Introduction. Matrix metalloproteinases (MMP) play a key role in cartilage degradation in osteoarthritis. Statins are a potential suppressor of MMPs. The aim of this research was to assess the efficacy of Pravastatin in suppressing
The incidence of acute and chronic conditions
of the tendo Achillis appear to be increasing. Causation is multifactorial
but the role of inherited genetic elements and the influence of
environmental factors altering gene expression are increasingly
being recognised. Certain individuals’ tendons carry specific variations
of genetic sequence that may make them more susceptible to injury.
Alterations in the structure or relative amounts of the components
of tendon and fine control of activity within the extracellular
matrix affect the response of the tendon to loading with failure
in certain cases. This review summarises present knowledge of the influence of
genetic patterns on the pathology of the tendo Achillis, with a
focus on the possible biological mechanisms by which genetic factors
are involved in the aetiology of tendon pathology. Finally, we assess
potential future developments with both the opportunities and risks
that they may carry. Cite this article:
Aims. Femoroacetabular impingement (FAI) is a potential cause of hip osteoarthritis (OA). The purpose of this study was to investigate the expression profile of matrix metalloproteinases (MMPs) in the labral tissue with FAI pathology. Methods. In this study, labral tissues were collected from four FAI patients arthroscopically and from three normal hips of deceased donors. Proteins extracted from the FAI and normal labrums were separately applied for
Introduction. Within articular cartilage, chondrocytes reside within the pericellular matrix (PCM), collectively constituting the microanatomical entity known as a chondron. The PCM functions as a pivotal protective shield and mediator of biomechanical and biochemical cues. In the context of Osteoarthritis (OA), enzymatic degradation of the PCM is facilitated by matrix metalloproteinases (MMPs). This study delves into the functional implications of PCM structural integrity decline on the biomechanical properties of chondrons and impact on Ca. 2+. signaling dynamics. Method. Chondrons isolated from human cartilage explants were incubated with activated MMP-2, -3, or -7. Structural degradation of the pericellular matrix (PCM) was assessed by immunolabelling (collagen type VI and perlecan, n=5). Biomechanical properties of chondrons (i.e. elastic modulus (EM)) were analyzed using atomic force microscopy (AFM). A fluorescent calcium indicator (Fluo-4-AM) was used to record and quantify the intracellular Ca. 2+. influx of chondrons subjected to single cell mechanical loading (500nN) with AFM (n=7). Result. Each of the three MMPs disrupted the structural integrity of the PCM, leading to attenuated fluorescence intensity for both perlecan and collagen VI. A significant decrease of EM was observed for all
Purpose of the study: The purpose of this study was to compare two types of treatment for fractures of the distal radius with posterior shift: the volar locking plate (c) or mixed multiple pinning (MMP). We conducted a prospective randomised trial. Material and methods: One hundred ten patients aged over 50 years victims of an articular or extra-articular fracture of the distal radius with posterior shift were included in this study. Mean age was 74 years. Patients were recruited via our emergency unit. After obtaining the written informed consent of the patients, patients were assigned to a treatment group using the nQuery Advisor 6.01 available on the internet, 24 hours/d 7d/7. Patients were treated by one of the two surgical techniques according to the randomisation. Patients were reviewed at 3 and 6 weeks and at 3 and 6 months. The DASH and Herzberg scores were noted and plain x-rays of the wrist (ap and lateral views) were obtained at each visit. Results: Fifty-two patients were treated with
The purpose of this study was to evaluate whether AGEs induce annulus fibrosus (AF) cell apoptosis and to further explore the mechanism by which this process occurs. AF cells were treated with various concentrations of AGEs for 3 days. Cell proliferation was measured by the Cell Counting Kit-8 (CCK-8) and EdU incorporation assays. Cell apoptosis was examined by the Annexin V/PI apoptosis detection kit and Hoechst 33342. The expression of apoptosis-related proteins, including Bax, Bcl-2, cytochrome c, caspase-3 and caspase-9, was detected by western blotting. In addition, Bax and Bcl-2 mRNA expression levels were detected by RT-PCR. Mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (ROS) production of AF cell were examined by JC-1 staining and DCFH-DA fluorescent probes, respectively. Our results indicated that AGEs had inhibitory effects on AF cell proliferation and induced AF cell apoptosis. The molecular data showed that AGEs significantly up-regulated Bax expression and inhibited Bcl-2 expression. In addition, AGEs increased the release of cytochrome c into the cytosol and enhanced caspase-9 and caspase-3 activation. Moreover, treatment with AGEs resulted in a decrease in
