Advertisement for orthosearch.org.uk
Results 1 - 20 of 24
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 36 - 36
2 Jan 2024
Bagur-Cardona S Perez-Romero K Stiliyanov K Calvo J Gayà A Barceló-Coblijn G Rodriguez RM Gomez-Florit M
Full Access

Macrophages (Mφ) are immune cells that play a crucial role in both innate and adaptive immunity as they are involved in a wide range of physiological and pathological processes. Depending on the microenvironment and signals present, Mφ can polarize into either M1 or M2 phenotypes, with M1 macrophages exhibiting pro-inflammatory and cytotoxic effects, while M2 macrophages having immunosuppressive and tissue repair properties. Macrophages have been shown to play key roles in the development and progression or inhibition of various diseases, including cancer. For example, macrophages can stimulate tumor progression by promoting immunosuppression, angiogenesis, invasion, and metastasis. This work aimed to investigate the effect of extracellular vesicles (EVs)-derived from polarized macrophages on an osteosarcoma cell line. Monocytes were extracted from buffy coats and cultured in RPMI medium with platelet lysate or M-CSF. After 6 days of seeding, Mφ were differentiated into M1 and M2 with INF-γ/LPS and IL-4/IL-13, respectively. The medium with M1 or M2 derived EVs was collected and EVs were isolated by differential centrifugation and size exclusion chromatography and its morphology and size were characterized with SEM and NTA, respectively. The presence of typical EVs markers (CD9, CD63) was assessed by Western Blot. Finally, EVs from M1 or M2-polarized Mφ were added onto osteosarcoma cell cultures and their effect on cell viability and cell cycle, proliferation, and gene expression was assessed. The EVs showed the typical shape, size and surface markers of EVs. Overall, we observed that osteosarcoma cells responded differentially to EVs isolated from the M1 and M2-polarized Mφ. In summary, the use of Mφ-derived EVs for the treatment of osteosarcoma and other cancers deserves further study as it could benefit from interesting traits of EVs such as low immunogenicity, nontoxicity, and ability to pass through tissue barriers. Acknowledgements: Carlos III Health Institute and the European Social Fund for contract CP21/00136 and project PI22/01686


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 7 - 7
2 Jan 2024
Macmillan A Muhammad H Hosni RA Alkhayref M Hotchen A Robertson-Waters E Strangmark E Gompels B Wang J McDonnell S Khan W Clatworthy M Birch M McCaskie A
Full Access

In relation to regenerative therapies in osteoarthritis and cartilage repair, mesenchymal stromal cells (MSCs) have immunomodulatory functions and influence macrophage behaviour. Macrophages exist as a spectrum of pro-(M1) and anti-(M2) inflammatory phenotypic subsets. In the context of cartilage repair, we investigated MSC-macrophage crosstalk, including specifically the priming of cartilage cells by macrophages to achieve a regenerative rather than fibrotic outcome. Human monocytes were isolated from blood cones and differentiated towards M1 and M2 macrophages. Monocytes (Mo), M1 and M2 macrophages were cultured directly and indirectly (trans-well system) with human bone marrow derived MSCs. MSCs were added during M1 polarisation and separately to already induced M1 cells. Outcomes (M1/M2 markers and ligands/receptors) were evaluated using RT-qPCR and flow cytometry. Influence on chondrogenesis was assessed by applying M1 and M2 macrophage conditioned media (CM) sequentially to cartilage derived cells (recapitulating an acute injury environment). RT-qPCR was used to evaluate chondrogenic/fibrogenic gene transcription. The ratio of M2 markers (CD206 or CD163) to M1 markers (CD38) increased when MSCs were added to Mo/M1 macrophages, regardless of culture system used (direct or indirect). Pro-inflammatory markers (including TNFβ) decreased. CXCR2 expression by both M1 macrophages and MSCs decreased when MSCs were added to differentiated M1 macrophages in transwell. When adding initially M1 CM (for 12 hours) followed by M2 CM (for 12 hours) sequentially to chondrocytes, there was a significant increase of Aggrecan and Collagen type 2 gene expression and decrease in fibroblastic cell surface markers (PDPN/CD90). Mo/M1 macrophages cultured with MSCs, directly or indirectly, are shifted towards a more M2 phenotype. Indirect culture suggests this effect can occur via soluble signaling mediators. Sequential exposure of M1CM followed by M2CM to chondrocytes resulted in increased chondrogenic and reduced fibrotic gene expression, suggesting that an acute pro-inflammatory stimulus may prime chondrocytes before repair


