Advertisement for orthosearch.org.uk
Results 1 - 20 of 506
Results per page:
Bone & Joint Research
Vol. 12, Issue 10 | Pages 624 - 635
4 Oct 2023
Harrison CJ Plessen CY Liegl G Rodrigues JN Sabah SA Beard DJ Fischer F

Aims. To map the Oxford Knee Score (OKS) and High Activity Arthroplasty Score (HAAS) items to a common scale, and to investigate the psychometric properties of this new scale for the measurement of knee health. Methods. Patient-reported outcome measure (PROM) data measuring knee health were obtained from the NHS PROMs dataset and Total or Partial Knee Arthroplasty Trial (TOPKAT). Assumptions for common scale modelling were tested. A graded response model (fitted to OKS item responses in the NHS PROMs dataset) was used as an anchor to calibrate paired HAAS items from the TOPKAT dataset. Information curves for the combined OKS-HAAS model were plotted. Bland-Altman analysis was used to compare common scale scores derived from OKS and HAAS items. A conversion table was developed to map between HAAS, OKS, and the common scale. Results. We included 3,329 response sets from 528 patients undergoing knee arthroplasty. These generally met the assumptions of unidimensionality, monotonicity, local independence, and measurement invariance. The HAAS items provided more information than OKS items at high levels of knee health. Combining both instruments resulted in higher test-level information than either instrument alone. The mean error between common scale scores derived from the OKS and HAAS was 0.29 logits. Conclusion. The common scale allowed more precise measurement of knee health than use of either the OKS or HAAS individually. These techniques for mapping PROM instruments may be useful for the standardization of outcome reporting, and pooling results across studies that use either PROM in individual-patient meta-analysis. Cite this article: Bone Joint Res 2023;12(10):624–635


Bone & Joint Research
Vol. 12, Issue 5 | Pages 313 - 320
8 May 2023
Saiki Y Kabata T Ojima T Kajino Y Kubo N Tsuchiya H

Aims. We aimed to assess the reliability and validity of OpenPose, a posture estimation algorithm, for measurement of knee range of motion after total knee arthroplasty (TKA), in comparison to radiography and goniometry. Methods. In this prospective observational study, we analyzed 35 primary TKAs (24 patients) for knee osteoarthritis. We measured the knee angles in flexion and extension using OpenPose, radiography, and goniometry. We assessed the test-retest reliability of each method using intraclass correlation coefficient (1,1). We evaluated the ability to estimate other measurement values from the OpenPose value using linear regression analysis. We used intraclass correlation coefficients (2,1) and Bland–Altman analyses to evaluate the agreement and error between radiography and the other measurements. Results. OpenPose had excellent test-retest reliability (intraclass correlation coefficient (1,1) = 1.000). The R. 2. of all regression models indicated large correlations (0.747 to 0.927). In the flexion position, the intraclass correlation coefficients (2,1) of OpenPose indicated excellent agreement (0.953) with radiography. In the extension position, the intraclass correlation coefficients (2,1) indicated good agreement of OpenPose and radiography (0.815) and moderate agreement of goniometry with radiography (0.593). OpenPose had no systematic error in the flexion position, and a 2.3° fixed error in the extension position, compared to radiography. Conclusion. OpenPose is a reliable and valid tool for measuring flexion and extension positions after TKA. It has better accuracy than goniometry, especially in the extension position. Accurate measurement values can be obtained with low error, high reproducibility, and no contact, independent of the examiner’s skills. Cite this article: Bone Joint Res 2023;12(5):313–320


Bone & Joint Open
Vol. 2, Issue 11 | Pages 974 - 980
25 Nov 2021
Allom RJ Wood JA Chen DB MacDessi SJ

