Advertisement for orthosearch.org.uk
Results 1 - 17 of 17
Results per page:
Bone & Joint Research
Vol. 1, Issue 7 | Pages 145 - 151
1 Jul 2012
Sharma A Meyer F Hyvonen M Best SM Cameron RE Rushton N

Objectives. There is increasing application of bone morphogenetic proteins (BMPs) owing to their role in promoting fracture healing and bone fusion. However, an optimal delivery system has yet to be identified. The aims of this study were to synthesise bioactive BMP-2, combine it with a novel α-tricalcium phosphate/poly(D,L-lactide-co-glycolide) (α-TCP/PLGA) nanocomposite and study its release from the composite. Methods. BMP-2 was synthesised using an Escherichia coli expression system and purified. In vitro bioactivity was confirmed using C2C12 cells and an alkaline phosphatase assay. The modified solution-evaporation method . was used to fabricate α-TCP/PLGA nanocomposite and this was characterised using X-ray diffraction and scanning electron microscopy. Functionalisation of α-TCP/PLGA nanocomposite by adsorption of BMP-2 was performed and release of BMP-2 was characterised using an enzyme-linked immunosorbent assay (ELISA). Results. Alkaline phosphatase activity of C2C12 cells was increased by the presence of all BMP-2/nanocomposite discs compared with the presence of a blank disc (p = 0.0022), and increased with increasing incubation concentrations of BMP-2, showing successful adsorption and bioactivity of BMP-2. A burst release profile was observed for BMP-2 from the nanocomposite. . Conclusions. Functionalisation of α-TCP/PLGA with BMP-2 produced osteoinduction and was dose-dependent. This material therefore has potential application as an osteoinductive agent in regenerative medicine


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 23 - 23
1 May 2012
Sharma A Meyer F Hyvonen M Best S Rushton N Cameron R
Full Access

Introduction. The annual incidence of fractures in the UK is almost 4%. Bone grafting procedures and segmental bone transport have been employed for bone tissue regeneration. However, their limited availability, donor site morbidity and increased cost mean that there is still a large requirement for alternative methods and there is considerable research into regeneration using bone morphogenetic proteins (BMPs). The aims of this study are to synthesise and combine BMP-2 with a novel nanocomposite and study its release. Materials and Methods. BMP-2 was synthesised using an E. coli expression system and purified. C2C12 cells were used to test its bioactivity using an alkaline phosphatase (ALP) assay. The modified solution evaporation method was used to fabricate 30% a-TCP/PLGA nanocomposite and it was characterized using SEM, TEM, TGA, XRD, EDX and particle size analysis. The release pattern of adsorbed BMP-2 was studied using an ELISA assay. Results. SEM suggests that there was a homogeneous distribution of a-TCP nanoparticles within the PLGA matrix. The concentration of BMP-2 adsorbed onto a-TCP/PLGA nanocomposites directly correlated with the incubation concentration of BMP-2. Approximately 10-15% of BMP-2 was adsorbed on to the discs, up to an incubation concentration of 25 μg/ml. At a higher incubation concentration (50 μg/ml), however, only 4% of the BMP-2 appears to have been adsorbed. The ALP activity shows that the BMP-2 was bioactive and successfully adsorbed onto the surface of the a-TCP/PLGA nanocomposite. A burst release pattern of BMP-2 was observed over 24h, being maximal at 2 h. Discussion. Increasing incubation concentrations of BMP-2 resulted in an increase of detected adsorbed BMP-2 on the discs, however this was not observed at the highest incubation concentration (50 μg/ml). As adsorption of BMP-2 onto the ground surface of the a-TCP/PLGA nanocomposite occurs primarily through electrostatic interactions between cationic BMP-2 and anionic a-TCP, this might reflect saturation in adsorption secondary to saturation of surface anionic a-TCP by BMP-2, or heterogeneity of the discs' content and/or surface area. Adsorbed BMP-2 was shown to have bioactivity which significantly increased with increasing incubation concentrations of BMP-2 and suggests this nanocomposite could have osteoinductive potential in-vivo. The burst pattern of BMP-2 release has been shown previously from BMP adsorbed onto mPCL/collagen/HA composite and this significantly increased the bone formation of critical-sized defects. Whilst a more sustained release profile of BMP-2 is generally considered desirable, this nanocomposite of a-TCP/PLGA has been shown to possess some osteoconductive and weak osteoinductive properties itself (unpublished). The addition of BMP-2 to the nanocomposite by adsorption results in an early burst release, which can promote the differentiation of mesenchymal cells into osteoblasts. The proliferation of these might then be sustained by the nanocomposite itself, without the need for sustained delivery of BMP-2. Conclusions. Bioactive BMP-2 was synthesised and combined with a-TCP/PLGA nanocomposite, producing a biodegradable and osteoinductive material which has potential for use in bone regeneration