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 37 - 37
17 Nov 2023
Macmillan A Muhammad H Hosni RA Alkhrayef M Hotchen A Robertson-Waters E Strangmark E Gompels B Wang JH McDonnell S Khan W Clatworthy M Birch M McCaskie A
Full Access

Abstract. Objectives. In relation to regenerative therapies in osteoarthritis and cartilage repair, mesenchymal stromal cells (MSCs) have immunomodulatory functions and influence macrophage behaviour. Macrophages exist as a spectrum of pro-(M1) and anti-(M2) inflammatory phenotypic subsets. In the context of cartilage repair, we investigated MSC-macrophage crosstalk, including specifically the priming of cartilage cells by macrophages to achieve a regenerative rather than fibrotic outcome. Methods. Human monocytes were isolated from blood cones and differentiated towards M1 and M2 macrophages. Monocytes (Mo), M1 and M2 macrophages were cultured directly and indirectly (trans-well system) with human bone marrow derived MSCs. MSCs were added during M1 polarisation and separately to already induced M1 cells. Outcomes (M1/M2 markers and ligands/receptors) were evaluated using RT-qPCR and flow cytometry. Influence on chondrogenesis was assessed by applying M1 and M2 macrophage conditioned media (CM) sequentially to cartilage derived cells (recapitulating an acute injury environment). RT-qPCR was used to evaluate chondrogenic/fibrogenic gene transcription. Results. The ratio of M2 markers (CD206 or CD163) to M1 markers (CD38) increased when MSCs were added to Mo/M1 macrophages, regardless of culture system used (direct or indirect). Pro-inflammatory markers (including TNFa) decreased. CXCR2 expression by both M1 macrophages and MSCs decreased when MSCs were added to differentiated M1 macrophages in transwell. When adding initially M1 CM (for 12 hours) followed by M2 CM (for 12 hours) sequentially to chondrocytes, there was a significant increase of Aggrecan and Collagen type 2 gene expression and decrease in fibroblastic cell surface markers (PDPN/CD90). Conclusions. Mo/M1 macrophages cultured with MSCs, directly or indirectly, are shifted towards a more M2 phenotype. Indirect culture suggests this effect can occur via soluble signaling mediators. Sequential exposure of M1CM followed by M2CM to chondrocytes resulted in increased chondrogenic and reduced fibrotic gene expression, suggesting that an acute pro-inflammatory stimulus may prime chondrocytes before repair. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 34 - 34
4 Apr 2023
Kaneko Y Minehara H Nakamura M Sekiguchi M Matsushita T Konno S
Full Access

Recent researches indicate that both M1 and M2 macrophages play vital roles in tissue repair and foreign body reaction processes. In this study, we investigated the dynamics of M1 macrophages in the induced membrane using a mouse femur critical-sized bone defect model.

The Masquelet method (M) and control (C) groups were established using C57BL/6J male mice (n=24). A 3mm-bone defect was created in the right femoral diaphysis followed by a Kirschner wire fixation, and a cement spacer was inserted into the defect in group M. In group C, the bone defect was left uninserted. Tissues around the defect were harvested at 1, 2, 4, and 6 weeks after surgery (n=3 in each group at each time point). Following Hematoxylin and eosin (HE) staining, immunohistochemical staining (IHC) was used to evaluate the CD68 expression as a marker of M1 macrophage. Iron staining was performed additionally to distinguish them from hemosiderin-phagocytosed macrophages.

In group M, HE staining revealed a hematoma-like structure, and CD68-positive cells were observed between the spacer and fibroblast layer at 1 week. The number of CD68-positive cells decreased at 2 weeks, while they were observed around the new bone at 4 and 6 weeks. In group C, fibroblast infiltration and fewer CD68-positive cells were observed in the bone defect without hematoma-like structure until 2 weeks, and no CD68-positive cells were observed at 4 and 6 weeks. Iron staining showed hemosiderin deposition in the surrounding area of the new bone in both groups at 4 and 6 weeks. The location of hemosiderin deposition was different from that of macrophage aggregation.

