Objectives. The role of
Wear is an important factor in the long term success of total knee arthroplasty. Therefore, wear testing methods and machines become a standard in research and implant development. These methods are based on two simulation concepts which are defined in standards ISO 14243-1 and 14243-3. The difference in both concepts is the control mode. One is force controlled while the other has a displacement controlled concept. The aim of this study was to compare the
In this study we used subject-specific finite
element analysis to investigate the mechanical effects of rotational acetabular
osteotomy (RAO) on the hip joint and analysed the correlation between
various radiological measurements and
The meniscus is a fibrocartilaginous tissue that plays an important role in controlling the complex biomechanics of the knee. Many histological and mechanical studies about meniscal attachment have been carried out, and medial meniscus (MM) root repair is recommended to prevent subsequent cartilage degeneration following MM posterior root tear. However, there are only few studies about the differences between meniscus root and horn cells. The goal of this study was to clarify the differences between these two cells. Tissue samples were obtained from the medial knee compartments of 10 patients with osteoarthritis who underwent total knee arthroplasty. Morphology, distribution, and proliferation of MM root and horn cells, as well as gene and protein expression levels of Sry-type HMG box (SOX) 9 and type II collagen (COL2A1) were determined after cyclic tensile strain (CTS) treatment. Horn cells had a triangular morphology, whereas root cells were fibroblast-like. The number of horn cells positive for SOX9 and COL2A1 was considerably higher than that of root cells. Although root and horn cells showed similar levels of proliferation after 48, 72, or 96 h of culture, more horn cells than root cells were lost following 2-h CTS (5% and 10% strain). SOX9 and COL2A1 mRNA expression levels were significantly enhanced in horn cells compared with those in root cells after 2- and 4-h CTS (5%) treatment. This study demonstrates that MM root and horn cells have distinct characteristics and show different cellular phenotypes. Our results suggest that physiological tensile strain is important for activating extracellular matrix production in horn cells. Restoring physiological
Objectives. In total hip arthroplasty (THA), the cementless, tapered-wedge stem design contributes to achieving initial stability and providing optimal load transfer in the proximal femur. However, loading conditions on the femur following THA are also influenced by femoral structure. Therefore, we determined the effects of tapered-wedge stems on the load distribution of the femur using subject-specific finite element models of femurs with various canal shapes. Patients and Methods. We studied 20 femurs, including seven champagne flute-type femurs, five stovepipe-type femurs, and eight intermediate-type femurs, in patients who had undergone cementless THA using the Accolade TMZF stem at our institution. Subject–specific finite element (FE) models of pre- and post-operative femurs with stems were constructed and used to perform FE analyses (FEAs) to simulate single-leg stance. FEA predictions were compared with changes in bone mineral density (BMD) measured for each patient during the first post-operative year. Results. Stovepipe models implanted with large-size stems had significantly lower equivalent stress on the proximal-medial area of the femur compared with champagne-flute and intermediate models, with a significant loss of BMD in the corresponding area at one year post-operatively. Conclusions. The stovepipe femurs required a large-size stem to obtain an optimal fit of the stem. The FEA result and post-operative BMD change of the femur suggest that the combination of a large-size Accolade TMZF stem and stovepipe femur may be associated with proximal stress shielding. Cite this article: M. Oba, Y. Inaba, N. Kobayashi, H. Ike, T. Tezuka, T. Saito. Effect of femoral canal shape on
1. When cortisone is administered to rabbits there is early rapid resorption of bone and a partial inhibition of new bone formation. After a few days the effect becomes less obvious, so that, if observations are made at later stages, the results may be ascribed then to simple inhibition of bone growth. 2. The effect of
Objective. Excessive
Military personnel operating on high speed marine craft are exposed to Whole-Body Vibration (WBV). Additionally planing craft operate at speeds with minimal contact of the hull with warer making the crew vulnerable to mechanical shock. An association between Low Back Pain (LBP) and exposure to WBV has been extensively reported in civilian literature. LBP is reported by military personnel operating on planing craft leading to downgrades and potential discharge. There is a clear need to understand the impact prolonged exposure has on our population operating these craft. We performed a bibliographical search of the PubMed database for records using a combination of keywords. Abstracts were screened for relevance and references cited in retrieved papers reviewed. There is no consensus in the literature on the potentially pivotal pathological process behind the association. Evidence from professional driving suggests current safe operating exposure levels require review to protect against long-term damage however with little evidence concerning the unique environment in which boats crews operate, the parity of these environments require investigation to allow direct comparison. Due to the prevalence of LBP in this population a need exists to establish the pathological process and add to the evidence base driving safe operating exposure levels.
