Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 49 - 49
1 Mar 2021
Sasaki K Toshihiro S
Full Access

We report bone bruises on Anterior Cruciate Ligament (hereinafter referred to as ACL) injury. We also investigated the relationship among the presence or absence of bone bruises, localization, and the presence or absence of meniscal injury according to the period of MRI scan from injury. We underwent the study used a total of 76 knees who underwent ACL reconstruction at our hospital and related hospitals from January 2014 to December 2017. We investigated on MRI images taken after injury. Meniscal injuries were evaluated by intraoperative findings. The average age at injury was 25.8 years old (13–48 years old) in 44 males and 32 females. Bone bruises were found in 54 of 76 knees (71%). Among them, the ratio of non-contact type was much higher in the group with bone bruises than in the contact group (83% in the group with bone bruises, 64% in the group without bone bruises), resulting in a shorter period from injury to MRI (bone bruises group: 12.4 days, non-bone bruises group: 23 days). Looking at the appearance frequency of bone bruises according to the period from injury to MRI imaging, the appearance frequency of bone bruises decreased as the time to imaging became longer (within 2 weeks of injury: 76%, injury from 2 weeks to 1 month: 65%, injury 1–3 months: 53%). With regard to the localization of bone bruises, in the coronal section, both femurs and tibiae frequently had bone bruises on the outside. In the sagittal section, it occurred in front of the femur, in particular. On the tibial side, many cases of bone bruises occurred in the rear. In addition, the association between bone bruises and meniscal injuries were significantly complicated with lateral meniscal injury in the group without femoroconstriction in the group with lateral femoral bone bruises and in the group with posterior tibia bone bruises. There was no significant association between bone bruises and meniscal injury among the other groups. Bone bruises were found in 54 of 76 knees (71%). Regarding the occurrence of many lateral developments, it is thought that the tibia is sub-dislocated anteriorly due to mild flexion, valgus force, and external rotation injury, and injury is caused by axial pressure applied to the outside of the femur and posterior of the tibia It was done. As a result, it was considered that the external meniscal injury was injured. The medial unilateral development of bone contusion was observed in 3 knees on the medial femur and 1 knee on the medial tibia. All internal single-cased cases are contact-type injuries, the result of which may be different in the mechanism of bone contusion development


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 4 | Pages 607 - 613
1 May 2002
Martelli S Pinskerova V

We report a study of the shapes of the tibial and femoral articular surfaces in sagittal, frontal and coronal planes which was performed on cadaver knees using two techniques, MRI and computer interpolation of sections of the articular surfaces acquired by a three-dimensional digitiser. The findings using MRI, confirmed in a previous study by dissection, were the same as those using the digitiser. Thus both methods appear to be valid anatomical tools. The tibial and femoral articular surfaces can be divided into anterior segments, contacting from 0° to 20 ± 10° of flexion, and posterior segments, contacting from 20 ± 10° to 120° of flexion. The medial and lateral compartments are asymmetrical, particularly anteriorly. Posteromedially, the femur is spherical and is located in a conforming, but partly deficient, tibial socket. Posterolaterally, it is circular only in the sagittal section and the tibia is flat centrally, sloping downwards both anteriorly and posteriorly to receive the meniscal horns. Anteromedially, the femur is convex with a sagittal radius larger than that posteriorly, while the tibia is flat sloping upwards and forwards. Anterolaterally, both the femoral and tibial surfaces are largely deficient. These shapes suggest that medially the femur can rotate on the tibia through three axes intersecting in the middle of the femoral sphere, but that the sphere can only translate anteroposteriorly and even then to a limited extent. Laterally, the femur can freely translate anteroposteriorly, but can only rotate around a transverse axis for that part of the arc, i.e., near extension, during which it comes into contact with the tibia through its flattened distal/medial surface as against its spherical posterior surface


Bone & Joint Research
Vol. 5, Issue 10 | Pages 500 - 511
1 Oct 2016
Raina DB Gupta A Petersen MM Hettwer W McNally M Tägil M Zheng M Kumar A Lidgren L

Objectives

We have observed clinical cases where bone is formed in the overlaying muscle covering surgically created bone defects treated with a hydroxyapatite/calcium sulphate biomaterial. Our objective was to investigate the osteoinductive potential of the biomaterial and to determine if growth factors secreted from local bone cells induce osteoblastic differentiation of muscle cells.

Materials and Methods

We seeded mouse skeletal muscle cells C2C12 on the hydroxyapatite/calcium sulphate biomaterial and the phenotype of the cells was analysed. To mimic surgical conditions with leakage of extra cellular matrix (ECM) proteins and growth factors, we cultured rat bone cells ROS 17/2.8 in a bioreactor and harvested the secreted proteins. The secretome was added to rat muscle cells L6. The phenotype of the muscle cells after treatment with the media was assessed using immunostaining and light microscopy.