This study suggests that M1 macrophage aggregation is involved in the formation of induced membranes and osteogenesis and may be facilitated by the presence of spacers.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 115 - 115
1 Nov 2021
Maestro L García-Rey E Bensiamar F Rodriguez-Lorenzo L Vilaboa N Saldaña L
Full Access

Introduction and Objective

Mesenchymal stem cells (MSC) are attractive candidates for bone regeneration approaches. Benefits of MSC therapy are mainly attributed to paracrine effects via soluble factors, exerting both immunoregulatory and regenerative actions. Encapsulation of MSC in hydrogels prepared with extracellular matrix (ECM) proteins has been proposed as a strategy to enhance their survival and potentiate their function after implantation. Functional activity of MSC can be regulated by the physical and mechanical properties of their microenvironment. In this work, we investigated whether matrix stiffness can modulate the crosstalk between MSC encapsulated in collagen hydrogels with macrophages and osteoblasts.

Materials and Method

Collagen hydrogels with a final collagen concentration of 1.5, 3 and 6 mg/mL loaded with human MSC were prepared. Viscoelastic properties of hydrogels were measured in a controlled stress rheometer. Cell distribution into the hydrogels was examined using confocal microscopy and the levels of the immunomodulatory factors interleukin-6 (IL-6) and prostaglandin E2 (PGE2) released by MSC were quantified by immunoassays. To determine the effect of matrix stiffness on the immunomodulatory potential of MSC, human macrophages obtained from healthy blood were cultured in media conditioned by MSC in hydrogels. The involvement of IL-6 and PGE2 in MSC-mediated immunomodulation was investigated employing neutralizing antibodies. Finally, the influence of soluble factors released by MSC in hydrogels on bone-forming cells was studied using osteoblasts obtained from trabecular bone explants from patients with osteonecrosis of the femoral head during total hip arthroplasty.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 40 - 40
2 Jan 2024
Lin J Chen P Tan ZJ Sun Y Tam W Ao D Shen W Leung V Cheung KMC To M
Full Access

Silver nanoparticles (AgNPs) possess anti-inflammatory activities and have been widely deployed for promoting tissue repair. Here we explored the efficacy of AgNPs on functional recovery after spinal cord injury (SCI). Our data indicated that, in a SCI rat model, local AgNPs delivery could significantly recover locomotor function and exert neuroprotection through reducing of pro-inflammatory M1 survival. Furthermore, in comparison with Raw 264.7-derived M0 and M2, a higher level of AgNPs uptake and more pronounced cytotoxicity were detected in M1. RNA-seq analysis revealed the apoptotic genes in M1 were upregulated by AgNPs, whereas in M0 and M2, pro-apoptotic genes were downregulated and PI3k-Akt pathway signaling pathway was upregulated. Moreover, AgNPs treatment preferentially reduced cell viability of human monocyte-derived M1 comparing to M2, supporting its effect on M1 in human. Overall, our findings reveal AgNPs could suppress M1 activity and imply its therapeutic potential in promoting post-SCI motor recovery.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 105 - 105
1 Nov 2018
Manferdini C Paolella F Gabusi E Gambari L Fleury-Cappellesso S Barbero A Murphy M Lisignoli G
Full Access