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_9 | Pages 48 - 48
1 Sep 2019
Partridge S Thorpe A Le Maitre C Sammon C
Full Access

Introduction

Injectable hydrogels via minimally invasive surgery reduce the risk of infection, scar formation and the cost of treatment. Degradation of the intervertebral disc (IVD) currently has no preventative treatment. An injectable hydrogel material could restore disc height, reinforce local mechanical properties, and promote tissue regeneration. We present a hydrogel material Laponite® associated poly(N-isopropylacrylamide)-co-poly(dimethylacrylamide) (NPGel). Understanding how the components of this hydrogel system influence material properties, is crucial for tailoring treatment strategies for the IVD and other tissues.

Methods & Results

The effect of hydrogel wt./wt., clay and co-monomer percentages were assessed using a box-Behnken design. Rheometry, SEM, FTIR and swelling was used to measure changes in material properties in simulated physiological conditions. Rheometry revealed gelation temperature of hydrogel materials could be modified with dimethyl-acrylamide co-monomer; however, final maximum mechanical properties remained unaffected. Increasing the weight % and clay % increased resultant mechanical properties from ∼500–2500 G' (Pa), increased viscosity, but retained the ability to flow through a 26G needle at 39°C.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 11 - 11
14 Nov 2024
Maia J Bilo M Silva AS Sobreiro-Almeida R Mano J
Full Access

Introduction. Ink engineering can advance 3D-printability for better therapeutics, with optimized proprieties. Herein, we describe a methodology for yielding 3D-printable nanocomposite inks (NC) using low-viscous matrices, via the interaction between the organic and inorganic phases by chemical coupling. Method. Natural photocurable matrices were synthesized: a protein – bovine serum albumin methacrylate (BSAMA), and a polysaccharide – hyaluronic acid methacrylate (HAMA). Bioglass nanoparticles (BGNP) were synthesized and functionalized via aminosilane chemistry. The functionalization of BSAMA, HAMA, and BGNP were quantified via NMR. To arise extrudable inks, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-Hydroxysuccinimide (NHS) chemistry was used to link innate carboxylic groups of BSAMA/HAMA and amine-functionalized BGNP. Different crosslinker and BGNP amounts were tested. Visible light photopolymerization is performed, using lithium phenyl-2,4,6-trimethylbenzoylphosphinate. The NC's rheological, mechanical, and biological behavior was evaluated before 3D extrusion printability. Result. All composite formulations effectively immobilized and homogeneously dispersed the BGNP, turning low-viscous materials (< 1 Pa) into shear-thinning formulations with tunable increased elastic/viscous moduli (50-500 Pa). More pronounced increments were found with increasing EDC/NHS and BGNP concentrations. The resulting inks produce robust and stable scaffolds successfully retrieved after post-print photocrosslinking (1-5 kPa). Bioactivity in simulated body fluid and in vitro assays using adipose-derive stem cells revealed a similar calcium/phosphate ratio to that of hydroxyapatite, and increased viability and metabolic activity. BSAMA and HAMA demonstrated distinct natures not only in printability but also in overall cellular performance and mechanical properties, making these ideal for interfacial tissue engineering. Conclusion. This strategy demonstrated being effective and reproducible to advance nanocomposites for 3D printing using different types of biomaterials. Further, we envision using both inks to produce hierarchical constructs via extrusion printing, better mimicking bone-to-cartilage interfaces. Acknowledgements. FCT grants (DOI:10.54499/2022.04605.CEECIND/CP1720/CT0021), (BI/UI89/10303/2022), (PRT/BD/154735/2023); EU's Horizon 2020 research and innovation programs InterLynk (Nº953169) and SUPRALIFE (Nº101079482) projects; CICECO-Aveiro Institute of Materials projects (DOI:10.54499/UIDB/50011/2020), (DOI:10.54499/UIDP/50011/2020), and (DOI:10.54499/LA/P/0006/2020), financed by FCT/MCTES(PIDDAC)


