Aims. Computer-assisted 3D preoperative planning software has the potential to improve postoperative stability in total hip arthroplasty (THA). Commonly, preoperative protocols simulate two functional positions (standing and relaxed sitting) but do not consider other common positions that may increase postoperative impingement and possible dislocation. This study investigates the feasibility of simulating commonly encountered positions, and positions with an increased risk of impingement, to lower postoperative impingement risk in a CT-based 3D
Aims. Traditionally, total hip arthroplasty (THA) templating has been performed on anteroposterior (AP) pelvis radiographs. Recently, additional AP hip radiographs have been recommended for accurate measurement of the femoral offset (FO). To verify this claim, this study aimed to establish quantitative data of the measurement error of the FO in relation to leg position and X-ray source position using a newly developed geometric
Dual Mobility (DM) Total Hip Replacements (THRs), are becoming widely used but function in-vivo is not fully understood. The aim of this study was to compare the incidence of impingement of a modular dual mobility with that of a standard cup. A geometrical
We have previously reported on the improved all-cause revision and improved revision for instability risk in lipped liner THAs using the NJR dataset. These findings corroborate studies from the Australian (AOANJRR) and New Zealand (NZOA) joint registries. The optimal orientation of the lip in THAs utilising a lipped liner remains unclear to many surgeons. The aim of this study was to identify impingement-free optimal liner orientations whilst considering femoral stem version, cup inclination and cup version. A cementless THA kinematic
Aims. Aseptic loosening is a leading cause of uncemented arthroplasty failure, often accompanied by fibrotic tissue at the bone-implant interface. A biological target, neutrophil extracellular traps (NETs), was investigated as a crucial connection between the innate immune system’s response to injury, fibrotic tissue development, and proper bone healing. Prevalence of NETs in peri-implant fibrotic tissue from aseptic loosening patients was assessed. A murine
Aims. The aims of this study were to develop an in vivo
Aims. The practice of overlapping surgery has been increasing in the delivery of orthopaedic surgery, aiming to provide efficient, high-quality care. However, there are concerns about the safety of this practice. The purpose of this study was to examine the safety and efficacy of a
Aims. Current treatments of prosthetic joint infection (PJI) are minimally effective against Staphylococcus aureus biofilm. A murine PJI
Background. Dislocation is a common complication following total hip arthroplasty (THA), and accounts for a high percentage of subsequent revisions. The purpose of this study was to develop a convolutional neural network (CNN)
Background. The Comprehensive Care for Joint Replacement (CJR)
Introduction. The practice of overlapping surgery has been increasing in the delivery of orthopaedic care, aiming to provide efficient, high-quality care. However, there have been concerns about the safety of this practice. The purpose of this study is to examine safety and efficacy of a
Aims. Osteolysis, secondary to local and systemic physiological effects, is a major challenge in total hip arthroplasty (THA). While osteolytic defects are commonly observed in long-term follow-up, how such lesions alter the distribution of stress is unclear. The aim of this study was to quantitatively describe the biomechanical implication of such lesions by performing subject-specific finite-element (FE) analysis on patients with osteolysis after THA. Patients and Methods. A total of 22 hemipelvis FE
Introduction. Porous surfaces developed over the past decades have been shown to promote tissue ingrowth. Hydroxyapatite (HA) coatings have been added to these porous coatings in an attempt to further augment bone ingrowth. The development of additive manufacturing techniques has allowed for precision in building these complex porous structures. The effect of supplemental HA coatings on these new surfaces is unclear. The purpose of this study is to evaluate the biological fixation of a novel 3D printed porous implant in a canine
Introduction. In early stage osteonecrosis of the femoral head (ONFH), core decompression (CD) is often performed; however, approximately 30% of CD cases progress to femoral head collapse. Bone healing can be augmented by preconditioning MSCs (pMSCs) with inflammatory cytokines. Another immunomodulatory approach is the timely resolution of inflammation using cytokines such as IL-4. We investigated the efficacy of pMSC and genetically modified MSCs that over-express IL-4 (IL4-MSCs) on steroid-associated ONFH in rabbits. Methods. Thirty-six male skeletally mature NZW rabbits received methylprednisolone acetate (20mg/kg) IM once 4 weeks before surgery. There were 6 groups:. CD alone – a 3 mm drill hole. + injection into the CD of:. hydrogel (HG) - 200 μl of hydrogel carrier. MSCs–1 million rabbit MSCs. pMSC - LPS (20 μg/ml) + TNFα (20 ng/ml) preconditioned MSCs. IL4-MSCs – rabbit IL-4 over-expressing MSCs. IL4-pMSCs – preconditioned IL-4 over-expressing MSCs. Eight weeks after surgery, femurs were harvested, and evaluated by microCT, biomechanical, and histological analyses. Results. Bone mineral density (BMD) and bone volume fraction (BVF) increased in the pMSC group compared to the CD and MSC groups . outside. of the CD area (p < 0.05, Fig.1). Similarly, the IL4-pMSC group was increased compared to the CD group (p < 0.05). The percentage of empty lacunae in the IL4-MSC group was significantly less than other groups . outside. the CD area (p < 0.05, Fig.2); however, IL4-MSC group had less trabecular bone formation . inside. the CD. The mechanical tests demonstrated no differences. Discussion. This rabbit steroid-associated ONFH
