Introduction: The aim of this study is to investigate whether MoM implants result in more chromosome aberrations and increased blood metal ions post-operatively when compared to
Aims. In metal-on-polyethylene (MoP) total hip arthroplasty (THA), large metal femoral heads have been used to increase stability and reduce the risk of dislocation. The increased size of the femoral head can, however, lead to increased taper corrosion, with the release of metal ions and adverse reactions. The aim of this study was to investigate the relationship between the size of the femoral head and the levels of metal ions in the blood in these patients. Methods. A total of 96 patients were enrolled at two centres and randomized to undergo
Introduction. The identification of biological markers associated to implant failure in THA (total hip arthroplasty) patients remains a challenge in orthopedic surgery. In this search, previous studies have been mainly focused on typical mediators associated to bone metabolism and inflammation. Our group has evaluated changes in serum levels of insulin-like growth factor binding protein-1 (IGFBP-1), a protein which is not directly related to bone homeostasis, in patients undergoing THA. Method. We assessed IGFBP-1 levels in serum obtained from 131 patients (58% female, 42 % male; age: 68 ± 13 years) who underwent THA in the Orthopedic Surgery and Traumatology Department of our institution. In this cohort, 57% of patients had metal on polyethylene (MoP) as hip-bearing surface combination, 17 % had ceramic on ceramic (CoC) and 26% of them did not have any prosthesis. A test based on an enzyme-linked immunosorbent assay (ELISA) was used to determine IGFBP-1 levels in serum obtained from these patients. Result. Our results showed a significant increase in IGFBP- 1 levels in
In metal-on-polyethylene (MoP) THA large femoral metal heads are designed to increase stability and to reduce dislocation risk. The increased head size could lead to increased taper corrosion with the release of metal ions and adverse reactions. Using blood ion measurements, we aimed to investigate the association between femoral head size and metal-ion release after
Aims. There are limited published data detailing the volumetric material loss from tapers of conventional metal-on-polyethylene (MoP) total hip arthroplasties (THAs). Our aim was to address this by comparing the taper wear rates measured in an explanted cohort of the widely used Exeter THA with those measured in a group of metal-on-metal (MoM) THAs. Patients and Methods. We examined an existing retrieval database to identify all Exeter V40 and Universal
Objectives. T-cells are considered to play an important role in the inflammatory response causing arthroplasty failure. The study objectives were to investigate the composition and distribution of CD4+ T-cell phenotypes in the peripheral blood (PB) and synovial fluid (SF) of patients undergoing revision surgery for failed metal-on-metal (MoM) and metal-on-polyethylene (MoP) hip arthroplasties, and in patients awaiting total hip arthroplasty. Methods. In this prospective case-control study, PB and SF were obtained from 22 patients (23 hips) undergoing revision of MoM (n = 14) and
We compared the incidence of pseudotumours after
large head metal-on-metal (MoM) total hip arthroplasty (THA) with
that after conventional metal-on-polyethylene (MoP) THA and assessed
the predisposing factors to pseudotumour formation. . From a previous randomised controlled trial which compared large
head (38 mm to 60 mm) cementless MoM THA with conventional head
(28 mm) cementless
Background. Adverse local tissue reactions (ALTR) in metal-on-polyethylene (MoP) total hip arthroplasty (THA) with head-neck taper corrosion is likely to be multifactorial involving implant and patient factors. However, there is a paucity of clinical data on implant parameters as predisposing factors in
Objectives. Hips with metal-on-metal total hip arthroplasty (MoM THA) have a high rate of adverse local tissue reactions (ALTR), often associated with hypersensitivity reactions. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) measures tissue perfusion with the parameter Ktrans (volume transfer constant of contrast agent). Our purpose was 1) to evaluate the feasibility of DCE-MRI in patients with THA and 2) to compare DCE-MRI in patients with MoM bearings with metal-on-polyethylene (MoP) bearings, hypothesising that the perfusion index Ktrans in hips with MoM THA is higher than in hips with
Aims. Fretting and corrosion at the modular head/neck junction, known
as trunnionosis, in total hip arthroplasty (THA) is a cause of adverse
reaction to metal debris (ARMD). We describe the outcome of revision
of metal-on-polyethylene (MoP) THA for ARMD due to trunnionosis
with emphasis on the risk of major complications. Patients and Methods. A total of 36 patients with a
Introduction. Metal-on-polyethylene (MoP) is the most commonly used bearing couple in total hip replacements (THRs). Retrieval studies (Cooper et al, 2012, JBJS, Lindgren et al, 2011, JBJS) report adverse reactions to metal debris (ARMD) due to debris produced from the taper-trunnion junction of the modular
We questioned about bearing surface and infection in two populations of patients who had bilateral THA with different bearings performed in the same hospital by the same surgical team from the year 1981 to the year 2010 (mean followup 15 years; 7 to 35). 1) first population (mean age 32 years): 325 patients (650 hips) with sickle cell disease (SCD) with two different bearing on each side. 116 patients had Metal on PE (MoP) on one side and Ceramic on PE (CoP) on the contralateral; 106 patients had (CoP) and Ceramic on Ceramic (CoC); 103 patients had
Objectives. To quantify and compare peri-acetabular bone mineral density
(BMD) between a monoblock acetabular component using a metal-on-metal
(MoM) bearing and a modular titanium shell with a polyethylene (PE)
insert. The secondary outcome was to measure patient-reported clinical
function. Methods. A total of 50 patients (25 per group) were randomised to MoM
or metal-on-polyethlene (MoP). There were 27 women (11 MoM) and
23 men (14 MoM) with a mean age of 61.6 years (47.7 to 73.2). Measurements
of peri-prosthetic acetabular and contralateral hip (covariate)
BMD were performed at baseline and at one and two years’ follow-up.
The Western Ontario and McMaster Universities osteoarthritis index
(WOMAC), University of California, Los Angeles (UCLA) activity score,
Harris hip score, and RAND-36 were also completed at these intervals. Results. At two years, only zone 1 showed a loss in BMD (-2.5%) in MoM
group compared with a gain in the
Aims. Many case reports and small studies have suggested that cobalt
ions are a potential cause of cardiac complications, specifically
cardiomyopathy, after metal-on-metal (MoM) total hip arthroplasty
(THA). The impact of metal ions on the incidence of cardiac disease
after MoM THA has not been evaluated in large studies. The aim of
this study was to compare the rate of onset of new cardiac symptoms
in patients who have undergone MoM THA with those who have undergone
metal-on-polyethylene (MoP) THA. Patients and Methods. Data were extracted from the Standard Analytics Files database
for patients who underwent MoM THA between 2005 and 2012. Bearing
surface was selected using International Classification of Diseases
ninth revision codes. Patients with a minimum five-year follow-up
were selected. An age and gender-matched cohort of patients who underwent
MoP THA served as a comparison group. New diagnoses of cardiac disease
were collected during the follow-up period. Comorbidities and demographics
were identified and routine descriptive statistics were used. Results. We identified 29 483 patients who underwent MoM THA and 24 175
matched patients who underwent
Introduction. Adverse local tissue reactions (ALTR) can result in devastating soft tissue and osseous destruction, while potentially increasing the risk of concomitant periprosthetic joint infection (PJI). The aims of this study were to evaluate cobalt (Co) and chromium (Cr) levels generated in simulators from metal-on-polyethylene (MoP) and ceramic-on-polyethylene (CoP) constructs, and determine their impact on native tissues and PJI risk through evaluation of human adipose-derived mesenchymal stem cells (AMSCs) and Staphylococcus epidermidis isolates. Methods. Ten hip simulator constructs were assembled with 36-mm high-offset femoral heads, highly cross-linked polyethylene liners, and titanium stems. Five constructs used CoCr femoral heads and five used ceramic. Constructs were submerged in bovine serum (BS) and run for 1,000,000 cycles. Samples of BS were collected and evaluated for CoCr concentration. Various concentrations of CoCr were chosen for further assessment of cytotoxicity and growth impact on AMSCs and S. epidermidis and compared to inert SiO2. Results. After 1,000,000 cycles, mean
Introduction. Dislocation is one of the leading causes of revision after primary total hip arthroplasty (THA). Polyethylene wear is one of the risk factors for late dislocations (>2 years). It can induce an inflammatory response resulting in distension and thinning of the pseudocapsule, predisposing the hip to dislocation. Alternatively, eccentric seating of the femoral head in a worn out socket may result in an asymmetric excursion arc predisposing the hip to impingement, levering out and dislocation. Highly cross linked polyethylene has a significantly lower wear rate as compared to conventional polyethylene. Incidence of late dislocations has been shown to be significantly greater with conventional polyethylene bearings as compared to ceramic bearings. However, there is no literature comparing the risk of dislocation between ceramic- on- ceramic (CoC) bearings with metal/ceramic- on- cross linked polyethylene (M/CoP) bearings and this was the aim our study. Methods. Data regarding revision for dislocation after primary THA for osteoarthritis (OA) between September 1999 and December 2013 was obtained from the Australian Orthopaedic Association National Joint Replacement Registry (AOA NJRR). Revision risk for dislocation was compared between CoC, CoP, and
Prosthetic joint infections (PJI) are a devastating consequence in total hip arthroplasties (THA) with both significant morbidity and sometimes mortality, posing a significant health economic burden. Studies, both clinical and in-vitro have suggested possible reduction in PJI with the use of ceramic bearings. We have investigated the relationship of ceramic-on-ceramic (CoC), ceramic-on-polyethylene (CoP) or metal-on-polyethylene (MoP) bearing surface in affecting outcome of revision surgery after primary THA using data collected from National Joint Registry for England and Wales, Northern Ireland and the Isle of Man between 2002 and 2016. We used a competing risk regression model to investigate predictors of each revision outcome, such as infection, dislocation, aseptic revision and all cause revisions. The results were adjusted for age, gender, ASA grade, BMI, indication for surgery, intraoperative complications and implant data. We identified 456,457 THA (228,786
Introduction. Numerous studies have reported on clinically significant volumes of material loss and corrosion at the head-stem junction of metal-on-metal (MOM) hips; less is understood about metal-on-polyethylene (MOP) hips. We compared the effect of bearing type (MOM vs MOP) on taper material loss for a hip system of a single design (DePuy Pinnacle). Methods. We recruited retrieved MOM (n=30) and
INTRODUCTION. Metallic ion release may be related to bearing surface wear and thus serve as an indicator of in-vivo performance of metal on metal (MOM) articulations. OBJECTIVES. Compare large head MOM hip components with modular MOM and metal on polyethylene (MOP) to determine their relative effects on serum metal ion levels. METHODS. A prospective controlled trial to compare clinical, radiographic, and serum metal ion concentration (Co and Cr) results between the Large Head ASR XL System (MOM-1), the Ultamet Advanced Modularity System (MOM-2), and the Pinnacle Acetabular Cup System with polyethylene liner (MOP). We enrolled 151 consecutive patients (MOM-1 = 97, MOM-2 = 22,
Trunnionosis, due to mechanical wear and/or corrosion at the head stem taper junction, can occur in metal on polyethylene (MOP) hip implants. In some patients this results in severe soft tissue destruction or Adverse Reaction to Metal Debris (ARMD). The amount of material required to cause ARMD is unknown but analyses of retrieved hips may provide the answer to this clinically important question. We collected implants from 20 patients with failed hips with