Bone shape estimation from partial observations, such as fluoroscopy or ultrasound, has been subject of significant interest over the past decade and can be regarded as the driving force behind several advances in statistical modelling of shape. While statistical models were initially used mostly as regularisers constraining shape matching algorithms, they are now increasingly employed due to their predictive ability, when only limited observations are available. With the current efforts toward minimal invasiveness, radiation exposure reduction, and optimization of the cost-effectiveness of procedures, two major challenges emerge on the field of statistical modelling. The first one is to develop methods that enable the use of as much information as possible that can be relevant for a specific shape prediction task, within the aforementioned limits. The second challenge concerns the accuracy of the resulting predictions, which needs to be quantified in order to evaluate the associated risks, and to optimise the data acquisition procedures. In terms of shape prediction, most studies so far have concentrated on individualizing statistical atlases based on imaging data. However, relevant information about skeletal morphology can also be obtained from simple anthropometric and
Background. The knee joint morphology varies according to gender and morphotype of the patients. Objectives. To measure the dimensions of the proximal tibia and distal femur of osteoarthritic knees in a group of patients from the same ethnic group (Arabs) and to compare these measurements with the dimensions of six total knee implants. Patients and methods. Three-dimensional CT reconstructions were used to collect morphologic data from 124 osteoarthritic knees. Anteroposterior and mediolateral measurements were obtained from tibial and femoral bony resection surfaces planned for patient-specific instrumentation (Figures 1 and 2). These measurements were compared to the dimensions for six different types of knee implants. Results. The average tibial mediolateral (tML) and tibial anteroposterior (tAP) measurement for the study group were 74.36±6 mm and 48.94±4.57 mm, respectively; the medial tibial plateau was larger than lateral. The average femur mediolateral (fML) and femur anteroposterior (fAP) measurements for the same group were 72.04±6.6 and 68.1±7.75, respectively. For implant matching, the average tibial aspect ratio was 152.62±12.66 and the femoral average aspect ratio was 106.37±14.34. Differences were found between
Rapid prototyping (RP), especially useful in surgical specialities involving critical three-dimensional relationships, has recently become cheaper to access both in terms of file processing and commercially available printing resources. One potential problem has been the accuracy of models generated. We performed computed tomography on a cadaveric human patella followed by data conversion using open source software through to selective-laser-sintering of a polyamide model, to allow comparative
Quantitative knowledge on the anatomy of the medial collateral ligament (MCL) is important for preventing MCL damage during unicompartmental knee arthroplasty (UKA). The objective of this study was to quantitatively determine the morphology of the medial capsule and deep MCL on tibias. METHODS. 24 cadaveric human knees (control: 19, OA: 5) were dissected to investigate the deep MCL and capsule anatomy. The specimens were fixed in full extension and this position was maintained during the dissection and
Background:. Currently, there are a variety of different reverse shoulder implant designs but few anatomic studies to support the optimal selection of prosthetic size. This study analyzed the glenohumeral relationships of patients who underwent reverse shoulder arthroplasty (RSA). Methods:. Ninety-two shoulders of patients undergoing primary RSA for a massive rotator cuff tear without bony deformity or deficiency and 10 shoulders of healthy volunteers (controls) were evaluated using three-dimensional CT reconstructions and computer aided design (CAD) software. Anatomic landmarks were used to define scapular and humeral planes in addition to articular centers. After aligning the humeral center of rotation with the glenoid center, multiple glenohumeral relationships were measured and evaluated for linearity and size stratification. The correction required to transform the shoulder from its existing state (CT scan) to a realigned image (CAD model) was compared between the RSA and control groups. Size stratification was verified for statistical significance between groups. Generalized linear modeling was used to investigate if glenoid height, coronal humeral head diameter and gender were predictive of greater tuberosity positions. Results:. All 92 shoulders were grouped into three different categories based on glenoid height. The humeral head size, glenoid size, lateral offset, and inferior offset all increased linearly (r. 2. > 0.95), but the rate of increase varied (slopes range from 0.59 to 1.9). Translations required to normalize the shoulder joint were similar between healthy and pathologic cases except for superior migration. Glenoid height, coronal humeral head diameter and gender predicted the greater tuberosity position within 1.09 ± 0.84 mm of actual position in ninety percent of the patient population.