Aims. Fixation of osteoporotic proximal humerus fractures remains challenging even with state-of-the-art locking plates. Despite the demonstrated biomechanical benefit of screw tip augmentation with bone cement, the clinical findings have remained unclear, potentially as the optimal augmentation combinations are unknown. The aim of this study was to systematically evaluate the biomechanical benefits of the augmentation options in a humeral locking plate using finite element analysis (FEA). Methods. A total of 64 cement augmentation configurations were analyzed using six screws of a locking plate to virtually fix unstable three-part fractures in 24 low-density proximal humerus
Objectives. The primary purpose of this meta-analysis was to determine whether statin usage could reduce the risk of glucocorticoid-related osteonecrosis in animal
When performing revision total hip arthroplasty using diaphyseal-engaging titanium tapered stems (TTS), the recommended 3 to 4 cm of stem-cortical diaphyseal contact may not be available. In challenging cases such as these with only 2 cm of contact, can sufficient axial stability be achieved and what is the benefit of a prophylactic cable? This study sought to determine, first, whether a prophylactic cable allows for sufficient axial stability when the contact length is 2 cm, and second, if differing TTS taper angles (2° vs 3.5°) impact these results. A biomechanical matched-pair cadaveric study was designed using six matched pairs of human fresh cadaveric femora prepared so that 2 cm of diaphyseal bone engaged with 2° (right femora) or 3.5° (left femora) TTS. Before impaction, three matched pairs received a single 100 lb-tensioned prophylactic beaded cable; the remaining three matched pairs received no cable adjuncts. Specimens underwent stepwise axial loading to 2600 N or until failure, defined as stem subsidence > 5 mm.Aims
Methods
Developmental dysplasia of the hip can cause pain and premature osteoarthritis. However, the risk factors and timing for disease progression in young adults are not fully defined. This study identified the incidence and risk factors for contralateral hip pain and surgery after periacetabular osteotomy (PAO) on an index dysplastic hip. Patients followed for 2+ years after unilateral PAO were grouped by eventual contralateral pain or no-pain, based on modified Harris Hip Score, and surgery or no-surgery. Univariate analysis tested group differences in demographics, radiographic measures, and range-of-motion. Kaplan-Meier survival analysis assessed pain development and contralateral hip surgery over time. Multivariate regression identified pain and surgery risk factors. Pain and surgery predictors were further analyzed in Dysplastic, Borderline, and Non-dysplastic subcategories, and in five-degree increments of lateral center edge angle (LCEA) and acetabular inclination (AI). 184 patients were followed for 4.6±1.6 years, during which 51% (93/184) reported hip pain and 33% (60/184) underwent contralateral surgery. Kaplan-Meier analysis predicted 5-year survivorship of 49% for pain development and 66% for contralateral surgery. Painful hips exhibited more severe dysplasia than no-pain hips (LCEA 16.5º vs 20.3º, p<0.001; AI 13.2º vs 10.0º p<0.001). AI was the sole predictor of pain, with every 1° AI increase raising the risk by 11%. Surgical hips also had more severe dysplasia (LCEA 14.9º vs 20.0º, p<0.001; AI 14.7º vs 10.2º p<0.001) and were younger (21.6 vs 24.1 years, p=0.022). AI and a maximum alpha angle ≥55° predicted contralateral surgery. 5 years after index hip PAO, 51% of contralateral hips experience pain and 34% percent are expected to need surgery. More severe dysplasia, based on LCEA and AI, increases the risk of contralateral hip pain and surgery, with AI being a predictor of both outcomes. Knowing these risks can inform patient counseling and treatment planning.
Background. Periprosthetic femoral fractures following total hip arthroplasty are relatively uncommon but are associated with significant morbidity. With an increasing number of total hip arthroplasties being carried out in an aging population we need to ensure correct implants are chosen for our patients. A recent review of NJR data suggested a significantly higher revision risk for the Zimmer CPT stems due to periprosthetic fractures when compared to the Stryker Exeter stems. Objectives. Our aim was to compare the biomechanics of periprosthetic fractures around the CPT and Exeter V40 stems in a composite saw bone
Introduction. PJI is a devastating complication following total joint arthroplasty. In this study, we explore the efficacy of a bacteriophage-derived lysin, PlySs2, against in-vitro biofilm on titanium implant surfaces and in an acute in-vivo murine debridement antibiotic implant retention (DAIR)