Aims. It is unknown whether gap laxities measured in robotic arm-assisted total knee arthroplasty (TKA) correlate to load sensor measurements. The aim of this study was to determine whether symmetry of the maximum medial and lateral gaps in extension and flexion was predictive of knee balance in extension and flexion respectively using different maximum thresholds of intercompartmental load difference (ICLD) to define balance. Methods. A prospective cohort study of 165 patients undergoing functionally-aligned TKA was performed (176 TKAs). With trial components in situ, medial and lateral extension and flexion gaps were measured using robotic navigation while applying valgus and varus forces. The ICLD between medial and lateral compartments was measured in extension and flexion with the load sensor. The null hypothesis was that stressed gap symmetry would not correlate directly with sensor-defined soft tissue balance. Results. In TKAs with a stressed medial-lateral gap difference of ≤1 mm, 147 (89%) had an ICLD of ≤15 lb in extension, and 112 (84%) had an ICLD of ≤ 15 lb in flexion; 157 (95%) had an ICLD ≤ 30 lb in extension, and 126 (94%) had an ICLD ≤ 30 lb in flexion; and 165 (100%) had an ICLD ≤ 60 lb in extension, and 133 (99%) had an ICLD ≤ 60 lb in flexion. With a 0 mm difference between the medial and lateral stressed gaps, 103 (91%) of TKA had an ICLD ≤ 15 lb in extension, decreasing to 155 (88%) when the difference between the medial and lateral stressed extension gaps increased to ± 3 mm. In flexion, 47 (77%) had an ICLD ≤ 15 lb with a medial-lateral gap difference of 0 mm, increasing to 147 (84%) at ± 3 mm. Conclusion. This study found a strong relationship between intercompartmental loads and gap symmetry in extension and flexion measured with prostheses in situ. The results suggest that ICLD and medial-lateral gap difference provide similar assessment of soft-tissue balance in robotic arm-assisted TKA. Cite this article: Bone Jt Open 2021;2(11):974–980


The Bone & Joint Journal
Vol. 101-B, Issue 11 | Pages 1348 - 1355
1 Nov 2019
Gascoyne T Parashin S Teeter M Bohm E Laende E Dunbar M Turgeon T

Aims. A retrospective study was conducted to measure short-term in vivo linear and volumetric wear of polyethylene (PE) inserts in 101 total knee arthroplasty (TKA) patients using model-based radiostereometric analysis (MBRSA). Patients and Methods. Nonweightbearing supine RSA exams were performed postoperatively and at six, 12, and 24 months. Weightbearing standing RSA exams were performed on select patients at 12 and 24 months. Wear was measured both linearly (joint space) and volumetrically (digital model overlap) at each available follow-up. Precision of both methods was assessed by comparing double RSA exams. Patient age, sex, body mass index, and Oxford Knee Scores were analyzed for any association with PE wear. Results. Linear wear occurred at 0.015 mm/year (supine) and 0.220 mm/year (standing). Volumetric wear occurred at 10.3 mm. 3. /year (supine) and 39.3 mm. 3. /year (standing). Wear occurred primarily on the medial side of the joint. Weightbearing imaging greatly improved the reliability of measurement. Clinical precision of volumetric wear was 34 mm. 3. No significant associations were found between patient demographics or function scores and measured wear. Conclusion. In vivo volumetric wear of TKAs can be assessed at short-term follow-up using MBRSA. Cite this article: Bone Joint J 2019;101-B:1348–1355


Bone & Joint Research
Vol. 3, Issue 10 | Pages 289 - 296
1 Oct 2014
van IJsseldijk EA Harman MK Luetzner J Valstar ER Stoel BC Nelissen RGHH Kaptein BL

Introduction. Wear of polyethylene inserts plays an important role in failure of total knee replacement and can be monitored in vivo by measuring the minimum joint space width in anteroposterior radiographs. The objective of this retrospective cross-sectional study was to compare the accuracy and precision of a new model-based method with the conventional method by analysing the difference between the minimum joint space width measurements and the actual thickness of retrieved polyethylene tibial inserts. . Method. Before revision, the minimum joint space width values and their locations on the insert were measured in 15 fully weight-bearing radiographs. These measurements were compared with the actual minimum thickness values and locations of the retrieved tibial inserts after revision. . Results. The mean error in the model-based minimum joint space width measurement was significantly smaller than the conventional method for medial condyles (0.50 vs 0.94 mm, p < 0.01) and for lateral condyles (0.06 vs 0.34 mm, p = 0.02). The precision (standard deviation of the error) of the methods was similar (0.84 vs 0.79 mm medially and both 0.46 mm laterally). The distance between the true minimum joint space width locations and the locations from the model-based measurements was less than 10 mm in the medial direction in 12 cases and less in the lateral direction in 13 cases. Conclusion. The model-based minimum joint space width measurement method is more accurate than the conventional measurement with the same precision. Cite this article: Bone Joint Res 2014;3:289–96