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 102 - 102
1 Nov 2018
Shokuhfar T Shirdar M Shahbazian R
Full Access

The enhancement of current bone cement properties is a challenging issue that has been the focus of much research. Developing bone composites with high level of cytocompatibility, mechanical and antibacterial properties is a challenging task. We overcome this challenge by designing a nanocomposite that contain two-dimensional (2D) nanosheets. To develop our novel bone cement nanocomposite, 2D nanosheets were synthesized, mixed in different ratios, and then added to the PMMA matrix. The results reveal that the incorporation of 2D nanosheets into the PMMA matrix leads to increase in the antibacterial properties of the bone cement composite against E. coli bacteria. In addition, the 2D nanosheets improve the compression strength of the bone cement nanocomposite significantly. We also show that nanosheets increased the bioactivity of the bone cements. Finally, MTT assay results indicate that PMMA as a control sample has the lowest cytocompatibility, however, our novel nanocomposites have the highest amount of cytocompatibility. Thus, the current study suggests that 2D nanosheets are potential filler components for the next generation of PMMA bone cement nanocomposites. The findings of this work reveal that the excellent performance of the proposed bone composite can result in a paradigm shift in design of state-of-the art bone cement composites


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 13 - 13
1 Jan 2019
Thaher YA Perni S Prokopovich P
Full Access

Total joint replacement (TJR), such as hip and knee replacement, is commonly used for the treatment of end stage arthritis. The use of Poly (methylmethacrylate) bone cement is a gold standard in such replacement, where it fixes the implant in place and transfer stresses between bone and implant, and frequently used for local delivery of drugs such as antibiotics. The use of antibiotic loaded bone cement is considered a well-established standard in the treatment and prophylaxis of Prosthetic joint infections (PJI). PJIs is a serious problem that decreases success rate of surgery and can be life threatening to patients, where the incidence can reach up 2% in total and hip replacements and up to 40% for revision surgery. Currently used antibiotic loaded bone cements have many limitations, including burst release of < 10% of antibiotic added. This burst release falls rapidly below inhibitory level within few days, which leads to selection of resistant antimicrobial strains and does not provide prophylaxis from early and delayed stage infection. This study aims to provide a controlled release for gentamicin when loaded on Silica nanoparticles (NP) using layer-by-layer technique (LbL) to provide prophylaxis and treatment from postsurgical infections. The gentamicin loaded NPs were incorporated into PMMA bone cement and the new nanocomposite is characterized for gentamicin release, antimicrobial and mechanical properties. Our results showed that the nanocomposite gentamicin release continued for 30 days at concentration 3 times higher than the commercial formulation containing the same amount of gentamicin, where burst release for few days were observed. Moreover, the nanocomposite showed superior antimicrobial inhibition for bacterial growth and good cytocompatibility without adversely affecting the cement compressive strength, bending and fracture toughness properties


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_I | Pages 61 - 62
1 Mar 2005
Bistolfi A Bracco P Costa L del Prever EB Bellare A Crova M Gallinaro P
Full Access