Synovitis has been shown to play a role in pathophysiology of OA promoting cartilage destruction and pain. Synovium is mainly composed of synovial fibroblast (SF) and macrophage (SM) that guide synovial inflammation. Adipose stromal cells (ASC) promising candidate for cell therapy in OA are able to counteract inflammation. Two different subsets of macrophages have been described showing a pro-inflammatory (M1) and an anti-inflammatory (M2) phenotype. Macrophage markers: CD68, CD80 (M1-like) and CD206 (M2-like) were evaluated in osteoarthritic synovial tissue. GMP-clinical grade ASC were isolated from subcutaneous adipose tissue and M1-macrophages were differentiated from CD14+ obtained from peripheral blood of healthy donors. ASC were co-cultured in direct and indirect contact with activated (GM-CSF+IFNγ)-M1 macrophages for 48h. At the end of this co-culture we analyzed IL1β, TNFα, IL6, MIP1α/CCL3, S100A8, S100A9, IL10, CD163 and CD206 by qRT-PCR or immunoassay. PGE2 blocking experiments were performed. In moderate grade OA synovium we found similar percentages of CD80 and CD206. M1-activated macrophage factors IL1β, TNFα, IL6, MIP1α/CCL3, S100A8 and S100A9 were down-modulated both co-culture conditions. Moreover, ASC induced the typical M2 macrophage markers IL10, CD163 and CD206. Blocking experiments showed that TNFα, IL6, IL10, CD163 and CD206 were significantly modulated by PGE2. We confirmed the involvement of PGE2/COX2 also in CD14+ OA synovial macrophages. In conclusion we demonstrated that ASC are responsible for the switching of activated-M1-like to a M2-like anti-inflammatory phenotype, mainly through PGE2. This suggested a specific role of ASC as important determinants in therapeutic dampening of synovial inflammation in OA.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 21 - 21
1 Nov 2018
Capar S van Osch G Verhaar J Bastiaansen-Jenniskens Y
Full Access

Joint injuries often result in inflammation and cartilage defects. When inflamed, the synovium secretes factors that prevent successful cartilage repair by inhibiting chondrogenic differentiation of progenitor cells. In particular the pro-inflammatory macrophages in the synovium are indicated to contribute to this anti-chondrogenic effect. Thus, we aimed to counteract the anti-chondrogenic effect of inflamed synovium by modulating synovial inflammation and its macrophages. Synovium tissue obtained from osteoarthritic patients undergoing a total knee replacement was cut into explants and cultured for 72 hours +/− 1 µM of the anti-inflammatory drug triamcinolone acetonide (TAA) (Sigma Aldrich). TAA significantly decreased gene expression of TNFA, IL1β and IL6, and increased expression of CCL18, IL1RA in synovial explants (all with p < 0.001). On the other hand, TAA significantly decreased the percentages of pro-inflammatory CD14+/CD80+ and CD14+/CD86+ macrophages in the synovium (both p < 0.001) as assessed by flow cytometry analyses. The percentages of anti-inflammatory CD14+/CD163+ macrophages, is significantly increased (p < 0.001) in TAA treated synovium. Conditioned medium (CM) from synovium explants downregulated the gene expression of cartilage matrix components collagen type-2 and aggrecan expression in chondrogenic MSCs. This chondrogenesis inhibiting effect was reduced by treating synovium with TAA during the production of the CM. Our findings indicate that reducing synovial inflammation might improve the joint environment for better cartilage repair, possibly by modulation of macrophage phenotypes.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 28 - 28
1 Aug 2012
Xia Z Murray D
Full Access

Metal and their alloys have been widely used as implantable materials and prostheses in orthopaedic surgery. However, concerns exist as the metal nanoparticles released from wear of the prostheses cause clinical complications and in some cases result in catastrophic host tissue responses. The mechanism of nanotoxicity and cellular responses to wear metal nanoparticles are largely unknown. The aim of this study was to characterise macrophage phagocytosed cobalt/chromium metal nanoparticles both in vitro and in vivo, and investigate the consequent cytotoxicity. Two types of macrophage cell lines, murine RAW246.7 and human THP-1s were used for in vitro study, and tissues retrieved from pseudotumour patients caused by metal-on-metal hip resurfacing (MoMHR) were used for ex vivo observation. Transmission electron microscopy (TEM), scanning electron microscopy (SEM) in combination with backscatter, energy-disperse X-ray spectrometer (EDS), focused ion beam (FIB) were employed to characterise phagocytosed metal nanoparticles. Alamar blue assay, cell viability assays in addition to confocal microscopy in combination with imaging analysis were employed to study the cytotoxiticy in vitro. The results showed that macrophages phagocytosed cobalt and chromium nanoparticles in vitro and the phagocytosed metal particles were confirmed by backscatter SEM+EDS and FIB+EDS. these particles were toxic to macrophages at a dose dependent manner. The analysis of retrieved tissue from revision of MoMHR showed that cobalt/chromium metal nanoparticles were observed exclusively in living macrophages and fragments of dead macrophages, but they were not seen within either live or dead fibroblasts. Dead fibroblasts were associated with dead and disintegrated macrophages and were not directly in contact with metal particles; chromium but not cobalt was the predominant component remaining in tissue. We conclude that as an important type of innate immune cells and phagocytes, macrophages play a key role in metal nanoparticles related cytotoxicity. Metal nanoparticles are taken up mainly by macrophages. They corrode in an acidic environment of the phagosomes. Cobalt that is more soluble than chromium may release inside macrophages to cause death of individual nanoparticle-overloaded macrophages. It is then released into the local environment and results in death of fibroblasts and is subsequently leached from the tissue.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 293 - 293
1 Jul 2014
Yasuda T
Full Access