Bone & Joint Research
Vol. 5, Issue 8 | Pages 320 - 327
1 Aug 2016
van IJsseldijk EA Valstar ER Stoel BC Nelissen RGHH Baka N van’t Klooster R Kaptein BL

Objectives. An important measure for the diagnosis and monitoring of knee osteoarthritis is the minimum joint space width (mJSW). This requires accurate alignment of the x-ray beam with the tibial plateau, which may not be accomplished in practice. We investigate the feasibility of a new mJSW measurement method from stereo radiographs using 3D statistical shape models (SSM) and evaluate its sensitivity to changes in the mJSW and its robustness to variations in patient positioning and bone geometry. Materials and Methods. A validation study was performed using five cadaver specimens. The actual mJSW was varied and images were acquired with variation in the cadaver positioning. For comparison purposes, the mJSW was also assessed from plain radiographs. To study the influence of SSM model accuracy, the 3D mJSW measurement was repeated with models from the actual bones, obtained from CT scans. Results. The SSM-based measurement method was more robust (consistent output for a wide range of input data/consistent output under varying measurement circumstances) than the conventional 2D method, showing that the 3D reconstruction indeed reduces the influence of patient positioning. However, the SSM-based method showed comparable sensitivity to changes in the mJSW with respect to the conventional method. The CT-based measurement was more accurate than the SSM-based measurement (smallest detectable differences 0.55 mm versus 0. 82 mm, respectively). Conclusion. The proposed measurement method is not a substitute for the conventional 2D measurement due to limitations in the SSM model accuracy. However, further improvement of the model accuracy and optimisation technique can be obtained. Combined with the promising options for applications using quantitative information on bone morphology, SSM based 3D reconstructions of natural knees are attractive for further development. Cite this article: E. A. van IJsseldijk, E. R. Valstar, B. C. Stoel, R. G. H. H. Nelissen, N. Baka, R. van’t Klooster, B. L. Kaptein. Three dimensional measurement of minimum joint space width in the knee from stereo radiographs using statistical shape models. Bone Joint Res 2016;320–327. DOI: 10.1302/2046-3758.58.2000626


Bone & Joint Research
Vol. 10, Issue 6 | Pages 363 - 369
1 Jun 2021
MacDonald DRW Neilly DW Elliott KE Johnstone AJ

Aims

Tourniquets have potential adverse effects including postoperative thigh pain, likely caused by their ischaemic and possible compressive effects. The aims of this preliminary study were to determine if it is possible to directly measure intramuscular pH in human subjects over time, and to measure the intramuscular pH changes resulting from tourniquet ischaemia in patients undergoing knee arthroscopy.

Methods

For patients undergoing short knee arthroscopic procedures, a sterile calibrated pH probe was inserted into the anterior fascial compartment of the leg after skin preparation, but before tourniquet inflation. The limb was elevated for three minutes prior to tourniquet inflation to 250 mmHg or 300 mmHg. Intramuscular pH was recorded at one-second intervals throughout the procedure and for 20 minutes following tourniquet deflation. Probe-related adverse events were recorded.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 4 | Pages 484 - 488
1 Apr 2006
Rogers BA Thornton-Bott P Cannon SR Briggs TWR

We assessed the reproducibility and accuracy of four ratios used to measure patellar height, namely the Blackburne-Peel, Caton-Deschamps, Insall-Salvati and modified Insall-Salvati, before and after total knee arthroplasty. The patellar height was measured, by means of the four ratios, on the pre- and post-operative lateral radiographs of 44 patients (45 knees) who had undergone total knee arthroplasty. Two independent observers measured the films sequentially, in identical conditions, totalling 720 measurements per observer. Statistical analysis, comparing both observers and ratios, was carried out using the intraclass correlation coefficient. Before operation there was greater interobserver variation using either the Insall-Salvati or modified Insall-Salvati ratios than when using the Caton-Deschamps or Blackburne-Peel methods. This was because of difficulty in identifying the insertion of the patellar tendon. Before operation, there was a minimal difference in reliability between these methods. After operation the interobserver difference was greatly reduced using both the Caton-Deschamps and Blackburne-Peel methods, which use the prosthetic joint line, compared with the Insall-Salvati and modified Insall-Salvati, which reference from the insertion of the patellar tendon. The theoretical advantage of using the Insall-Salvati and modified Insall-Salvati ratios in measuring true patellar height after total knee arthroplasty needs to be balanced against their significant interobserver variability and inferior reliability when compared with other ratios


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 6 | Pages 819 - 824
1 Aug 2001
Prakash U Wigderowitz CA McGurty DW Rowley DI

Tibiofemoral alignment has a direct correlation with the survival of total knee arthroplasty. Traditionally, it has been measured using a goniometer on radiographs. We describe new software which measures this alignment on scanned radiographs by automatically detecting bones in the image.

