow System is an effective arthroplasty in terms of functional improvement, pain relief and range of motion in both primary and revision patients. TER resulted in no/mild pain in 78% of cases. Patients undergoing Acclaim, Souter-Strathclyde, GSB III, and Coonrad-Morrey TER have been reported to have no/mild pain in 64%, 67%, 50–92% and 60–100% of cases, respectively. A 20° improvement in flexion-extension arc is comparable to that of Acclaim (23°), Souter-Strathclyde (15°), GSBIII (19–33°), and Coonrad-Morrey (17–26°) TER. An improvement of 25° in pronation-supination arc in our series is also comparable to that of 21–28° reported the Coonrad-Morrey and 27–33° for Discovery prostheses. An infection rate of 2% is lower than several other reports for GSB III TER (7–11%) and Coonrad-Morrey (6–8%). The incidence of persistent ulnar neuropathy (3%) was lower compared to GSBIII TER (11–14%), Coonrad-Morrey (12–26%), and Acclaim (8%)


Bone & Joint 360
Vol. 6, Issue 5 | Pages 42 - 44
1 Oct 2017
Ross A


Bone & Joint Research
Vol. 6, Issue 8 | Pages 514 - 521
1 Aug 2017
Mannering N Young T Spelman T Choong PF

Objectives

Whilst gait speed is variable between healthy and injured adults, the extent to which speed alone alters the 3D in vivo knee kinematics has not been fully described. The purpose of this prospective study was to understand better the spatiotemporal and 3D knee kinematic changes induced by slow compared with normal self-selected walking speeds within young healthy adults.

Methods

A total of 26 men and 25 women (18 to 35 years old) participated in this study. Participants walked on a treadmill with the KneeKG system at a slow imposed speed (2 km/hr) for three trials, then at a self-selected comfortable walking speed for another three trials. Paired t-tests, Wilcoxon signed-rank tests, Mann-Whitney U tests and Spearman’s rank correlation coefficients were conducted using Stata/IC 14 to compare kinematics of slow versus self-selected walking speed.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 11 | Pages 1541 - 1544
1 Nov 2009
Hosono N Miwa T Mukai Y Takenaka S Makino T Fuji T

Using the transverse processes of fresh porcine lumbar spines as an experimental model we evaluated the heat generated by a rotating burr of a high-speed drill in cutting the bone. The temperature at the drilled site reached 174°C with a diamond burr and 77°C with a steel burr. With water irrigation at a flow rate of 540 ml/hr an effective reduction in the temperature was achieved whereas irrigation with water at 180 ml/hr was much less effective. There was a significant negative correlation between the thickness of the residual bone and the temperature measured at its undersurface adjacent to the drilling site (p < 0.001).

Our data suggest that tissues neighbouring the drilled bone, especially nerve roots, can be damaged by the heat generated from the tip of a high-speed drill. Nerve-root palsy, one of the most common complications of cervical spinal surgery, may be caused by thermal damage to nerve roots arising in this manner.


Bone & Joint Research
Vol. 3, Issue 11 | Pages 310 - 316
1 Nov 2014
Tomaszewski R Bohosiewicz J Gap A Bursig H Wysocka A

Objectives

The aim of this experimental study on New Zealand’s white rabbits was to investigate the transplantation of autogenous growth plate cells in order to treat the injured growth plate. They were assessed in terms of measurements of radiological tibial varus and histological characteristics.

Methods

An experimental model of plate growth medial partial resection of the tibia in 14 New Zealand white rabbits was created. During this surgical procedure the plate growth cells were collected and cultured. While the second surgery was being performed, the autologous cultured growth plate cells were grafted at the right tibia, whereas the left tibia was used as a control group.


Bone & Joint Research
Vol. 3, Issue 6 | Pages 212 - 216
1 Jun 2014
McConaghie FA Payne AP Kinninmonth AWG

Objectives

Acetabular retractors have been implicated in damage to the femoral and obturator nerves during total hip replacement. The aim of this study was to determine the anatomical relationship between retractor placement and these nerves.

Methods

A posterior approach to the hip was carried out in six fresh cadaveric half pelves. Large Hohmann acetabular retractors were placed anteriorly, over the acetabular lip, and inferiorly, and their relationship to the femoral and obturator nerves was examined.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 10 | Pages 1433 - 1438
1 Oct 2012
Lam W Guo X Leung K Kwong KSC

This study was designed to test the hypothesis that the sensory innervation of bone might play an important role in sensing and responding to low-intensity pulsed ultrasound and explain its effect in promoting fracture healing. In 112 rats a standardised mid-shaft tibial fracture was created, supported with an intramedullary needle and divided into four groups of 28. These either had a sciatic neurectomy or a patellar tendon resection as control, and received the ultrasound or not as a sham treatment. Fracture union, callus mineralisation and remodelling were assessed using plain radiography, peripheral quantitative computed tomography and histomorphology.

Daily ultrasound treatment significantly increased the rate of union and the volumetric bone mineral density in the fracture callus in the neurally intact rats (p = 0.025), but this stimulating effect was absent in the rats with sciatic neurectomy. Histomorphology demonstrated faster maturation of the callus in the group treated with ultrasound when compared with the control group. The results supported the hypothesis that intact innervation plays an important role in allowing low-intensity pulsed ultrasound to promote fracture healing.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 6 | Pages 830 - 835
1 Jun 2007
Hara Y Ochiai N Abe I Ichimura H Saijilafu Nishiura Y

We investigated the effect of progesterone on the nerve during lengthening of the limb in rats. The sciatic nerves of rats were elongated by leg lengthening for ten days at 3 mm per day. On alternate days between the day after the operation and nerve dissection, the progesterone-treated group received subcutaneous injections of 1 mg progesterone in sesame oil and the control group received oil only. On the fifth, tenth and 17th day, the sciatic nerves were excised at the midpoint of the femur and the mRNA expression level of myelin protein P0 was analysed by quantitative real time polymerase chain reaction. On day 52 nodal length was examined by electron microscopy, followed by an examination of the compound muscle action potential (C-MAP) amplitude and the motor conduction velocity (MCV) of the tibial nerve on days 17 and 52. The P0 (a major myelin glycoprotein) mRNA expression level in the progesterone-treated group increased by 46.6% and 38.7% on days five and ten, respectively. On day 52, the nodal length in the progesterone-treated group was smaller than that in the control group, and the MCV of the progesterone-treated group had been restored to normal.

Progesterone might accelerate the restoration of demyelination caused by nerve elongation by activating myelin synthesis.