Objectives. Nonunion is one of the most troublesome complications to treat
in orthopaedics. Former authors believed that atrophic nonunion
occurred as a result of lack of mesenchymal stem cells (MSCs). We
evaluated the number and viability of
The scarcity of mesenchymal stem cells (MSCs) in iliac crest bone marrow aspirate (ICBMA), and the expense and time in culturing cells, has led to the search for alternative harvest sites. The reamer-irrigation-aspirator (RIA) provides continuous irrigation and suction during reaming of long bones. The aspirated contents pass via a filter, trapping bony fragments, before moving into a ‘waste’ bag from which
As arthroplasty demand grows worldwide, the need for a novel cost-effective treatment option for articular cartilage (AC) defects tailored to individual patients has never been greater. 3D bioprinting can deposit patient cells and other biomaterials in user-defined patterns to build tissue constructs from the “bottom-up,” potentially offering a new treatment for AC defects. Novel composite bioinks were created by mixing different ratios of methacrylated alginate (AlgMA) with methacrylated gelatin (GelMA) and collagen. Chondrocytes and mesenchymal stem cells (MSCs) were then encapsulated in the bioinks and 3D bioprinted using a custom-built extrusion bioprinter. UV and double-ionic (BaCl2 and CaCl2) crosslinking was deployed following bioprinting to strengthen bioink stability in culture. Chondrocyte and MSC spheroids were also bioprinted to accelerate cell growth and development of ECM in bioprinted constructs. Excellent viability of chondrocytes and
Mesenchymal stem cells (MSCs) reside around blood vessels in all organs. This reservoir of progenitors can be ‘recruited’ in response to injury. The ability to manipulate stem cells therapeutically within injured tissue provides an attractive alternative to transplantation. Stem cells are regulated by neighbouring cells. We hypothesized that endothelial cells (ECs) influence MSC differentiation into bone and fat.
Introduction.
The role of mesenchymal stem cells (MSCs) in enhancing healing process has been examined with allogeneic and xenogeneic cells in transplantation models. However, certain factors might limit the use of allogeneic cells in clinical practice, (e.g. disease transmission, ethical issues and patient acceptance). Adipose tissue represents an abundant source for autologous cells. The aim of this study was to evaluate adipose-derived autologous cells for preventing non-union. Adults male Wistar rats (n=5) underwent a previously published surgical procedure known to result in non-union if no treatment is given. This consisted of a mid-shaft tibial osteotomy with peri/endosteal stripping stabilised by intramedullary nail fixation with a 1mm gap maintained by a spacer. During the same operation, ipsilateral inguinal subcutaneous fat was harvested and processed for cell isolation. After three weeks in culture, the cell number reached 5×106 and were injected into the fracture site. At the end of the experiment, all tibias (injected with autologous fat-MSCs) developed union. These were compared with a control group injected with PBS (n=4) and with allogenic (n=5) and xenogeneic (n=6) cell transplantation groups. The amount of callus was noticeably large in the autologous cell group and the distal-callus index was significantly greater than that of the other groups, P-value =<0.05, unpaired t-test, corrected by Benjamini & Hochberg. We report a novel method for autologous
Bone is the second most commonly transplanted tissue worldwide, with over four million operations using bone grafts or bone substitute materials annually to treat bone defects. However, significant limitations affect current treatment options and clinical demand for bone grafts continues to rise due to conditions such as trauma, cancer, infection and arthritis. The need for a novel, cost effective treatment option for osteochondral defects has therefore never been greater. As an emerging technology, three-dimensional (3D) bioprinting has the capacity to deposit cells, extracellular matrices and other biological materials in user-defined patterns to build complex tissue constructs from the “bottom up”. Through use of extrusion bioprinting and fused deposition modelling (FDM) 3D printing, porous 3D scaffolds were successfully created in this study from hydrogels and synthetic polymers. Mesenchymal stem cells (MSCs) seeded onto polycaprolactone scaffolds with defined pore sizes and porosity maintained viability over a 7-day period, with addition of alginate hydrogel and scaffold surface treatment with NaOH increasing cell adhesion and viability. MSC-laden alginate constructs produced via extrusion bioprinting also maintained structural integrity and cell viability over 7 days in vitro culture. Growth within osteogenic media resulted in successful osteogenic differentiation of
Adipose tissue is an attractive source of mesenchymal stem cells (MSCs) as it is largely dispensable and readily accessible through minimally invasive procedures such as lipoaspiration. Until recently
Perivascular stem cells (PSCs) from lipoaspirate demonstrate increased purity and immaturity with greater engraftment potential than standard mesenchymal stem cells (MSCs).
Perivascular stem cells (PSCs) from lipoaspirate demonstrate increased purity and immaturity with greater engraftment potential than standard mesenchymal stem cells (MSCs).