Two surgeons used conventional methods and two clerical officers used the computerised routine to assess 58 radiographs of the knee on two occasions. There were no significant differences between any of the paired comparisons. The largest mean difference detected was 1.19°. Across all comparisons, the mean correlation was 0.755. A standardised routine for measuring tibiofemoral alignment was the greatest factor in reducing error in our study.

These results show that non-medical staff can reliably use the software to measure tibiofemoral alignment. It has the potential to measure all the parameters recommended by the Knee Society.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 11 | Pages 1493 - 1497
1 Nov 2005
Price AJ Short A Kellett C Beard D Gill H Pandit H Dodd CAF Murray DW

Polyethylene particulate wear debris continues to be implicated in the aetiology of aseptic loosening following knee arthroplasty. The Oxford unicompartmental knee arthroplasty employs a spherical femoral component and a fully congruous meniscal bearing to increase contact area and theoretically reduce the potential for polyethylene wear. This study measures the in vivo ten-year linear wear of the device, using a roentgenstereophotogrammetric technique.

In this in vivo study, seven medial Oxford unicompartmental prostheses, which had been implanted ten years previously were studied. Stereo pairs of radiographs were acquired for each patient and the films were analysed using a roentgen stereophotogrammetric analysis calibration and a computer-aided design model silhouette-fitting technique. Penetration of the femoral component into the original volume of the bearing was our estimate of linear wear. In addition, eight control patients were examined less than three weeks post-insertion of an Oxford prosthesis, where no wear would be expected. The control group showed no measured wear and suggested a system accuracy of 0.1 mm. At ten years, the mean linear wear rate was 0.02 mm/year.

The results from this in vivo study confirm that the device has low ten-year linear wear in clinical practice. This may offer the device a survival advantage in the long term.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 12 | Pages 1591 - 1595
1 Dec 2006
Price AJ Oppold PT Murray DW Zavatsky AB

The Oxford medial unicompartmental knee replacement was designed to reproduce normal mobility and forces in the knee, but its detailed effect on the patellofemoral joint has not been studied previously. We have examined the effect on patellofemoral mechanics of the knee by simultaneously measuring patellofemoral kinematics and forces in 11 cadaver knee specimens in a supine leg-extension rig. Comparison was made between the intact normal knee and sequential unicompartmental and total knee replacement. Following medial mobile-bearing unicompartmental replacement in 11 knees, patellofemoral kinematics and forces did not change significantly from those in the intact knee across any measured parameter. In contrast, following posterior cruciate ligament retaining total knee replacement in eight knees, there were significant changes in patellofemoral movement and forces.

The Oxford device appears to produce near-normal patellofemoral mechanics, which may partly explain the low incidence of complications with the extensor mechanism associated with clinical use.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 1 | Pages 51 - 55
1 Jan 2010
Omonbude D El Masry MA O’Connor PJ Grainger AJ Allgar VL Calder SJ

We prospectively randomised 78 patients into two groups, ‘drains’ or ‘no drains’ to assess the effectiveness of suction drains in reducing haematoma and effusion in the joint and its effect on wound healing after total knee replacement. Ultrasound was used to measure the formation of haematoma and effusion on the fourth post-operative day. This was a semi-quantitative assessment of volume estimation. There was no difference in the mean effusion between the groups (5.91 mm in the drain group versus 6.08 mm in the no-drain, p = 0.82). The mean amount of haematoma in the no-drain group was greater (11.07 mm versus 8.41 mm, p = 0.03). However, this was not clinically significant judged by the lack of difference in the mean reduction in the post-operative haemoglobin between the groups (drain group 3.4 g/dl; no-drain group 3.0 g/dl, p = 0.38). There were no cases of wound infection or problems with wound healing at six weeks in any patient.

