Advertisement for orthosearch.org.uk
Results 1 - 17 of 17
Results per page:
Bone & Joint Open
Vol. 5, Issue 2 | Pages 147 - 153
19 Feb 2024
Hazra S Saha N Mallick SK Saraf A Kumar S Ghosh S Chandra M

Aims. Posterior column plating through the single anterior approach reduces the morbidity in acetabular fractures that require stabilization of both the columns. The aim of this study is to assess the effectiveness of posterior column plating through the anterior intrapelvic approach (AIP) in the management of acetabular fractures. Methods. We retrospectively reviewed the data from R G Kar Medical College, Kolkata, India, from June 2018 to April 2023. Overall, there were 34 acetabulum fractures involving both columns managed by medial buttress plating of posterior column. The posterior column of the acetabular fracture was fixed through the AIP approach with buttress plate on medial surface of posterior column. Mean follow-up was 25 months (13 to 58). Accuracy of reduction and effectiveness of this technique were measured by assessing the Merle d’Aubigné score and Matta’s radiological grading at one year and at latest follow-up. Results. Immediate postoperative radiological Matta’s reduction accuracy showed anatomical reduction (0 to 1 mm) in 23 cases (67.6%), satisfactory (2 to 3 mm) in nine (26.4%), and unsatisfactory (> 3 mm) in two (6%). Merle d’Aubigné score at the end of one year was calculated to be excellent in 18 cases (52.9%), good in 11 (32.3%), fair in three (8.8%), and poor in two (5.9%). Matta’s radiological grading at the end of one year was calculated to be excellent in 16 cases (47%), good in nine (26.4%), six in fair (17.6%), and three in poor (8.8%). Merle d’Aubigné score at latest follow-up deteriorated by one point in some cases, but the grading remained the same; Matta’s radiological grading at latest follow-up also remained unchanged. Conclusion. Stabilization of posterior column through AIP by medial surface plate along the sciatic notch gives good stability to posterior column, and at the same time can avoid morbidity of the additional lateral window. Cite this article: Bone Jt Open 2024;5(2):147–153


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 83 - 83
10 Feb 2023
Lee H Lewis D Balogh Z
Full Access

Distal femur fractures (DFF) are common, especially in the elderly and high energy trauma patients. Lateral locked osteosynthesis constructs have been widely used, however non-union and implant failures are not uncommon. Recent literature advocates for the liberal use of supplemental medial plating to augment lateral locked constructs. However, there is a lack of proprietary medial plate options, with some authors supporting the use of repurposing expensive anatomic pre-contoured plates. The aim of this study was to investigate the feasibility of a readily available cost-effective medial implant option. A retrospective analysis from January 2014 to June 2022 was performed on DFF (primary or revision) managed with supplemental medial plating with a Large Fragment Locking Compression Plate (LCP) T-Plate (~$240 AUD) via a medial sub-vastus approach. The T-plate was contoured and placed superior to the medial condyle. A combination of 4.5mm cortical, 5mm locking and/or 6.5mm cancellous screws were used, with oblique screw trajectories towards the distal lateral cortex of the lateral condyle. All extra-articular fractures and revision fixation cases were allowed to weight bear immediately. The primary outcome was union rate. This technique was utilised on sixteen patients; 3 acute, 13 revisions; mean age 52 years (range 16-85), 81% male, 5 open fractures. The union rate was 100%, with a median time to union of 29 weeks (IQR 18-46). The mean follow-up was 15 months. There were two complications: a deep infection requiring two debridements and a prominent screw requiring removal. The mean range of motion was 1–108. o. . Supplemental medial plating of DFF with a Large Fragment LCP T-Plate is a feasible, safe, and economical option for both acute fixation and revisions. Further validation on a larger scale is warranted, along with considerations to developing a specific implant in line with these principles


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 34 - 34
1 Nov 2016
Tufescu T Alshehri M
Full Access