This study aimed to demonstrate the promoting effect of elastic fixation on fracture, and further explore its mechanism at the gene and protein expression levels. A closed tibial fracture model was established using 12 male Japanese white rabbits, and divided into elastic and stiff fixation groups based on different fixation methods. Two weeks after the operation, a radiograph and pathological examination of callus tissue were used to evaluate fracture healing. Then, the differentially expressed proteins (DEPs) were examined in the callus using proteomics. Finally, in vitro cell experiments were conducted to investigate hub proteins involved in this process.Aims
Methods
A recently developed parametric geometrical finite element model (p-FEM) was adapted to the specific hip geometric measurements of a group of patients with slipped capital femoral epiphysis (SCFE). The objective was to analyze the stress distribution in the growth plate of these patients and to evaluate differences for those patients who developed bilateral disease. Different geometric parameters were measured in the healthy proximal femur of 18 adolescents (mean age, 12,1 yr) with unilateral SCFE and in 23 adolescents matched in age without hip disease (control group). Five patients developed SCFE in the contralateral side during follow-up. Different geometric measurements were taken from hip conventional X-ray studies. The p-FEM of the proximal femur permits modifications of different geometrical parameters, therefore the X-ray measurements taken from each patient were applied to the model obtaining a subject-specific model for each case. In each model, different mechanical situations such as walking, stairs climbing and sitting were simulated by applying loads on the femoral head corresponding to each own weight. The risk for growth plate failure was estimated by the Tresca, von Misses and Rankine stresses. In summary, the models shows important differences between the stresses computed at the healthy femurs of patients with unilateral SCFE and femurs that further underwent bilateral SCFE. So, the 95% confidence interval of the percentage of volume of the growth plate subjected to stresses higher than 2MPa was almost similar for the control group and patients with unilateral SCFE. However, those patients who developed bilateral disease had statistically significant large physeal areas with more than 2.0 MPa (p<
0.005). Stresses were also strongly dependent on the geometry of the proximal femur, especially on the posterior sloping angle of the physis and the physeal sloping angle. In spite of simplifications of the developed p-FEM, this tool has been able to show the influence of femur geometry in growth plate stresses and to predict the sites where growth plate starts to fail.
Aims. The presence of facet tropism has been correlated with an elevated susceptibility to lumbar disc pathology. Our objective was to evaluate the impact of facet tropism on chronic lumbosacral discogenic pain through the analysis of clinical data and finite element modelling (FEM). Methods. Retrospective analysis was conducted on clinical data, with a specific focus on the spinal units displaying facet tropism, utilizing FEM analysis for motion simulation. We studied 318 intervertebral levels in 156 patients who had undergone provocation discography. Significant predictors of clinical findings were identified by univariate and multivariate analyses. Loading conditions were applied in FEM simulations to mimic biomechanical effects on intervertebral discs, focusing on maximal displacement and intradiscal pressures, gauged through alterations in disc morphology and physical stress. Results. A total of 144 discs were categorized as ‘positive’ and 174 discs as ‘negative’ by the results of provocation discography. The presence of defined facet tropism (OR 3.451, 95% CI 1.944 to 6.126) and higher Adams classification (OR 2.172, 95% CI 1.523 to 3.097) were important predictive parameters for discography-‘positive’ discs. FEM simulations showcased uneven stress distribution and significant disc displacement in tropism-affected discs, where loading exacerbated stress on facets with greater angles. During varied positions, notably increased stress and displacement were observed in discs with tropism compared to those with normal facet structure. Conclusion. Our findings indicate that facet tropism can contribute to disc herniation and changes in intradiscal pressure, potentially exacerbating disc degeneration due to altered force distribution and increased