Our findings indicate that drains do not reduce joint effusion but do reduce haematoma formation. They have no effect on wound healing.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIX | Pages 65 - 65
1 Jul 2012
Dahabreh Z Stewart T Stone M
Full Access

Purpose of the Study

This study aims at investigating the effect of application time of bone cement on the cement-bone interface strength in two types of commercially available bone cements, Cement-A and Cement-B.

Materials and methods

Cement-A and Cement-B were applied to cancellous bone specimens at two different times; 2 and 4 minutes (min). The bone specimens were formulated from bovine bone. Specimens were loaded to failure and the force at which the cement-bone interface failed was recorded. The shear strength of the cement-bone interface was calculated by dividing the force at failure by the cross-sectional surface area of the cement-bone interface.


Bone & Joint Open
Vol. 5, Issue 2 | Pages 101 - 108
6 Feb 2024
Jang SJ Kunze KN Casey JC Steele JR Mayman DJ Jerabek SA Sculco PK Vigdorchik JM

Aims. Distal femoral resection in conventional total knee arthroplasty (TKA) utilizes an intramedullary guide to determine coronal alignment, commonly planned for 5° of valgus. However, a standard 5° resection angle may contribute to malalignment in patients with variability in the femoral anatomical and mechanical axis angle. The purpose of the study was to leverage deep learning (DL) to measure the femoral mechanical-anatomical axis angle (FMAA) in a heterogeneous cohort. Methods. Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A DL workflow was created to measure the FMAA and validated against human measurements. To reflect potential intramedullary guide placement during manual TKA, two different FMAAs were calculated either using a line approximating the entire diaphyseal shaft, and a line connecting the apex of the femoral intercondylar sulcus to the centre of the diaphysis. The proportion of FMAAs outside a range of 5.0° (SD 2.0°) was calculated for both definitions, and FMAA was compared using univariate analyses across sex, BMI, knee alignment, and femur length. Results. The algorithm measured 1,078 radiographs at a rate of 12.6 s/image (2,156 unique measurements in 3.8 hours). There was no significant difference or bias between reader and algorithm measurements for the FMAA (p = 0.130 to 0.563). The FMAA was 6.3° (SD 1.0°; 25% outside range of 5.0° (SD 2.0°)) using definition one and 4.6° (SD 1.3°; 13% outside range of 5.0° (SD 2.0°)) using definition two. Differences between males and females were observed using definition two (males more valgus; p < 0.001). Conclusion. We developed a rapid and accurate DL tool to quantify the FMAA. Considerable variation with different measurement approaches for the FMAA supports that patient-specific anatomy and surgeon-dependent technique must be accounted for when correcting for the FMAA using an intramedullary guide. The angle between the mechanical and anatomical axes of the femur fell outside the range of 5.0° (SD 2.0°) for nearly a quarter of patients. Cite this article: Bone Jt Open 2024;5(2):101–108


Bone & Joint Open
Vol. 4, Issue 4 | Pages 262 - 272
11 Apr 2023
Batailler C Naaim A Daxhelet J Lustig S Ollivier M Parratte S

Aims. The impact of a diaphyseal femoral deformity on knee alignment varies according to its severity and localization. The aims of this study were to determine a method of assessing the impact of diaphyseal femoral deformities on knee alignment for the varus knee, and to evaluate the reliability and the reproducibility of this method in a large cohort of osteoarthritic patients. Methods. All patients who underwent a knee arthroplasty from 2019 to 2021 were included. Exclusion criteria were genu valgus, flexion contracture (> 5°), previous femoral osteotomy or fracture, total hip arthroplasty, and femoral rotational disorder. A total of 205 patients met the inclusion criteria. The mean age was 62.2 years (SD 8.4). The mean BMI was 33.1 kg/m. 2. (SD 5.5). The radiological measurements were performed twice by two independent reviewers, and included hip knee ankle (HKA) angle, mechanical medial distal femoral angle (mMDFA), anatomical medial distal femoral angle (aMDFA), femoral neck shaft angle (NSA), femoral bowing angle (FBow), the distance between the knee centre and the top of the FBow (DK), and the angle representing the FBow impact on the knee (C’KS angle). Results. The FBow impact on the mMDFA can be measured by the C’KS angle. The C’KS angle took the localization (length DK) and the importance (FBow angle) of the FBow into consideration. The mean FBow angle was 4.4° (SD 2.4; 0 to 12.5). The mean C’KS angle was 1.8° (SD 1.1; 0 to 5.8). Overall, 84 knees (41%) had a severe FBow (> 5°). The radiological measurements showed very good to excellent intraobserver and interobserver agreements. The C’KS increased significantly when the length DK decreased and the FBow angle increased (p < 0.001). Conclusion. The impact of the diaphyseal femoral deformity on the mechanical femoral axis is measured by the C’KS angle, a reliable and reproducible measurement. Cite this article: Bone Jt Open 2023;4(4):262–272