Pilon fractures are associated to significant soft tissue injury, as well as soft tissue complications. The soft tissue on the medial side of the distal tibia is often involved, likely due to a lack of muscle investment. Medial approaches and medial plate application may well add to the soft tissue trauma. The objective of this study was to examine the relationship between medial plating and soft tissue complications in our center. This is a retrospective study based on a prospective database. Pilon cases treated with plate and screw fixation were identified between 2011 and 2014. Injury characteristics, patient demographics, and soft tissue complications were collected from chart review. Soft tissue complications recorded included any wound or skin problem, as well as patient complaints of hardware irritation leading to hardware removal. Logistic regression was employed. Independent variables for the model included medial plating, the presence of open fracture, smoking status and diagnosis of diabetes. Two models were created, one with the dependent variable as presence of any soft tissue complication, and the second model with the dependent variable as presence of a wound complication, which required surgical intervention. The study included 91 patients, 89 of whom had full data with an average follow up of 11.6 months (1–33 months). The incidence of soft tissue complications, including hardware irritation, was 26% (n=23), and 13% (n=12) required surgical treatment. Smoking status was the only predictor of soft tissue complications with an odds ratio of 3.6 (95%CI 1.2, 10.4; p=0.02), while controlling for other independent variables. The model explained 12% of the variation in soft tissue complications (Cox and Snell 0.119, p=0.028). In the second model, presence of a medial plate predicted soft tissue complications requiring surgical intervention with an odds ratio of 8.8 (95%CI 1.1, 73.7; p=0.045), while controlling for the other independent variables. The model explained 10% of the variation in soft tissue complications requiring surgical intervention (Cox and Snell 0.095, p=0.035). The use of a medial plate does not appear to correlate to general soft tissue complications in pilon fractures. Smoking status increased the odds of a soft tissue complication more than three fold. The use of medial plating did increase the odds of soft tissue complications that required surgical treatment almost nine fold. It appears medial plating is not related to soft tissue complications, however treating soft tissue compilations in the presence of a medial plate may require more invasive methods


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 530 - 538
1 Apr 2020
Rollick NC Gadinsky NE Klinger CE Kubik JF Dyke JP Helfet DL Wellman DS

Aims. Dual plating of distal femoral fractures with medial and lateral implants has been performed to improve construct mechanics and alignment, in cases where isolated lateral plating would be insufficient. This may potentially compromise vascularity, paradoxically impairing healing. This study investigates effects of single versus dual plating on distal femoral vascularity. Methods. A total of eight cadaveric lower limb pairs were arbitrarily assigned to either 1) isolated lateral plating, or 2) lateral and medial plating of the distal femur, with four specimens per group. Contralateral limbs served as matched controls. Pre- and post-contrast MRI was performed to quantify signal intensity enhancement in the distal femur. Further evaluation of intraosseous vascularity was done with barium sulphate infusion with CT scan imaging. Specimens were then injected with latex medium and dissection was completed to assess extraosseous vasculature. Results. Quantitative MRI revealed a mean reduction of 21.2% (SD 1.3%) of arterial contribution in the lateral plating group and 25.4% (SD 3.2%) in the dual plating group (p = 0.051); representing a mean decrease in arterial contribution of 4.2%. The only significant difference found between both experimental groups was regionally, at the lateral aspect of the distal femur with a mean drop in arterial contribution in the lateral plating group of 18.9% (SD 2.6%) versus 24.0% (SD 3.2%) in the dual plating group (p = 0.048), representing a mean decrease in arterial contribution of 5.1%. Gross dissection revealed complete destruction of periosteal vessels underneath either medial or lateral plates in both groups. The network of genicular branches contributing to the posterior and distal femoral condyles was preserved in all specimens. A medial vascular pedicle was found dividing from the superficial femoral artery at a mean 12.7 cm (SD 1.7) proximal to the medial epicondyle and was undisrupted in the dual plating group. Conclusion. Lateral locking-plate application resulted in mean 21.2% reduction in distal femur vascularity. Addition of medial plates did not further markedly decrease vascularity. As such, the majority of the vascular insult occurred with lateral plating alone. Supplemental medially based fixation did not lead to marked devascularization of the distal femur, and should therefore be considered in the setting of comminution and poor bone stock in distal femoral fractures. Further clinical research is required to confirm the results of this study. Cite this article: Bone Joint J 2020;102-B(4):530–538


The Bone & Joint Journal
Vol. 96-B, Issue 1 | Pages 137 - 142
1 Jan 2014
Nayagam S Davis B Thevendran G Roche AJ