Aims: to investigate the mechanical properties of a new nanocomposite bone cement radiopacified with Barium Sulfate (BaSu) nanoparticles added at different concentrations, compared to a control cement with the classical BaSu microparticles. Methods: the starting material was Endurance (J& J/ DePuy, USA) bone cement without BaSu; the radi-opacifier particles have been mixed into the cement powder in several different concentrations of 5, 10, 20, 30, 40% of the weight respectively. Two groups were studied: controls, with classical medical grade BaSu particles (average size 1000 nm) and nanocomposites, with nanoparticles (av. size 100 nm). In accordance with the ASTM, an Instron 4201 machine tested a minimum of 6 specimens for each concentration. Tensile tests were performed at cross-head speeds of 1mm/sec, while compression tests were performed at 25,4 mm/sec. Results were statistically analysed. Results: nanocomposites had higher compressive Yield strength in all groups except 30 and 40% and lower compressive Modulus in all but 5% group (no significant difference). Nanocomposites had higher tensile values in 5%, 10%, and 40% concentrations for Strain-to-failure, yield stress, and Work-of-Fracture, and no significant differences in the other concentrations. Tensile modulus had not statistically significant variations. Higher BaSu concentrations give increases in tensile modulus and decreases in the other tensile properties for both the groups. The nanocomposite outperformed the control in the 5, 10, and 20% groups, while the 30 and 40% groups had no significant differences; all the results were above ASTM requirements. Conclusions: bone cement has several uses, like joint replacement, filling defects in tumour or revision surgery, and more recently vertebroplasty. These applications require different properties and would have benefits from the possibility to change viscosity, radiopacity, time of polymerisation, mechanical features. Previous studies have demonstrated the improved performances of the new nanocomposite cement at the clinical used concentration of 10%. This study investigated the possibility to augment the concentration of BaSu and therefore the radiopacity and their relative effect on the mechanical properties; the results demonstrated the good compliance of the nanoparticles cement in this field. This would be useful in particular for specific applications such vertebroplasty. Further studies are needed to investigate and determine the ideal fatigue, handling and mixing properties, viscosity and radiopacity


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 136 - 136
2 Jan 2024
Manferdini C Gabusi E Dolzani P Trucco D Lenzi E D'Atri G Vannozzi L Cafarelli A Ricotti L Lisignoli G
Full Access

In cartilage tissue engineering (TE),new solutions are needed to effectively drive chondrogenic differentiation of mesenchymal stromal cells in both normal and inflammatory milieu. Ultrasound waves represent an interesting tool to facilitate chondrogenesis. In particular, low intensity pulsed ultrasound (LIPUS)has been shown to regulate the differentiation of adipose mesenchymal stromal cells. Hydrogels are promising biomaterials capable of encapsulating MSCs by providing an instructive biomimetic environment, graphene oxide (GO) has emerged as a promising nanomaterial for cartilage TE due to its chondroinductive properties when embedded in polymeric formulations, and piezoelectric nanomaterials, such as barium titanate nanoparticles (BTNPs),can be exploited as nanoscale transducers capable of inducing cell growth/differentiation. The aim of this study was to investigate the effect of dose-controlled LIPUS in counteracting inflammation and positively committing chondrogenesis of ASCs embedded in a 3D piezoelectric hydrogel. ASCs at 2*10. 6. cells/mL were embedded in a 3D VitroGel RGD. ®. hydrogel without nanoparticles (Control) or doped with 25 µg/ml of GO nanoflakes and 50 µg/ml BTNPs.The hydrogels were exposed to basal or inflammatory milieu (+IL1β 10ng/ml)and then to LIPUS stimulation every 2 days for 10 days of culture. Hydrogels were chondrogenic differentiated and analyzed after 2,10 and 28 days. At each time point cell viability, cytotoxicity, gene expression and immunohistochemistry (COL2, aggrecan, SOX9, COL1)and inflammatory cytokines were evaluated. Ultrasound stimulation significantly induced chondrogenic differentiation of ASCs loaded into 3D piezoelectric hydrogels under basal conditions: COL2, aggrecan and SOX9 were significantly overexpressed, while the fibrotic marker COL1 decreased compared to control samples. LIPUS also has potent anti-inflammatory effects by reducing IL6 and IL8 and maintaining its ability to boost chondrogenesis. These results suggest that the combination of LIPUS and piezoelectric hydrogels promotes the differentiation of ASCs encapsulated in a 3D hydrogel by reducing the inflammatory milieu, thus representing a promising tool in the field of cartilage TE. Acknowledgements: This work received funding from the European Union's Horizon 2020 research and innovation program, grant agreement No 814413, project ADMAIORA (AdvanceD nanocomposite MAterIals for in situ treatment and ultRAsound-mediated management of osteoarthritis)


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 7 - 7
1 Oct 2019
Ligorio C Vijayaraghavan A Hoyland J Saiani A
Full Access