Summary

Hyaluronan suppressed lipopolysaccharide-stimulated prostaglandin E2 production via intercellular adhesion molecule-1 through down-regulation of nuclear factor-κB. Administration of hyaluronan into rheumatoid joints may decrease prostaglandin E2 production by activated macrophages, which could result in improvement of arthritic pain.

Introduction

Prostaglandin E2 (PGE2) is one of the key mediators of inflammation in rheumatoid arthritis (RA) joints. Intra-articular injection of high molecular weight hyaluronan (HA) into RA knee joints relieves arthritic pain. Although HA has been shown to inhibit PGE2 production in cytokine-stimulated synovial fibroblasts, it remains unclear how HA suppresses PGE2 production in catabolically activated cells. Furthermore, HA effect on macrophages has rarely been investigated in spite of their contribution to RA joint pathology.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 44 - 44
1 Jul 2014
Ding Y Qin C Huang D Shen H
Full Access

Summary

RNAi targeting TNF-alpha inhibits particle-induced inflammation and osteolysis.

Introduction

Over 1000,000 joint prostheses are implanted every year in the world. Aseptic joint loosening is a key factor that reduces the longevity of joint prosthesis. Prosthetic wear particles are thought to play a central role in the initiation and development of periprosthetic osteolysis, leading to aseptic loosening of prostheses. This study aims to investigate the effect of RNA interference (RNAi) targeting tumor necrosis factor-alpha (TNF-α) gene on particle-induced inflammation and osteolysis in macrophages in vitro and in vivo.


Bone & Joint Research
Vol. 3, Issue 9 | Pages 262 - 272
1 Sep 2014
Gumucio J Flood M Harning J Phan A Roche S Lynch E Bedi A Mendias C

Objectives

Rotator cuff tears are among the most common and debilitating upper extremity injuries. Chronic cuff tears result in atrophy and an infiltration of fat into the muscle, a condition commonly referred to as ‘fatty degeneration’. While stem cell therapies hold promise for the treatment of cuff tears, a suitable immunodeficient animal model that could be used to study human or other xenograft-based therapies for the treatment of rotator cuff injuries had not previously been identified.

Methods

A full-thickness, massive supraspinatus and infraspinatus tear was induced in adult T-cell deficient rats. We hypothesised that, compared with controls, 28 days after inducing a tear we would observe a decrease in muscle force production, an accumulation of type IIB fibres, and an upregulation in the expression of genes involved with muscle atrophy, fibrosis and inflammation.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 64 - 64
2 Jan 2024
Rodrigues M Almeida A Miranda M Vinhas A Gonçalves AI Gomes M
Full Access

Chronic inflammatory events have been associated to almost every chronic disease, including cardiovascular-, neurodegenerative- and autoimmune- diseases, cancer, and host-implant rejection. Given the toll of chronic inflammation in healthcare and socioeconomical costs developing strategies to resolve and control chronic states of inflammation remain a priority for the significant benefit of patients. Macrophages (Mφ) hold a central role both in the initiation and resolution of inflammatory events, assuming different functional profiles. The outstanding features of Mφ counting with the easy access to tissues, and the extended networking make Mφ excellent candidates for precision therapy. Moreover, sophisticated macrophage-oriented systems could offer innovative immune-regulatory alternatives to effectively regulate chronic environments that traditional pharmacological agents cannot provide. We propose magnetically assisted systems for balancing Mφ functions at the injury site. This platform combines polymers, inflammatory miRNA antagonists and magnetically responsive nanoparticles to stimulate Mφ functions towards pro-regenerative phenotypes. Strategies with magnetically assisted systems include contactless presentation of immune-modulatory molecules, cell internalization of regulatory agents for functional programming via magnetofection, and multiple payload delivery and release. Overall, Mφ-oriented systems stimulated pro-regenerative functions of Mφ supporting magnetically assisted theranostic nanoplatforms for precision therapies, envisioning safer and more effective control over the distribution of sensitive nanotherapeutics for the treatments of chronical inflammatory conditions. Acknowledgements: ERC CoG MagTendon No.772817; FCT Doctoral Grant SFRD/BD/144816/2019, and TERM. RES Hub (Norte-01-0145-FEDER-022190)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 91 - 91
2 Jan 2024
Graça A Rodrigues M Domingues R Gomes M Gomez-Florit M
Full Access