We describe the technique and results of medial submuscular plating of the femur in paediatric patients and discuss its indications and limitations. Specifically, the technique is used as part of a plate-after-lengthening strategy, where the period of external fixation is reduced and the plate introduced by avoiding direct contact with the lateral entry wounds of the external fixator pins. The technique emphasises that vastus medialis is interposed between the plate and the vascular structures. . A total of 16 patients (11 male and five female, mean age 9.6 years (5 to 17)), had medial submuscular plating of the femur. All underwent distraction osteogenesis of the femur with a mean lengthening of 4.99 cm (3.2 to 12) prior to plating. All patients achieved consolidation of the regenerate without deformity. The mean follow-up was 10.5 months (7 to 15) after plating for those with plates still in situ, and 16.3 months (1 to 39) for those who subsequently had their plates removed. None developed a deep infection. In two patients a proximal screw fractured without loss of alignment; one patient sustained a traumatic fracture six months after removal of the plate. . Placing the plate on the medial side is advantageous when the external fixator is present on the lateral side, and is biomechanically optimal in the presence of a femoral defect. We conclude that medial femoral submuscular plating is a useful technique for specific indications and can be performed safely with a prior understanding of the regional anatomy. Cite this article: Bone Joint J 2014;96-B:137–42


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_III | Pages 402 - 402
1 Jul 2010
Davis B Nayagam S
Full Access

Sub-muscular plating is an established technique in the management of long-bone fractures and reconstruction. In the femur, the presence of the vascular structures medially favours the lateral approach and as such, the technique of medial femoral sub-muscular plating has not, to the authors knowledge, been previously described.

We report a series of 5 patients employing the medial approach to femoral sub-muscular plating. The indications and limitations of the technique are discussed with particular reference to reducing external fixation times, avoidance of stress risers and areas of previously traumatised or infected tissues. The surgical technique for medial femoral sub-muscular plating with emphasis on the role of vastus medialis in the protection of the vascular structures, together with cross sectional anatomy is described.

Medial femoral sub-muscular plating is a useful technique in specific indications and can be performed safely with an understanding of the relevant anatomy.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 24 - 24
1 Nov 2021
Gueorguiev B Zderic I Pastor T Gehweiler D Richards G Knobe M
Full Access

Introduction and Objective. Plating of geriatric distal femoral fractures with Locking Compression Plate Distal Femur (LCP–DF) often requires augmentation with a supplemental medial plate to achieve sufficient stability allowing early mobilization. However, medial vital structures may be impaired by supplemental medial plating using a straight plate. Therefore, a helically shaped medial plate may be used to avoid damage of these structures. Aim of the current study was to investigate the biomechanical competence of augmented LCP–DF plating using a supplemental straight versus helically shaped medial plate. Materials and Methods. Ten pairs of human cadaveric femora with poor bone quality were assigned pairwise for instrumentation using a lateral anatomical 15-hole LCP–DF combined with a medial 14-hole LCP, the latter being either straight or manually pre-contoured to a 90-degree helical shape. An unstable distal femoral fracture AO/OTA 33–A3 was simulated by means of osteotomies. All specimens were biomechanically tested under non-destructive quasi-static and destructive progressively increasing combined cyclic axial and torsional loading in internal rotation, with monitoring by means of optical motion tracking. Results. Initial axial stiffness and torsional stiffness in internal and external rotation for straight double plating (548.1 ± 134.2 N/mm, 2.69 ± 0.52 Nm/° and 2.69 ± 0.50 Nm/°) was significantly higher versus helical double plating (442.9 ± 133.7 N/mm, 2.07 ± 0.32 Nm/° and 2.16 ± 0.22 Nm/°), p≤0.04. Initial interfragmentary axial displacement and flexural rotation under 500 N static loading were significantly smaller for straight plating (0.11 ± 0.14 mm and 0.21 ± 0.10°) versus helical plating (0.31 ± 0.14 mm and 0.68 ± 0.16°), p<0.01. However, initial varus deformation under this loading remained not significantly different between the two fixation methods (straight: 0.57 ± 0.23°, helical: 0.75 ± 0.34°), p=0.08. During dynamic loading, within the course of the first 4000 cycles the movements of the distal fragment in flexion were significantly bigger for helical over straight plating (1.03 ± 0.33° versus 0.40 ± 0.20°), p<0.01. However, no significant differences were observed between the two fixation methods in terms of varus, internal rotation, axial and shear displacements at the fracture site, and number of cycles to failure. Conclusions. Augmented lateral plating of unstable distal femoral fractures with use of supplemental helically shaped medial plate was associated with more elastic bone-implant construct behavior under static and dynamic loading compared to straight double plating. Both fixation methods resulted in comparable number of cycles to failure. From a biomechanical perspective, the more elastic helical double plating may be considered as useful alternative to straight plating, potentially reducing stress risers at the distal bone-implant interface due to its ameliorated damping capacities


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 69 - 69
1 Nov 2021
Pastor T Zderic I Richards G Gueorguiev B Knobe M
Full Access