Introduction. Intervertebral disc degeneration (IVDD) associated with low back pain is a major contributor to global disability. Current treatments are poorly efficient in the long-term resulting in medical complications. Therefore, minimally invasive injectable therapies are required to repopulate damaged tissues and aid regeneration. Among injectable biomaterials, self-assembling peptide hydrogels (SAPHs) represent potential candidates as 3D cell carriers. Moreover, the advent of graphene-related materials has opened the route for the fabrication of graphene-containing hydrogel nanocomposites to direct cellular fate. Here, we incorporated graphene oxide (GO) within a SAPH to develop a biocompatible and injectable hydrogel to be used as cell carrier to treat IVDD. Methods and results. Hydrogel morphology and mechanical properties have been investigated showing high mechanical properties (G'=12kPa) comparable with human native nucleus pulposus (NP) tissue (G'=10kPa), along with ease of handling and injectability in dry and body fluid conditions. Hydrogel nanocomposites resulted biocompatible for the encapsulation of bovine NP cells, showing higher viability (>80%) and metabolic activity in 3D cell culture over 7 days, compared to GO-free hydrogels. Moreover, GO has demonstrated to bind TGF-β3 biomolecules with high efficiency, suggesting the use of GO as local reservoir of growth factors within the injected hydrogel to promote extracellular matrix deposition and tissue repair. Conclusions. Our results show that incorporation of GO within the SAPH improves cell viability and metabolic activity. Furthermore, its tissue-mimicking mechanical properties and chemical tunability make it a promising candidate as injectable carrier of NP cells for the treatment of IVDD. Part of this work has been published (DOI: 10.1016/j.actbio.2019.05.004). Conflicts of interests: No conflicts of interest. Sources of funding: The authors thank the EPSRC & MRC CDT in Regenerative Medicine for its financial support (EP/L014904/1)


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 30 - 30
1 Oct 2022
Jensen LK Jensen HE Blirup SA Bue M Hanberg P Soto S Aalbaek B Arkas M Vardavoulias M
Full Access

Aim. To develop a new system for antibacterial coating of joint prosthesis and osteosynthesis material. The new coating system was designed to release gentamicin immediately after insertion to eradicate surgical contamination. Method. Steel implants (2×15mm) were coated with a solid nanocomposite xerogel made from silica and the dendritic polymer, hyperbranched polyethyleneimine. The xerogel was anchored inside a porous surface made by pre-coating with titanium microspheres. Finally, gentamicin was encapsulated in the xerogel, i.e. no chemical binding. A total of 50 µg gentamicin was captured into each implant. The efficacy of the new coating was evaluated in a porcine model of implant associated osteomyelitis. In total, 30 female pigs were randomized into 3 study groups (n=10). Group A; plain implants + saline, Group B; plain implants + 10. 4. CFU of Staphylococcus aureus, and Group C; coated implants + 10. 4. CFU of S. aureus. Implant + inoculum was placed into a pre-drilled implant cavity of the right tibia and the pig was euthanized 5 days afterwards. Postmortem microbiology and pathology were performed. Two additional pigs were used in a pharmacokinetic study where microdialysis (MD) catheters were placed alongside coated implants. Extracellular fluid was sampled regularly for 24 hours from the MD catheters and analyzed for gentamicin content. Results. Within Groups A and C, all implants were found sterile by sonication and bacteria could not be identified within the surrounding bone tissue. In contrast, all Group B animals had S. aureus positive implant and tissue microbiology. Macroscopic and microscopic pathological examinations confirmed that Group A and C animals were complete identic, i.e. no pus around implants and only minor peri-implant inflammation related to insertion of implants per se. All Group B animals had pus around their implants and a massive peri-implant inflammatory response dominated by neutrophil granulocytes. Maximum gentamicin release (35 µg /mL) was measured in the first obtained MD sample, i.e. after 30 min, and the concentration stayed above the MIC level for the used S. aureus strain for 8 hours. Conclusions. The new xerogel coating prevented development of osteomyelitis. Prevention was due to a fast gentamicin release immediately following insertion and antimicrobial active concentrations were detectable several hours after implantation. This means that the critical time point of most relevant surgical procedures potentially could be protected by the novel coating. The new coating will be investigated on larger scale implants and full-size prosthesis in the future


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 444 - 444
1 Sep 2009
Vadalà G Rainer A Spadaccio C Denaro V Trombetta M
Full Access