Macrophages play a critical role in innate immunity by promoting or inhibiting tissue inflammation and repair. Classically, macrophages can differentiate into either pro-inflammatory (M1) or pro-reparative (M2) phenotypes in response to various stimuli. Therefore, this study aimed to address how extracellular vesicles (EVs) derived from polarized macrophages can affect the inflammatory response of tendon cells. For that purpose, human THP-1 cells were stimulated with lipopolysaccharide (LPS), and interleukins -4 and -13 (IL- 4, IL-13), to induce macrophages polarization into M1, M2, and hybrid M1/M2 phenotypes. Subsequently, the EVs were isolated from the culture medium by ultracentrifugation. The impact of these nanovesicles on the inflammation and injury scenarios of human tendon-derived cells (hTDCs), which had previously been stimulated with interleukin- 1 beta (IL-1ß) to mimic an inflammatory scenario, was assessed. We were able to isolate three different nanovesicles populations, showing the typical shape, size and surface markers of EVs. By extensively analyzing the proteomic expression profiles of M1, M2, and M1/M2, distinct proteins that were upregulated in each type of macrophage-derived EVs were identified. Notably, most of the detected pro- inflammatory cytokines and chemokines had higher expression levels in M1-derived EVs and were mostly absent in M2-derived EVs. Hence, by acting as a biological cue, we observed that M2 macrophage-derived EVs increased the expression of the tendon-related marker tenomodulin (TNMD) and tended to reduce the presence of pro-inflammatory markers in hTDCs. Overall, these preliminary results show that EVs derived from polarized macrophages might be a potential tool to modulate the immune system responses becoming a valuable asset in the tendon repair and regeneration fields worthy to be further explored


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 134 - 134
2 Jan 2024
Häusner S Horas K Blunk T Herrmann M
Full Access

Autografts containing bone marrow (BM) are current gold standard in the treatment of critical size bone defects, delayed union and bone nonunion defects. Although reaching unprecedented healing rates in bone reconstruction, the mode of action and cell-cell interactions of bone marrow mononuclear cell (BM-MNC) populations have not yet been described. BM-MNCs consist of a heterogeneous mixture of hematopoetic and non-hematopoetic lineage fractions. Cell culture in a 3D environment is necessary to reflect on the complex mix of these adherend and non-adherend cells in a physiologically relevant context. Therefore, the main aim of this approach was to establish conditions for a stable 3D BM-MNC culture to assess cellular responses on fracture healing strategies. BM samples were obtained from residual material after surgery with positive ethical vote and informed consent of the patients. BM-MNCs were isolated by density gradient centrifugation, and cellular composition was determined by flow cytometry to obtain unbiased data sets on contained cell populations. Collagen from rat tail and human fibrin was used to facilitate a 3D culture environment for the BM-MNCs over a period of three days. Effects on cellular composition that could improve the regenerative potential of BM-MNCs within the BM autograft were assessed using flow cytometry. Cell-cell-interactions were visualized using confocal microscopy over a period of 24 hours. Cell localization and interaction partners were characterized using immunofluorescence labeled paraffin sectioning. Main BM-MNC populations like Monocytes, Macrophages, T cells and endothelial progenitor cells were determined and could be conserved in 3D culture over a period of three days. The 3D cultures will be further treated with already clinically available reagents that lead to effects even within a short-term exposure to stimulate angiogenic, osteogenic or immunomodulatory properties. These measures will help to ease the translation from “bench to bedside” into an intraoperative protocol in the end


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 113 - 113
1 Nov 2018
Wang C
Full Access