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 62 - 62
7 Aug 2023
Khatri C Harrison C Scott C Clement N MacDonald D Metcalfe A Rodrigues J
Full Access

Abstract. Background. The Forgotten Joint Score (FJS) is a 12-item patient reported outcome measurement instrument. It was developed with classical test theory, without testing assumptions such as unidimensionality (all items reflect one underlying factor), appropriate weighting of each item, no differential item function (DIF, different groups answer the same way), and monotonicity (people with higher function have higher score). We applied item response theory (IRT) to improve the validity of FJS to contemporary standards to optimise it for ongoing use. Research Questions. Does the FJS reflect one latent trait? Can an IRT model be fitted to the FJS to provide interval-scaled measurement?. Methodology. Participants undergoing primary total knee replacement provided pre-operative and post-operative (6-months) responses for FJS. An exploratory factor analysis (EFA), confirmatory factor analysis (CFA) and Mokken analysis were conducted. The data were fitted to a graded response model (GRM). Results. 1288 response patterns were analysed. EFA showed a one factor model (all 12 items load to one underlying trait). CFA demonstrated excellent model fit (X2 <0.001, Tucker Lewis Index=0.96, Comparative Fit Index=0.96). Items did not have equal weighting. The FJS demonstrated good monotonicity with no differential item functioning by sex, age, or body mass index. Conclusions. The FJS meets key validity assumptions supporting its use in clinical practice and research. The IRT-adapted FJS provides continuous measurements with greater granularity including individual measurement error. This adapted score has advantages over traditional FJS scoring, being interval scaled (using GRM) and can be retrospectively applied to existing response sets


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 74 - 74
7 Aug 2023
Alabdullah M Liu A Xie S
Full Access

Abstract. Rehabilitation exercise is critical for patients’ recovery after knee injury or post-surgery. Unfortunately, adherence to exercise is low due to a lack of positive feedback and poor self-motivation. Therefore, it is crucial to monitor their progress and provide supervision. Inertial measurement unit (IMUs) based sensing technology can provide remote patient monitoring functions. However, most current solutions only measure the range of knee motion in one degree of freedom. The current IMUs estimate the orientation-angle based on the integrated raw data, which might lack accuracy in measuring knee motion. This study aims to develop an IMU-based sensing system using the absolute measured orientation-angle to provide more accurate comprehensive monitoring by measuring the knee rotational angles. An IMU sensing system monitoring the knee joint angles, flexion/extension (FE), adduction/abduction (AA), and internal/external (IE) was developed. The accuracy and reliability of FE measurements were validated in human participants during squat exercise using measures including root mean square error (RMSE) and correlation coefficient. The RMSE of the three knee angles (FE, AA, and IE) were 0.82°, 0.26°, and 0.11°, which are acceptable for assessing knee motion. The FE measurement was validated in human participants and showed excellent accuracy (correlation coefficient of 0.99°). Further validation of AA and IE in human participants is underway. The sensing system showed the capability to estimate three knee rotation angles (FE, AA, and IE). It showed the potential to provide comprehensive continuous monitoring for knee rehabilitation exercises, which can also be used as a clinical assessment tool


Bone & Joint Open
Vol. 2, Issue 12 | Pages 1075 - 1081
17 Dec 2021
Suthar A Yukata K Azuma Y Suetomi Y Yamazaki K Seki K Sakai T Fujii H