The use of mesenchymal stem cells (MSCs) for cartilage and bone tissue engineering needs to be supported by scaffolds that may release stimuli for modulate cell activity. The objective of this study was to asses if MSC undergo differentiation when cultured upon a membrane of nanofibers of poly-L-lactic acid loaded with hydroxyapatite nanoparticles (PLLA/HAp). The PLLA/HAp nanocomposite was prepared by electrospinning. Membranes microstructure was evaluated by SEM. MSCs were seeded on PLLA/HAp membranes by standard static seeding and cultured either in basal medium or Chondrogenic Differentiation Medium. Cell attachment and engraftment was assessed 3 days after seeding and MSC differentiation was evaluated by immunostaining for CD29, SOX-9 and Aggrecan under a confocal microscope after 14 days. PLLA/HAp membrane obtained was composed by fibers (average diameter of 7μm) with nano-dispersed hydroxyapatite aggregates (average diameter of 0.3μm). 3 days after seeding, MSCs were well adhered on the PLLA/HAp fibers with a spindled shape. After 14 days of culture all MSCs were positive for SOX-9 in both basal and chondrogenic media groups. Aggrecan was present around the cells. MSCs were either CD29 positive or negative. We demonstrated that PLLA/HAp nanocomposites are able to induce differentiation of MSCs in chondrocyte-like cells. Since HAp has osteoinductive properties, the chondrogenic phenotype acquired by the MSCs may be either stable or an intermediate stage toward enchondral ossification. The presence of CD29 and SOX-9 double positive cells indicate intermediate differentiation phases. This nanocomposite could be a susceptible scaffold for bone or cartilage tissue engineering using undifferentiated MSCs


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 80 - 80
1 Jul 2020
Paul A Basu S Pacelli S Wang J
Full Access

A novel injectable hydrogel based on DNA and silicate nanodisks was fabricated and optimized to obtain a suitable drug delivery platform for biomedical applications. Precisely, the hydrogel was designed by combining two different type of networks: a first network (type A) made of interconnections between neighboring DNA strands and a second one (type B) consisting of electrostatic interactions between the silicate nanodisks and the DNA backbone. The silicate nanodisks were introduced to increase the viscosity of the DNA physical hydrogel and improve their shear-thinning properties. Additionally, the silicate nanodisks were selected to modulate the release capability of the designed network. DNA 4% solutions were heated at 90°C for 45 seconds and cooled down at 37°C degree for two hours. In the second step, the silicate nanodisks suspension in water at different concentrations (0.1 up to 0.5%) were then mixed with the pre-gel DNA hydrogels to obtain the nanocomposite hydrogels. Rheological studies were carried out to investigate the shear thinning properties of the hydrogels. Additionally, the hydrogels were characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron microscopy. The hydrogels were loaded with the osteoinductive drug dexamethasone and its release was tested in vitro in phosphate buffer pH 7.4. The drug activity upon release was tested evaluating the osteogenic differentiation of human adipose derived stem cells (hASCs) in vitro through analysis of main osteogenic markers and quantification of alkaline phosphatase activity and calcium deposition. Finally, the hydrogels were tested in vivo and injected into cranial defects in rats to assess their biocompatibility and bone regeneration potential. The inclusion of the silicate nanodisks increased the viscosity of the hydrogels and the best results were obtained with the highest concentration of the nanoclay (0.5%). The hydrogels possessed shear-thinning properties as demonstrated by cyclic strain sweep tests and were able to recover their original storage modulus G' upon removal of strain. Such improvement in the injectable properties of the formulated hydrogels was mainly attributed to the formation of electrostatic interactions between the silicate nanodisks and the phosphate groups of the DNA backbone as confirmed by XPS analysis of the O, N, and P spectra. Additionally, laponite was able to sustain the release of the osteoinductive drug dexamethasone which was instead completely released from the DNA-based hydrogels after a week. The drug after being released was still active and promoted the osteogenic differentiation of hASCs as confirmed by ALP expression and expression of main osteogenic markers including ALP and COLA1. Finally, the gels proved to be biocompatible in vivo when injected into cranial defects and promoted bone formation at the periphery of the defect after a month post-treatment. A novel injectable shear-thinning DNA-based hydrogel was characterized and tested for its drug delivery properties. The hydrogel can promote the sustain release of a small molecule like dexamethasone and be biocompatible in vitro and in vivo. Due to these promising findings, the designed system could find also applicability for the delivery of growth factors or other therapeutic molecules