Aims. This study aimed to define the histopathology of degenerated humeral head cartilage and synovial inflammation of the glenohumeral joint in patients with omarthrosis (OmA) and cuff tear arthropathy (CTA). Additionally, the potential of immunohistochemical tissue biomarkers in reflecting the degeneration status of humeral head cartilage was evaluated. Methods. Specimens of the humeral head and synovial tissue from 12 patients with OmA, seven patients with CTA, and four body donors were processed histologically for examination using different histopathological scores. Osteochondral sections were immunohistochemically stained for collagen type I, collagen type II, collagen neoepitope C1,2C, collagen type X, and osteocalcin, prior to semiquantitative analysis. Matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 levels were analyzed in synovial fluid using enzyme-linked immunosorbent assay (ELISA). Results. Cartilage degeneration of the humeral head was associated with the histological presentation of: 1) pannus overgrowing the cartilage surface; 2) pores in the subchondral bone plate; and 3) chondrocyte clusters in OmA patients. In contrast, hyperplasia of the synovial lining layer was revealed as a significant indicator of inflammatory processes predominantly in CTA. The abundancy of collagen I, collagen II, and the C1,2C neoepitope correlated significantly with the histopathological degeneration of humeral head cartilage. No evidence for differences in
Matrix metalloproteinase enzymes (MMPs) play a crucial role in the remodeling of articular cartilage, contributing also to osteoarthritis (OA) progression. The pericellular matrix (PCM) is a specialized space surrounding each chondrocyte, containing collagen type VI and perlecan. It acts as a transducer of biomechanical and biochemical signals for the chondrocyte. This study investigates the impact of MMP-2, -3, and -7 on the integrity and biomechanical characteristics of the PCM. Human articular cartilage explants (n=10 patients, ethical-nr.:674/2016BO2) were incubated with activated MMP-2, -3, or -7 as well as combinations of these enzymes. The structural degradative effect on the PCM was assessed by immunolabelling of the PCM's main components: collagen type VI and perlecan. Biomechanical properties of the PCM in form of the elastic moduli (EM) were determined by means of atomic force microscopy (AFM), using a spherical cantilever tip (2.5µm). MMPs disrupted the PCM-integrity, resulting in altered collagen type VI and perlecan structure and dispersed pericellular arrangement. A total of 3600 AFM-measurements revealed that incubation with single MMPs resulted in decreased PCM stiffness (p<0.001) when compared to the untreated group. The overall EM were reduced by ∼36% for all the 3 individual enzymes. The enzyme combinations altered the biomechanical properties at a comparable level (∼36%, p<0.001), except for MMP-2/-7 (p=0.202). MMP-induced changes in the PCM composition have a significant impact on the biomechanical properties of the PCM, similar to those observed in early OA. Each individual
Early identification of patients at risk for impaired tendon healing and corresponding novel therapeutic approaches are urgent medical needs. This study aimed to clarify the role of CD3+ T-cells during acute Achilles tendon (AT) healing. Blood and hematoma aspirate were taken from 26 patients during AT reconstruction, and additional blood samples were obtained during clinical follow-up at 6, 26 and 52 weeks after surgery. T-cell subsets were analyzed by flow cytometry using CD3, CD4, CD8, CD11a, CD57 and CD28 antibodies. Clinical follow-up included functional tests, MRI assessments, and subjective questionnaires. In vitro, the functional behavior of patient-derived tenocytes was investigated in co-cultures with autologous unpolarized CD4+ or CD8+ T-cells, or IFNy-polarized CD8+ or IL17-polarized CD4+ Tcells (n=5-6). This included alterations in gene expression (qPCR),
Introduction. Chondrocytes are enveloped within the pericellular matrix (PCM), a structurally intricate network primarily demarcated by the presence of collagen type VI microfibrils and perlecan, resembling a protective cocoon. The PCM serves pivotal functions in facilitating cell mechanoprotection and mechanotransduction. The progression of osteoarthritis (OA) is associated with alterations in the spatial arrangement of chondrocytes, transitioning from single strings to double strings, small clusters, and eventually coalescing into large clusters in advanced OA stages. Changes in cellular patters coincide with structural degradation of the PCM and loss of biomechanical properties. Here, we systematically studied matrix metalloproteinases (MMPs), their distribution, activity, and involvement in PCM destruction, utilizing chondrocyte arrangement as an OA biomarker. Methods. Cartilage specimens were obtained from 149 osteoarthritis (OA) patients, and selected based on the predominant spatial pattern of chondrocytes. Immunoassays were employed to screen for the presence of various MMPs (-1, -2, -3, -7, -8, -9, -10, -12, -13). Subsequently, the presence and activity of elevated MMPs were further investigated through immunolabeling, western blots and zymograms. Enzymatic assays were utilized to demonstrate the direct involvement of the targeted MMPs in the PCM destruction. Results. Screening revealed increased levels of MMP-1, -2, -3, -7, and -13, with their expression profile demonstrating a distinct dependency on the stage of degeneration. We found that MMP-2 and -3 can directly compromise the integrity of collagen type VI, whereas MMP-3 and MMP-7 disrupt perlecan. Conclusions. Presence of both pro- and active forms of MMP-2, -3, and -7 in OA-induced patterns, along with their direct involvement in collagen type VI and perlecan degradation, underscores their crucial role in early PCM destruction. Given the early stages of the disease already exhibit heightened
Introduction. We studied the safety and efficacy of multimodal thromboprophylaxis (MMP) in patients with a history of venous thromboembolism (VTE) undergoing total hip arthroplasty (THA).