Aims. This study aimed to investigate the relationship between changes in patellar height and clinical outcomes at a mean follow-up of 7.7 years (5 to 10) after fixed-bearing posterior-stabilized total knee arthroplasty (PS-TKA). Methods. We retrospectively evaluated knee radiographs of 165 knees, which underwent fixed-bearing PS-TKA with patella resurfacing. The incidence of patella baja and changes in patellar height over a minimum of five years of follow-up were determined using Insall-Salvati ratio (ISR) measurement. We examined whether patella baja (ISR < 0.8) at final follow-up affected clinical outcomes, knee joint range of motion (ROM), and Knee Society Score (KSS). We also assessed inter- and intrarater reliability of ISR measurements and focused on the relationship between patellar height reduction beyond measurement error and clinical outcomes. Results. The ISR gradually decreased over five years after TKA, and finally 33 patients (20.0%) had patella baja. Patella baja at the final follow-up was not related to passive knee ROM or KSS. Interestingly, when we divided into two groups - patella baja and patella normal-alta (ISR ≥ 0.8) - the patella baja group already had a lower patellar height before surgery, compared with the patella normal-alta group. The ISR measurement error in this study was 0.17. Both passive knee flexion and KSS were significantly decreased in the group with a decrease in ISR of ≥ 0.17 at final follow-up. Conclusion. Patellar height gradually decreased over five years of follow-up after TKA. The reduction in patellar height beyond measurement error following TKA was associated with lower clinical outcomes. Cite this article: Bone Jt Open 2021;2(12):1075–1081


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 19 - 19
1 Jul 2022
Sweed T Boutefnouchet T Lim Z Amerasekera S Choudhary S Ashraf T
Full Access

Abstract. Introduction. There are several imaging-based measurements for patello-femoral height. Available methods rely predominantly on sagittal images. The latter can be misleading with sagittal oblique slices and when the patella is tilted and/or chronically subluxed. In this study we describe a simple method of patellar height measurement using axial MRI overlap. Materials and methods. A retrospective observational analysis of 97 knees from 251 patients was conducted. Cases were selected following the exclusion of scans with fractures, massive effusion, patello-femoral pathology. Axial patello-trochlear overlap (APTO) was measured on the axial MRI images as follows: (1) Patellar length (P): expressed as the number of axial images showing patellar articular surface (2) Trochlear overlap (T): the number of axial images showing overlap between patellar articular surface and articular surface of lateral trochlea. APTO is the ratio T/P. All measurements were carried out independently and on two separate occasions by 6 raters. As a control conventional patello-trochlear index were measured for all patients by a senior musculoskeletal radiologist. Results. The mean APTO value was 36.7 (range 14.2 to 66.6; SD 11.4). There was a positive correlation with patello-trochlear index (Pearson correlation coefficient: 0.76, P < 0.001). Intra-observer reliability was good (ICC: 0.66 95 CI 0.54, 0.76, P < 0.001). Inter-observer reliability was fair (ICC: 0.51, 95 CI 0.41, 0.6, P < 0.001). Conclusion. In the present proof of concept study APTO was a reliable measurement of patellar height and correlated with patella-trochlear indices. The method described can prove valuable in overcoming issues with sagittal image measurements


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 51 - 51
1 Jul 2022
Bayley M Salar O Middleton S Mandalia V
Full Access

Abstract. Purpose. Recently several authors have suggested a correlation between posterior tibial slope (PTS) and sagittal stability of the knee. However, there is a lack of consensus in the literature relating to measurement, normal values and important values to guide treatment. We performed a systematic literature review looking at PTS and cruciate ligament surgery. Our aim was to define a gold standard measurement technique, determine normal ranges and important values for consideration during cruciate ligament surgery. Methods. Electronic searches of MEDLINE (PubMed), CINAHL, Cochrane, Embase, ScienceDirect, and NICE in June 2020 were completed. Inclusion criteria were original studies in peer-reviewed English language journals. A quality assessment of included studies was completed using the Methodological Index for Non-Randomized Studies (MINORS) Criteria. Results. Two-hundred and twenty-one papers were identified; following exclusions 34 papers were included for data collection. The mean MINORS score for non-comparative studies was 13.8 and for comparative studies 20.4, both indicating fair to good quality studies. A large variation in PTS measurement technique was identified, resulting in a wide range of values reported. In addition, there appears to be significant variation between different races, ages and genders. Conclusion. We demonstrated a lack of consensus in the literature relating to various facets of PTS. Cautiously, we suggest normal ranges of 6–12º using the proximal tibia axis at 5 and 15cms below the joint. Potentially 12º is an important cute-off for slope reducing osteotomy as an adjunct to revision ACL reconstruction