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 130 - 130
1 Nov 2018
Leeuwenburgh S
Full Access

Calcium phosphate ceramics and bioactive glasses are frequently used in orthopedic surgery to stimulate the regeneration of bone tissue due to their superior compatibility to bone tissue. Nevertheless, the brittleness and lack of self-healing behavior of bioceramics are still considered as serious drawbacks. Therefore, these bioceramics have been combined with organic biomaterials for several decades. Since the 1990s, the emergence of nanotechnology has accelerated the progress with respect to the development of organic-inorganic nanocomposites of improved functionality compared to conventional composite biomaterials. This presentation focuses on the development of injectable (nano)composites with self-healing and/or load-bearing capacity. To this end, the affinity between polymeric and inorganic components was tuned by modifying non-covalent interactions between both composite components. Specifically, we exploited reversible interactions between hydrogel matrices and inorganic nanoparticles (traditional nanocomposites), hydrogel nanoparticles and inorganic nanoparticles (colloidal nanocomposites), as well as fibers and bioceramic matrices (fiber-reinforced cement composites). The resulting composite biomaterials were mechanically strong and self-healing, which may open up new avenues of research on the applicability of self-healing and load-bearing composite biomaterials for regenerative medicine


Bone & Joint Research
Vol. 11, Issue 10 | Pages 700 - 714
4 Oct 2022
Li J Cheung W Chow SK Ip M Leung SYS Wong RMY

Aims

Biofilm-related infection is a major complication that occurs in orthopaedic surgery. Various treatments are available but efficacy to eradicate infections varies significantly. A systematic review was performed to evaluate therapeutic interventions combating biofilm-related infections on in vivo animal models.

Methods

Literature research was performed on PubMed and Embase databases. Keywords used for search criteria were “bone AND biofilm”. Information on the species of the animal model, bacterial strain, evaluation of biofilm and bone infection, complications, key findings on observations, prevention, and treatment of biofilm were extracted.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 249 - 249
1 Jul 2014
Bociaga D Niedzielski P Grabarczyk J Nowak D Walkowiak B
Full Access

Summary Statement. Innovative nanocomposite carbon coating doped with Si can significantly improve the osseintegration of orthopaedics implants. Additionally, this kind of coating increases the mechanical resistance of the implants, what is especially important on case of joints (frictional pairs). Introduction. Use of layers of carbon-doped silicon, which leads to the synthesis of layers improving mechanical and biological characteristics, let obtain good strength by volume features. Suitable introduction to the structure of amorphous silicon dioxide layer allow for the production of higher adhesion to metallic substrates and consequently the increased thickness and hardness. The increased thickness of the layer leads to a stronger diffusion barrier to harmful metal ions from the implant material and thus consequently improving the biocompatibility of the implant. Moreover, a silicon beneficial effect on stress relaxation layer formed during the synthesis. This allows for improved biocompatibility, also affects other property obtained in the case of silicon carbide layers, the bacteriastability. This further protects the surface of the implant against the risk of bacterial colonization in both the implantation and subsequent use in the body, and preferably suppressing inflammation and faster healing of surgical wounds. The thus obtained product is much better than the biological and mechanical parameters of currently offered. Patients & Methods. In order to evaluate the fabricated coatings conditions examination of the basic physicochemical and mechanical properties were conducted (AFM, Raman, XPS, nanoindentation technique). The in vitro and in vivo tests were also conducted. As a biological material osteoblast Saos-2 cells and endothelial cells line EA. 926 were used. For the evaluation of proliferation and cytotoxicity a “live/dead” test was used. For testing bactericidal activity of the C/Si coatings, an exponential growth phase of E. coli strain DH5 α was used. Test of bacterial immediate toxicity and bacterial colonization were performed. A model of rabbits and guinea pigs were used to obtained results with reference to irritation, intradermal reactivity, sensitization, local effects after implantation with the histopathological examination, cytotoxicity test. Results. XPS results have shown that the silicon content for each group of samples, both steel and titanium alloy is about 3, 4 and 5 percent. Increasing the concentration of silicon above 5% results in the weakening of the mechanical properties of the layer and lead to delamination of the sterilization process. Addition of silicon in the range of 3–5% does not negatively affect the mechanical and structural properties of the modified surface and from this point of view, all the criterion of strength. Performed studies confirmed very good mechanical properties of C/Si coatings. In vitro studies have indicated the optimal concentration of silicon in the coating, where the material is biocompatible and also has good antibacterial properties. Biocompatibility of silicon coatings was also confirmed by irritation and sensitization testing in the in vivo model. Discussion/Conclusion. Final result of the surface modification C/Si coating depends on modification of two effects, i.e. the formation of the transition layer of the substrate material and the synthesis of the outer carbon coating. Results of in vitro and in vivo tests confirmed very good biological properties of coatings which proved the fact that it is possible to improve the parameters of the implant work at the same time adding to the intrinsic the antibactericidal properties