All types of regenerative materials, including metal implants, porous scaffolds and cell-laden hydrogels, interact with the living tissue and cells. Such interaction is key to the settlement and regenerative outcomes of the biomaterials. Notably, the immune reactions from the host body crucially mediate the tissue-biomaterials interactions. Macrophages (as well as monocytes and neutrophils), traditionally best known as defenders, accumulate at the tissue-biomaterials interface and secrete abundant cytokines to create a microenvironment that benefits or inhibits regeneration. Because the phenotype of these cells is highly plastic in response to varying stimuli, it may be feasible to manipulate their activity at the interface and harness their power to mediate bone regeneration. Towards this goal, our team have been working on macrophage-driven bone regeneration in two aspects. First, targeting the abundant, glucan/mannan-recognising receptors on macrophages, we have devised a series of glucomannan polymers that can stimulate macrophages to secrete pro-osteogenic cytokines, and applied them as coating polymer of mesenchymal stem cells-laden hydrogels. Second, targeting the toll-like receptors (TLRs) on macrophages, we have screened TLR-activating polysaccharides and picked up zymosan (beta-glucan) to be modified onto titanium and glass implants. We evaluated both the efficacy of integration and safety of immune stimulation in both in vitro and in vivo models. Our future exploration lies in further elaborating the different roles and mechanisms of macrophages of various types and origins in the regenerative process


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 3 - 3
1 Nov 2018
Cottrell JA Sosa B Soto E
Full Access

Inflammation has been associated with immunological dysfunctions and chronic inflammatory diseases but is important for normal repair processes like bone healing. Macrophages (mØ) are important for bone growth, maintenance, and regeneration. MØ are distinct from other bone cells and play an important role in the inflammatory stage of bone healing. Previous data has shown that ablation of mØs during the inflammatory stage can severely impair bone healing and exacerbate bone loss in osteoporotic models. However, little research has focused on characterizing the mØ subtypes found during the inflammatory stage. We hypothesized that different mØ subtypes are activated during inflammation and release factors to regulate bone repair. Therefore, bone marrow was collected from mice femurs at days 0, 1, 2, 4, and 7 after fracture and mØ were isolated using established methods. MØ subtypes were identified using anti-F4/80, anti-CD80, and anti-CD86 antibodies via flow cytometry and cytokine expression was quantified using Luminex. When compared to unfractured controls, a 40–50% increase in MHC class II+/CD80+ double positive mØs and MHC class II+/CD86+ double positive mØs were found on day 2 post-fracture, which remained elevated through day 4 or 7, respectively. No differences were found in mØ populations between femurs in naïve (unfractured) mice. mØs of the fractured limbs expressed higher levels of cytokines overtime. Our results suggest that different subtypes of mØs are present during the inflammatory stage and may support diverse functions such as effertocytosis, chemotaxis, and tissue anabolism or catabolism, which provides insight into their contribution in normal or uncontrolled inflammatory related processes and conditions


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 83 - 83
1 Apr 2018
Hameister R Dheen ST Lohmann CH Kaur C Singh G
Full Access

Background. Mechanisms underlying implant failure remain incompletely described, though the presence of macrophage-mediated inflammatory reactions is well documented. Hypoxia has a critical role in many diseases and is known to be interdependent with inflammation. Metals used for joint replacements have also been reported to provoke hypoxia-like conditions. In view of this, we aim to investigate hypoxia-associated factors in aseptic loosening and osteoarthritis with a focus on macrophages. Methods. Western blotting, calorimetric assay, haematoxylin-eosin staining, immunohistochemistry, double-immunofluorescence and transmission electron microscopy were performed on capsular tissue obtained from patients undergoing primary implantation of a total hip replacement for osteoarthritis and from patients undergoing revision surgery for aseptic loosening to investigate the presence of hypoxia-associated factors. Results. Tissues from patients with osteoarthritis and aseptic loosening showed the presence of inflammatory cells, many of which were macrophages as confirmed with CD68 immunostaining. In aseptic loosening, macrophages containing metal particles were present in clusters. This was observed both at the light and electron microscopic levels. Under the electron microscope, endothelial cells appeared to be hypertrophied and some showed signs of degeneration. The presence of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) and nitric oxide was demonstrated by western blotting and colorimetric assay. Macrophages were the predominant cell type to release HIF-1α, VEGF, inducible nitric oxide synthase (iNOS). This was confirmed by double-immunofluorescence showing co-localization of HIF-1α, VEGF, iNOS with the macrophage marker CD68. Endothelial cells were stained for endothelial nitric oxide synthase as assessed by immunohistochemistry. Conclusion. This study demonstrates the release of hypoxia-associated factors by macrophages. The presence of hypoxia-associated factors in both, osteoarthritis and aseptic loosening suggest that hypoxia may be a factor underlying both pathologic conditions. This study was supported by research grant (NMRC/CNIG/1147/2016) from National Medical Research Council (NMRC), Singapore