Introduction and Objective. Distal femoral fractures are commonly treated with a straight plate fixed to the lateral aspects of both proximal and distal fragments. However, the lateral approach may not always be desirable due to persisting soft-tissue or additional vascular injury necessitating a medial approach. These problems may be overcome by pre-contouring the plate in helically shaped fashion, allowing its distal part to be fixed to the medial aspect of the femoral condyle. The objective of this study was to investigate the biomechanical competence of medial femoral helical plating versus conventional straight lateral plating in an artificial distal femoral fracture model. Materials and Methods. Twelve left artificial femora were instrumented with a 15-hole Locking Compression Plate – Distal Femur (LCP-DF) plate, using either conventional lateral plating technique with the plate left non-contoured, or the medial helical plating technique by pre-contouring the plate to a 180° helical shape and fixing its distal end to the medial femoral condyle (n=6). An unstable extraarticular distal femoral fracture was subsequently simulated by means of an osteotomy gap. All specimens were tested under quasi-static and progressively increasing cyclic axial und torsional loading until failure. Interfragmentary movements were monitored by means of optical motion tracking. Results. Initial axial stiffness was significantly higher for helical (185.6±50.1 N/mm) versus straight (56.0±14.4) plating, p<0.01. However, initial torsional stiffness in internal and external rotation remained not significantly different between the two fixation techniques (helical plating:1.59±0.17 Nm/° and 1.52±0.13 Nm/°; straight plating: 1.50±0.12 Nm/° and 1.43±0.13Nm/°), p≥0.21. Helical plating was associated with significantly higher initial interfragmentary movements under 500 N static compression compared to straight plating in terms of flexion (2.76±1.02° versus 0.87±0.77°) and shear displacement under 6 Nm static rotation in internal (1.23±0.28° versus 0.40±0.42°) and external (1.21±0.40° versus 0.57±0.33°) rotation, p≤0.01. In addition, helical plating demonstrated significantly lower initial varus/valgus deformation than straight plating (4.08±1.49° versus 6.60±0.47°), p<0.01. Within the first 10000 cycles of dynamic loading, helical plating revealed significantly bigger flexural movements and significantly lower varus/valgus deformation versus straight plating, p=0.02. No significant differences were observed between the two fixation techniques in terms of axial and shear displacement, p≥0.76. Cycles to failure was significantly higher for helical plating (13752±1518) compared to straight plating (9727±836), p<0.01. Conclusions. Although helical plating using a pre-contoured LCP-DF was associated with higher shear and flexion movements, it demonstrated improved initial axial stability and resistance against varus/valgus deformation compared to straight lateral plating. Moreover, helical plate constructs demonstrated significantly improved endurance to failure, which may be attributed to the less progressively increasing lever bending moment arm inherent to this novel fixation technique. From a biomechanical perspective, helical plating may be considered as a valid alternative fixation technique to standard straight lateral plating of unstable distal femoral fractures


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIII | Pages 35 - 35
1 Sep 2012
Choi C Hakim Z Lattouf G Shoaib A
Full Access

The treatment of very distal tibial fractures and pilon fractures is difficult. There is a wide variation in the severity of injury and the options for surgical management. Plates and external fixation each have their advantages. This retrospective study looks at complications and technical tips for anterolateral plating. 35 consecutive distal tibial platings were evaluated. The AO classification for each fracture was determined and any patient factors affecting outcome. Outcome variables included time to radiological union, infection rate, wound breakdown rate, and joint movement after treatment. There were 32 anterolateral platings and 3 medial platings. The union rate was 95%. There were two deep infections which required surgical treatment. There were two wound breakdowns, one of which required plastic surgical intervention. Two patients had prominent metalwork, requiring removal. Other complications included deep peroneal nerve palsy, stiffness, and vascular compromise. The complication rates were lower for surgeons operating more frequently on these fractures. Two patients subsequently required bone transport and one required an amputation. The complication rate found was similar to that reported in the literature. The few complications were however very significant for the patient and also for the surgeon as they required bone transport. Complications other than infection occurred in the few cases performed by surgeons low on their learning curve. We present technical tips for surgery. The presence of callus only after mobilisation indicates that union is slow. Anterolateral plating is a viable option for distal tibial fractures, especially 43B fractures. There is a learning curve associated with their use. Complication rates are low overall, but significant consequences can accompany complications. As an alternative to external fixation, distal locking plates are not a pain free option for the surgeon, as well as for the patient


Bone & Joint 360
Vol. 12, Issue 3 | Pages 32 - 35
1 Jun 2023

The June 2023 Trauma Roundup360 looks at: Aspirin or low-molecular-weight heparin for thromboprophylaxis?; Lateral plating or retrograde nailing for distal femur fractures?; Sciatic nerve palsy after acetabular fixation: what about patient position?; How reliable is the new OTA/AO classification for trochanteric hip fractures?; Young hip fractures: is a medial buttress the answer?; When is the best time to ‘flap’ an open fracture?; The mortality burden of nonoperatively managed hip fractures.