Degenerative joint disease (DJD) involves the proteolysis of many extracellular matrix molecules (ECM) present in articular cartilage and other joint tissues such as tendon, meniscus and ligaments. Recent research has identified key enzymes involved in the catabolism of ECM. Two classes of enzyme the Matrix Metalloproteinases (MMP’s) MMP-2, MMP-3, MMP-13 and the ADAMTS family (a disintegrin and metalloproteinase with thrombospondin motifs) of proteinases most notably, ADAMTS-1, -4 and −5, have been shown to be involved in the catabolism of ECM (such as type II collagen and cartilage aggrecan). The presence of several MMPs in the synovial fluid has been reported; however, little data has yet been gathered on the presence of ADAMTS-1, -4 or −5 (the aggrecanases) in synovial fluids. In this study we have used a recombinant artificial substrate and specific neoepitope antibodies that recognise either MMP- generated or aggrecanase -generated degradation products to measure the relative activity of these two enzyme families in the synovial fluid from human patients. Methods: A recombinant substrate containing the interglobular domain of cartilage aggrecan , flanked by a complement regulator and the Fc region of IgG has been stably transfected into CHO cells. The recombinant protein has been purified from the medium using a Protein A column followed by gel chromatography using a Superose 12 column. Synovial fluid samples were depleted of serum immunoglobulin by pre-absorption with ProSepA. The recombinant substrate was then added to synovial fluid samples and incubated overnight as 37?C. The recombinant substrate was recovered from samples using ProsepA and then separated by SDS-PAGE (10% gels). Gels were transferred to nitrocellulose membranes and immunoblotted with antibodies recognising the undigested substrate and using neoeptiope antibodies specifically recognising
Objectives. Re-rupture is common after primary flexor tendon repair. Characterization of the biological changes in the ruptured tendon stumps would be helpful, not only to understand the biological responses to the failed tendon repair, but also to investigate if the tendon stumps could be used as a recycling biomaterial for tendon regeneration in the secondary grafting surgery. Methods. A canine flexor tendon repair and failure model was used. Following six weeks of repair failure, the tendon stumps were analyzed and characterized as isolated tendon-derived stem cells (TDSCs). Results. Failed-repair stump tissue showed cellular accumulation of crumpled and disoriented collagen fibres. Compared with normal tendon, stump tissue had significantly higher gene expression of collagens I and III, matrix metalloproteinases (MMPs), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and insulin-like growth factor (IGF). The stump TDSCs presented both mesenchymal stem and haematopoietic cell markers with significantly increased expression of CD34, CD44, and CD90 markers. Stump TDSCs exhibited similar migration but a lower proliferation rate, as well as similar osteogenic differentiation but a lower chondrogenic/adipogenic differentiation capability, compared with normal TDSCs. Stump TDSCs also showed increasing levels of SRY-box 2 (Sox2), octamer-binding transcription factor 4 (Oct4), tenomodulin (TNMD), and scleraxis (Scx) protein and gene expression. Conclusion. We found that a failed repair stump had increased cellularity that preserved both mesenchymal and haematopoietic stem cell characteristics, with higher collagen synthesis,
Introduction: Chondro-epiphyseal cartilage is generally resistant to vascular invasion. At the time of formation of the secondary ossification center in skeletal ‘long’ bones, the anti-angiogenic nature of cartilage is altered in favor of angiogenesis and vascular invasion takes place. We studied the control of this angiogenic ‘switch’ by experimentally investigating two factors which might influence vascular invasion.