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 52 - 52
1 Apr 2018
Rieker C
Full Access

Total Hip Arthroplasty (THA) is a well-established, cost-effective treatment for improving function and alleviating pain in patients who have disabling hip disease with excellent long-term results. Based on the excellent results, there is an ongoing trend for THA to be performed in younger and more active patients, having higher physical demands on their new total joints. Polyethylene (PE) wear and its biological consequences are one of the main causes of implant failure in THA. Macrophages phagocytise PE wear particles and this will result in osteolysis and loss of periprosthetic bone. The risk of these complications can be estimated in relation to the amount of volumetric wear based on two assumptions: that the number of PE particles dispersed in the peri-prosthetic tissues is controlled by the amount of PE wear; and that the development of osteolysis and the resulting aseptic loosening is triggered by these PE particles. Based on these assumptions, a model was developed to estimate the osteolysis-free life of a THA, depending on the Linear Wear Rate (LWR) and femoral head size of the PE bearing. A review of the literature was conducted to provide an estimate of the radiologic osteolysis threshold based on the volumetric wear of the PE bearing. This review demonstrates that this radiologic osteolysis threshold is approximated 670 mm3 for conventional PE. The osteolysis-free life of the THA was estimated by simply dividing this threshold volume by the annual Volumetric Wear Rate (VWR) of the bearing. The annual VWR is basically controlled by two parameters: (1) annual LWR and (2) head size, and was calculated by using published formulae. For 28 mm heads, following osteolysis-free life was determined in function of the annual LWR. LWR: 10 µm/y => 116.6 years / LWR: 25 µm/y => 46.6 years / LWR: 50 µm/y => 23.3 years / LWR: 100 µm/y => 11.6 years. For 40 mm heads, following osteolysis-free life was determined in function of the annual LWR. LWR: 10 µm/y => 57.1 years / LWR: 25 µm/y => 22.9 years / LWR: 50 µm/y => 11.4 years / LWR: 100 µm/y => 5.7 years. The osteolysis-free life determined by this model is in good agreement with the clinical results of PE bearings having a 28 mm head size and demonstrates that extreme low LWRs are mandatory to assure a descent osteolysis-free life for THA (PE bearings) using large heads, such as 40 mm. For such head sizes, small variations of the LWR may have large impacts on the osteolysis-free life of the THA


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 3 | Pages 452 - 456
1 Apr 2002
Yang TT Sabokbar A Gibbons CLMH Athanasou NA

The cellular mechanisms which account for the formation of osteoclasts and bone resorption associated with enlarging benign and malignant mesenchymal tumours of bone are uncertain. Osteoclasts are marrow-derived, multinucleated, bone-resorbing cells which express a macrophage phenotype. We have determined whether tumour-associated macrophages (TAMs) isolated from benign and malignant mesenchymal tumours are capable of differentiating into osteoclasts. Macrophages were cultured on both coverslips and dentine slices for up to 21 days with UMR 106 osteoblastic cells in the presence of 1,25 dihydroxyvitamin D. 3. (1,25(OH). 2. D. 3. ) and human macrophage colony-stimulating factor (M-CSF) or, in the absence of UMR 106 cells, with M-CSF and RANK ligand. In all tumours, the formation of osteoclasts from CD14-positive macrophages was shown by the formation of tartrate-resistant-acid-phosphatase and vitronectin-receptor-positive multinucleated cells which were capable of carrying out lacunar resorption. These results indicate that the tumour osteolysis associated with the growth of mesenchymal tumours in bone is likely to be due in part to the differentiation of mononuclear phagocyte osteoclast precursors which are present in the TAM population of these lesions