Bone & Joint 360
Vol. 9, Issue 6 | Pages 18 - 21
1 Dec 2020


Bone & Joint 360
Vol. 10, Issue 2 | Pages 21 - 23
1 Apr 2021


Bone & Joint Open
Vol. 2, Issue 8 | Pages 611 - 617
10 Aug 2021
Kubik JF Bornes TD Klinger CE Dyke JP Helfet DL

Aims

Surgical treatment of young femoral neck fractures often requires an open approach to achieve an anatomical reduction. The application of a calcar plate has recently been described to aid in femoral neck fracture reduction and to augment fixation. However, application of a plate may potentially compromise the regional vascularity of the femoral head and neck. The purpose of this study was to investigate the effect of calcar femoral neck plating on the vascularity of the femoral head and neck.

Methods

A Hueter approach and capsulotomy were performed bilaterally in six cadaveric hips. In the experimental group, a one-third tubular plate was secured to the inferomedial femoral neck at 6:00 on the clockface. The contralateral hip served as a control with surgical approach and capsulotomy without fixation. Pre- and post-contrast MRI was then performed to quantify signal intensity in the femoral head and neck. Qualitative assessment of the terminal arterial branches to the femoral head, specifically the inferior retinacular artery (IRA), was also performed.


Bone & Joint 360
Vol. 9, Issue 5 | Pages 37 - 41
1 Oct 2020


The Bone & Joint Journal
Vol. 98-B, Issue 7 | Pages 1003 - 1008
1 Jul 2016
Fenton P Al-Nammari S Blundell C Davies M

Aims

Although infrequent, a fracture of the cuboid can lead to significant disruption of the integrity of the midfoot and its function. The purpose of this study was to classify the pattern of fractures of the cuboid, relate them to the mechanism of injury and suggest methods of managing them.

Patients and Methods

We performed a retrospective review of patients with radiologically reported cuboid fractures. Fractures were grouped according to commonly occurring patterns of injury. A total of 192 fractures in 188 patients were included. They were classified into five patterns of injury.


The Bone & Joint Journal
Vol. 95-B, Issue 12 | Pages 1667 - 1672
1 Dec 2013
Oh C Apivatthakakul T Oh J Kim J Lee H Kyung H Baek S Jung G

Although gradual bone transport may permit the restoration of large-diameter bones, complications are common owing to the long duration of external fixation. In order to reduce such complications, a new technique of bone transport involving the use of an external fixator and a locking plate was devised for segmental tibial bone defects.

A total of ten patients (nine men, one woman) with a mean age at operation of 40.4 years (16 to 64) underwent distraction osteogenesis with a locking plate to treat previously infected post-traumatic segmental tibial defects. The locking plate was fixed percutaneously to bridge proximal and distal segments, and was followed by external fixation. After docking, percutaneous screws were fixed at the transported segment through plate holes. At the same time, bone grafting was performed at the docking site with the external fixator removed.

The mean defect size was 5.9 cm (3.8 to 9.3) and mean external fixation index was 13.4 days/cm (11.8 to 19.5). In all cases, primary union of the docking site and distraction callus was achieved, with an excellent bony result. There was no recurrence of deep infection or osteomyelitis, and with the exception of one patient with a pre-existing peroneal nerve injury, all achieved an excellent or good functional result.

With short external fixation times and low complication rates, bone transport with a locking plate could be recommended for patients with segmental tibial defects.

Cite this article: Bone Joint J 2013;95-B:1667–72.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 12 | Pages 1617 - 1622
1 Dec 2008
Axelrad TW Steen B Lowenberg DW Creevy WR Einhorn TA

Heterotopic ossification occurring after the use of commercially available bone morphogenetic proteins has not been widely reported. We describe four cases of heterotopic ossification in patients treated with either recombinant bone morphogenetic protein 2 or recombinant bone morphogenetic protein 7. We found that while some patients were asymptomatic, heterotopic ossification which had occurred around a joint often required operative excision with good results.