Abstract. Source of Study: London, United Kingdom. This intervention study was conducted to assess two developing protocols for quadriceps and hamstring rehabilitation: Blood Flow Restriction (BFR) and Neuromuscular Electrical Stimulation Training (NMES). BFR involves the application of an external compression cuff to the proximal thigh. In NMES training a portable electrical stimulation unit is connected to the limb via 4 electrodes. In both training modalities, following device application, a standardised set of exercises were performed by all participants. BFR and NMES have been developed to assist with rehabilitation following lower limb trauma and surgery. They offer an alternative for individuals who are unable to tolerate the high
Low back pain is the single most common cause for disability in individuals aged 45 years or younger, it carries tremendous weight in socioeconomic considerations. Degenerative aging of the structural components of the spine can be associated with genetic aspects, lifetime of tissue exposure to
Varus malalignment increases the susceptibility of cartilage to mechanical overloading, which stimulates catabolic metabolism to break down the extracellular matrix and lead to osteoarthritis (OA). The altered mechanical axis from the hip, knee to ankle leads to knee joint pain and ensuing cartilage wear and deterioration, which impact millions of the aged population. Stabilization of the remaining damaged cartilage, and prevention of further deterioration, could provide immense clinical utility and prolong joint function. Our previous work showed that high tibial osteotomy (HTO) could shift the
Hip instability is one of the most common complications after total hip arthroplasty (THA). Among the possible techniques to treat and prevent hip dislocation, the use of constrained liners is a well-established option. However, there is concern regarding the longevity of these devices due to higher
Biomechanical analysis is important to evaluate the effect of orthopaedic surgeries. CT-image based finite element method (CT-FEM) is one of the most important techniques in the computational biomechanics field. We have been applied CT-FEM to evaluate resorptive bone remodeling, secondary to stress shielding, after total hip arthroplasty (THA). We compared the equivalent stress and strain energy density to postoperative BMD (bone mineral density) change in the femur after THA, and a significant correlation was observed between the rate of changes in BMD after THA and equivalent stress. For periacetabular osteotomy cases, we investigated
Introduction. The low-contact stress (LCS) knee prosthesis is a mobile-bearing design with modifications to the tibial component that allow for meniscal-bearing (MB) or rotating-platform (RP). The MB design had nonconstrained anteroposterior and rotational movement, and the RP design has only nonconstrained rotational movement. The anterior soft tissues, including patellar tendon (PT), prevent anterior dislocation of the MB. The PT may consistently be exposed to overstressing. Therefore, we hypothesized that the PT thickness and width in MB prosthesis revealed more morphological changes than those of RP prosthesis due to degeneration of the PT induced by much
Introduction and Objective. Anterior cruciate ligament reconstruction (ACLR) with tendon autografts is the “gold standard” technique for surgical treatment of ACL injuries. Common tendon graft choices include patellar tendon (PT), semitendinosus/gracilis “hamstring” tendon (HT), or quadriceps tendon (QT). Healing of the graft after ACLR may be affected by graft type since the tissue is subjected to
Background. Medical applications of nanotechnology are promising because it allows the surface of biomaterial to be tailored to optimise the interfacial interaction between the biomaterial and its biological environment. Such interfaces are of interest in the domain of orthopaedic surgery as they could have anti-bacterial functions or could be used as drug delivery systems. The development of orthopaedics is moving towards better integration of biology in implants and surgical techniques, but the mechanical properties of implanted materials are still important for orthopaedic applications. During clinical implantation, implants are subjected to large
Introduction: Two second generation highly crosslinked UHMWPEs have been cleared by the FDA for clinical use in the United States: sequentially crosslinked UHMWPE (X3™ UHMWPE, Stryker Inc., Mahwah, NJ, USA) and α-tocopherol stabilized UHMWPE (E-Poly™ UHMWPE, Biomet, Inc., Warsaw, IN, USA). Both have been shown to be oxidatively stable under standardized aging methods (ASTM F2003); however, these conventional aging methods did not consider the effect of mechanical loading on the oxidative behavior of the materials. By coupling the adverse effects of thermal aging and