Purpose: The inflammatory response around herniated tissue in the epidural space is believed to play a major role in the spontaneous regression of herniated lumbar disc. Numerous macrophages invade the herniated tissue along with newly formed blood vessels which influence oxygen gradient. Inflammatory cytokines such as interleukin-1 are produced by macrophages. These chemical mediators could stimulate disc cells to produce proteases such as MMPs which degrade the intervertebral disc matrix and could hence influence regression of the herniation. Here we have examined the influence of IL-1β and oxygen tension on proteoglycan turnover using a three-dimensional disc-cell culture system. Methods: Cells were isolated from the nucleus pulposus of 18–24 month bovine caudal discs by enzyme digestion. They were initially cultured for 14 days in alginate beads in DMEM containing 6% FBS at 4.10. 6. cells/ml under 21% oxygen to accumulate matrix. They were then cultured for 6 days under 0% or 21% oxygen and with or without IL-1β. Glycosaminoglycan (GAG) accumulation (as a measure of proteoglycan content) was measured using a DMB assay. Lactate and glucose production were measured using a standard enzymatic method. Rates of sulfated GAG synthesis was measured from rates of . 35. S-sulfate accumulation.
In patients with DM (Diabetes Mellitus types I &
II), primary frozen shoulders tend to be refractory to all forms of treatment. We collected tissue from the joint capsule of shoulder joints from a variety of patients undergoing surgery as follows:. Diabetic Group (DFS): patients with DM who have primary frozen shoulders. Other patients suffering from primary frozen shoulders (FS). Control group (NS). Patients undergoing shoulder surgery that does not involve stiffness of the gleno-humeral joint. Tissue was collected from near to the rotator interval under arthroscopic control. Fibroblast lines were established by serial passage. Thereafter they were exposed to graded concentrations of insulin in vitro for 24 hours and the supernatant retained for assay. Fibroblast lines were analysed from 3 subjects in each group (n=9). Luminex multiplex analysis was performed for MMPs (Matrix Metalloproteinases). TIMP-1 (Tissue Inhibitor of MetalloProteinases) expression. Informed consent was obtained from all subjects. Results: Production of
Introduction: Energy storing tendons, such as the human Achilles tendon, suffer a much higher incidence of rupture than non- energy storing positional tendons, such as the anterior tibialis tendon. Similarly, in the horse partial rupture of the energy storing superficial digital flexor tendon (SDFT) and suspensory ligament (SL) occurs much more frequently than to the deep digital flexor tendon (DDFT) and common digital extensor tendon (CDET) which are not involved in energy storage. In order to function effectively, energy storing tendons experience strains during high speed locomotion which are much closer to failure strain than non-energy storing tendons. Therefore, these tendons are likely to sustain high levels of microdamage, hence cell metabolism may also be higher in order to repair damage and maintain matrix integrity. Maintenance of the matrix requires not only synthesis of new matrix components but also degradation of matrix macromolecules which is achieved, in part, by a family of matrix metalloproteinase enzymes (MMPs). In this study we test the hypothesis that the energy storing equine SDFT and SL which are prone to degenerative changes have higher levels of MMP2 and MMP9 than the positional DDFT and CDET that are rarely injured. Methods: Tendons (SDFT, DDFT, SL, CDET) were harvested from the distal part of the forelimbs of 18 month old Thoroughbred horses (n = 12). Tissue from the mid-metacarpal region of each tendon was snap frozen, lyophilised, powdered and MMPs extracted. Gelatin zymography was used to determine levels of the pro and active forms of the gelatinase enzymes, MMP2 and
The patellofemoral joint is an important source of symptoms in osteoarthritis of the knee. We have used a newly designed surgical model of patellar strengthening to induce osteoarthritis in BALB/c mice and to establish markers by investigating the relationship between osteoarthritis and synovial levels of matrix metalloproteinases (MMPs). Osteoarthritis was induced by using this microsurgical technique under direct vision without involving the cavity of the knee. Degeneration of cartilage was assessed by the Mankin score and synovial tissue was used to determine the mRNA expression levels of MMPs. Irrigation fluid from the knee was used to measure the concentrations of MMP-3 and MMP-9. Analysis of cartilage degeneration was correlated with the levels of expression of