The Bone & Joint Journal
Vol. 96-B, Issue 5 | Pages 569 - 573
1 May 2014
Sullivan MP McHale KJ Parvizi J Mehta S

Nanotechnology is the study, production and controlled manipulation of materials with a grain size < 100 nm. At this level, the laws of classical mechanics fall away and those of quantum mechanics take over, resulting in unique behaviour of matter in terms of melting point, conductivity and reactivity. Additionally, and likely more significant, as grain size decreases, the ratio of surface area to volume drastically increases, allowing for greater interaction between implants and the surrounding cellular environment. This favourable increase in surface area plays an important role in mesenchymal cell differentiation and ultimately bone–implant interactions.

Basic science and translational research have revealed important potential applications for nanotechnology in orthopaedic surgery, particularly with regard to improving the interaction between implants and host bone. Nanophase materials more closely match the architecture of native trabecular bone, thereby greatly improving the osseo-integration of orthopaedic implants. Nanophase-coated prostheses can also reduce bacterial adhesion more than conventionally surfaced prostheses. Nanophase selenium has shown great promise when used for tumour reconstructions, as has nanophase silver in the management of traumatic wounds. Nanophase silver may significantly improve healing of peripheral nerve injuries, and nanophase gold has powerful anti-inflammatory effects on tendon inflammation.

Considerable advances must be made in our understanding of the potential health risks of production, implantation and wear patterns of nanophase devices before they are approved for clinical use. Their potential, however, is considerable, and is likely to benefit us all in the future.

Cite this article: Bone Joint J 2014; 96-B: 569–73.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 510 - 516
1 Apr 2011
Sugata Y Sotome S Yuasa M Hirano M Shinomiya K Okawa A

Several bisphosphonates are now available for the treatment of osteoporosis. Porous hydroxyapatite/collagen (HA/Col) composite is an osteoconductive bone substitute which is resorbed by osteoclasts. The effects of the bisphosphonate alendronate on the formation of bone in porous HA/Col and its resorption by osteoclasts were evaluated using a rabbit model. Porous HA/Col cylinders measuring 6 mm in diameter and 8 mm in length, with a pore size of 100 μm to 500 μm and 95% porosity, were inserted into a defect produced in the lateral femoral condyles of 72 rabbits. The rabbits were divided into four groups based on the protocol of alendronate administration: the control group did not receive any alendronate, the pre group had alendronate treatment for three weeks prior to the implantation of the HA/Col, the post group had alendronate treatment following implantation until euthanasia, and the pre+post group had continuous alendronate treatment from three weeks prior to surgery until euthanasia. All rabbits were injected intravenously with either saline or alendronate (7.5 μg/kg) once a week. Each group had 18 rabbits, six in each group being killed at three, six and 12 weeks post-operatively. Alendronate administration suppressed the resorption of the implants. Additionally, the mineral densities of newly formed bone in the alendronate-treated groups were lower than those in the control group at 12 weeks post-operatively. Interestingly, the number of osteoclasts attached to the implant correlated with the extent of bone formation at three weeks.

In conclusion, the systemic administration of alendronate in our rabbit model at a dose-for-weight equivalent to the clinical dose used in the treatment of osteoporosis in Japan affected the mineral density and remodelling of bone tissue in implanted porous HA/Col composites.