Introduction. The concept of “bone graft expanders” has been popularised to increase the volume and biological activity of the implanted Material. HYPOTHESIS. Orthoss® granules support exogenously seeded
Introduction. Iliac crest bone marrow aspirate (ICBMA) is frequently cited as the ‘gold-standard’ source of
We hypothesise that the Masquelet induced membrane used for the reconstruction of large bone defects were likely to involve mesenchymal stem cells (MSCs), given the excellent resultant skeletal repair. This study represents the first characterisation in humans of the induced membrane formed as a result of the Masquelet technique. Methods. Induced membranes and matching periosteum were harvested from 7 patients. Cytokines (BMP2, VEGF, SDF1) and cell lineage markers (CD31, CD271, CD146) were studied by immunohistochemisty. Flow cytometry was used to measure the cellularity and cellular composition.
Proliferation of synovial Mesenchymal Stromal/Stem Cells (MSCs) leads to synovial hyperplasia (SH) following Joint Surface Injury (JSI). Uncontrolled Yap activity causes tissue overgrowth due to modulation of MSC proliferation. We hypothesised that YAP plays a role in SH following JSI. A spatiotemporal analysis of Yap expression was performed using the JSI model in C57Bl/6 mice. Synovial samples from patients were similarly analysed. Gdf5-Cre;Yap1fl/fl;Tom mice were created to determine the effect YAP1 knockout in Gdf5 lineage cells on SH after JSI. In patients, Yap expression was upregulated in activated synovium, including a subset of CD55 positive fibroblast-like synoviocytes in the synovial lining (SL). Cells staining positive for the proliferation marker Ki67 expressed active YAP. In mice, Yap was highly expressed in injured knee joint synovium compared to controls. Yap mRNA levels at 2 (p<0.05) and 8 days (p<0.001) after injury were increased. Conditional Yap1 knockout in Gdf5 progeny cells prevented hyperplasia of synovial lining (SL) after JSI. Cellularity was significantly decreased in the SL but not in the sub-lining of injured Yap1 knockout- compared to control mice. The percentage of cells in synovium that were Tom+ increased in response to JSI in control and haplo-insufficient but not in YAP1 knockout mice (p<0.05). Modulation of YAP and proliferation of
Exercise deters systemic diseases such as osteoporosis, sarcopenia, diabetes and obesity. Brief daily periods of low intensity vibration (LIV; <0.4g) is anabolic to bone and muscle, an adaptive response achieved in part by biasing mesenchymal stem cell (MSC) fate selection towards forming higher order connective tissues. In the clinic, LIV has protected the musculoskeletal system even under severe challenges such as Crohn Disease, Cerebral Palsy, and end-stage renal disease. Low magnitude mechanical signals also suppress adipogenesis in the mouse, with reductions in subcutaneous and visceral fat. The starkly distinct response of these tissues (augment bone & muscle; suppress fat) suggests that LIV influences the differentiation pathway of
MicroRNAs (miRNAs ) are small non-coding RNAs
that regulate gene expression. We hypothesised that the functions
of certain miRNAs and changes to their patterns of expression may
be crucial in the pathogenesis of nonunion. Healing fractures and
atrophic nonunions produced by periosteal cauterisation were created
in the femora of 94 rats, with 1:1 group allocation. At post-fracture
days three, seven, ten, 14, 21 and 28, miRNAs were extracted from
the newly generated tissue at the fracture site. Microarray and
real-time polymerase chain reaction (PCR) analyses of day 14 samples
revealed that five miRNAs, miR-31a-3p, miR-31a-5p, miR-146a-5p,
miR-146b-5p and miR-223-3p, were highly upregulated in nonunion.
Real-time PCR analysis further revealed that, in nonunion, the expression
levels of all five of these miRNAs peaked on day 14 and declined
thereafter. Our results suggest that miR-31a-3p, miR-31a-5p, miR-146a-5p,
miR-146b-5p and miR-223-3p may play an important role in the development
of nonunion. These findings add to the understanding of the molecular mechanism
for nonunion formation and may lead to the development of novel
therapeutic strategies for its treatment. Cite this article:
We hypothesised that cells obtained via a Reamer–Irrigator–Aspirator
(RIA) system retain substantial osteogenic potential and are at
least equivalent to graft harvested from the iliac crest. Graft
was harvested using the RIA in 25 patients (mean age 37.6 years
(18 to 68)) and from the iliac crest in 21 patients (mean age 44.6
years (24 to 78)), after which ≥ 1 g of bony particulate graft material
was processed from each. Initial cell viability was assessed using Trypan
blue exclusion, and initial fluorescence-activated cell sorting
(FACS) analysis for cell lineage was performed. After culturing
the cells, repeat FACS analysis for cell lineage was performed and
enzyme-linked immunosorbent assay (ELISA) for osteocalcin, and Alizarin
red staining to determine osteogenic potential. Cells obtained via
RIA or from the iliac crest were viable and matured into mesenchymal
stem cells, as shown by staining for the specific mesenchymal antigens
CD90 and CD105. For samples from both RIA and the iliac crest there
was a statistically significant increase in bone production (both
p <
0.001), as demonstrated by osteocalcin production after induction. Medullary autograft cells harvested using RIA are viable and
osteogenic. Cell viability and osteogenic potential were similar
between bone grafts obtained from both the RIA system and the iliac
crest. Cite this article: