Advertisement for orthosearch.org.uk
Results 1 - 20 of 73
Results per page:
The Bone & Joint Journal
Vol. 105-B, Issue 4 | Pages 400 - 411
15 Mar 2023
Hosman AJF Barbagallo G van Middendorp JJ

Aims. The aim of this study was to determine whether early surgical treatment results in better neurological recovery 12 months after injury than late surgical treatment in patients with acute traumatic spinal cord injury (tSCI). Methods. Patients with tSCI requiring surgical spinal decompression presenting to 17 centres in Europe were recruited. Depending on the timing of decompression, patients were divided into early (≤ 12 hours after injury) and late (> 12 hours and < 14 days after injury) groups. The American Spinal Injury Association neurological (ASIA) examination was performed at baseline (after injury but before decompression) and at 12 months. The primary endpoint was the change in Lower Extremity Motor Score (LEMS) from baseline to 12 months. Results. The final analyses comprised 159 patients in the early and 135 in the late group. Patients in the early group had significantly more severe neurological impairment before surgical treatment. For unadjusted complete-case analysis, mean change in LEMS was 15.6 (95% confidence interval (CI) 12.1 to 19.0) in the early and 11.3 (95% CI 8.3 to 14.3) in the late group, with a mean between-group difference of 4.3 (95% CI -0.3 to 8.8). Using multiply imputed data adjusting for baseline LEMS, baseline ASIA Impairment Scale (AIS), and propensity score, the mean between-group difference in the change in LEMS decreased to 2.2 (95% CI -1.5 to 5.9). Conclusion. Compared to late surgical decompression, early surgical decompression following acute tSCI did not result in statistically significant or clinically meaningful neurological improvements 12 months after injury. These results, however, do not impact the well-established need for acute, non-surgical tSCI management. This is the first study to highlight that a combination of baseline imbalances, ceiling effects, and loss to follow-up rates may yield an overestimate of the effect of early surgical decompression in unadjusted analyses, which underpins the importance of adjusted statistical analyses in acute tSCI research. Cite this article: Bone Joint J 2023;105-B(4):400–411


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_I | Pages 21 - 21
1 Jan 2012
Sparkes V Warren L Whitehouse K
Full Access

Staying active, including walking is promoted as being beneficial for patients with low back pain (LBP). The abdominal muscles appear to influence the stability of the spine and their activity has been shown to change when patients have LBP. Walking with Nordic walking poles has been shown to influence forces on the lower limbs, but little research has investigated the effect on the trunk muscles. Aim: to study the effect of walking using Nordic walking poles on abdominal muscle activity and lower limb forces. Method 15 healthy subjects gave informed consent (5 males. 10 females, age 21.06 yrs.(±88), height 174.45cms (±11.1), weight 71.44 kg (±15.2)). Following a period of walking training with Nordic walking poles data was obtained during a period of walking for internal IO) and external oblique (EO) using surface electromyography activity and vertical lower limb forces (Newtons, (N)) with (WP) and without Nordic walking poles (NP). SEMG data was normalised to maximum voluntary contraction. Results. There were significant increases in IO (p=0.02, NP 31.94 (±39.9) WP 53.05 (±40.61)), EO (p=0.02, NP 46.45, (±30.9), WP 87.93 ± (±60.5)) and vertical forces with poles (p=0.008, NP871.6 (±237.00)N, WP 968.33, (±210.8) N). Discussion. Using Nordic walking poles significantly increases activity of IO and EO, which may be of value in the rehabilitation of some patients with LBP. Vertical forces increased when walking with poles which is contrary to previous research. This may be due to the data collection setting of a research laboratory or the subjects being novice walkers


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 35 - 35
1 Oct 2019
Brownhill K Papi E
Full Access

Purpose and Background

Physical mechanisms underlying back pain impairment are poorly understood. Measuring movement features linked to back pain should help understand its causes and decide on best management. Previous kinematic studies have pointed to diverse features distinguishing back pain sufferers. However, the complexity of 3D kinematics means that it is difficult to choose, a priori, which variables or variable combinations are most important. This study set out to obtain a rich set of kinematic data from spinal regions and lower extremities during typical movement tasks, and analyse all of these variables simultaneously to obtain globally important distinguishing features. To this end, a novel distance metric between pairs of motion sequences was used to construct distance matrices. Analyses were carried out directly on these distance matrices.

Methods and Results

20 controls (age: 28 ± 7.6, 10 female) and 20 chronic LBP subjects (age: 41 ± 10.7, 4 female) were recruited. Kinematic data were obtained whilst subjects stood from sitting (‘STS’), picking up (‘Picking’) and lowering (‘Lowering’) a 5kg box, and walking (right (‘WalkRight’) and left sides (‘WalkLeft’)).

For each task, permutation tests for group differences were carried out, based on the pseudo-F statistic calculated from the distance matrices. A similar approach was used to identify local differences at time points and joints. Group mean motion sequences were compared using a custom OpenSim model. Significant differences were obtained for STS (pseudo-F=2.8, p=0.017), WalkRight (pseudo-F=3.27, p=0.008) and WalkLeft (pseudo-F=3.39, p=0.005).


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 13 - 13
7 Aug 2024
Johnson K Pavlova A Swinton P Cooper K
Full Access

Purpose and Background. Work-related musculoskeletal disorders (WRMSD) can affect 56–80% of physiotherapists. Patient handling is reported as a significant risk factor for developing WRMSD with the back most frequently injured. Physiotherapists perform therapeutic handling to manually assist and facilitate patients’ movement to aid rehabilitation, which can increase physiotherapists risk of experiencing high forces during patient handling. Methods and Results. A descriptive cross-sectional study was completed to explore and quantitatively measure the movement of ten physiotherapists during patient handling, over one working day, in a neurological setting. A wearable 3-dimensional motion analysis system, Xsens (Movella, Henderson, NV), was used to measure physiotherapist movement and postures in the ward setting during patient treatment sessions. The resulting joint angles were reported descriptively and compared against a frequently used ergonomic assessment tool, the Rapid Upper Limb Assessment (RULA). Physiotherapists adopted four main positions during patient handling tasks: 1) kneeling; 2) half-kneeling; 3) standing; and 4) sitting. Eight patient handling tasks were identified and described: 1) Lie-to-sit; 2) sit-to-lie; 3) sit-to-stand; facilitation of 4) upper limb; 5) lower limb; 6) trunk; and 7) standing treatments; and 8) walking facilitation. Kneeling and sitting positions demonstrated greater neck extension and greater lumbosacral flexion during treatments which scores highly with the RULA. Conclusion. This research identified that patient treatment tasks were more often performed in kneeling or sitting positions than standing. Current moving and handling guidance teaches moving and handling in a standing position; loading and stresses experienced by the physiotherapists may differ in sitting or kneeling positions. Conflicts of interest. None. Sources of funding. None. This work has been presented as a poster at the CSP conference Glasgow 2023


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 547 - 552
1 Mar 2021
Magampa RS Dunn R

Aims. Spinal deformity surgery carries the risk of neurological injury. Neurophysiological monitoring allows early identification of intraoperative cord injury which enables early intervention resulting in a better prognosis. Although multimodal monitoring is the ideal, resource constraints make surgeon-directed intraoperative transcranial motor evoked potential (TcMEP) monitoring a useful compromise. Our experience using surgeon-directed TcMEP is presented in terms of viability, safety, and efficacy. Methods. We carried out a retrospective review of a single surgeon’s prospectively maintained database of cases in which TcMEP monitoring had been used between 2010 and 2017. The upper limbs were used as the control. A true alert was recorded when there was a 50% or more loss of amplitude from the lower limbs with maintained upper limb signals. Patients with true alerts were identified and their case history analyzed. Results. Of the 299 cases reviewed, 279 (93.3%) had acceptable traces throughout and awoke with normal clinical neurological function. No patient with normal traces had a postoperative clinical neurological deficit. True alerts occurred in 20 cases (6.7%). The diagnoses of the alert group included nine cases of adolescent idiopathic scoliosis (AIS) (45%) and six of congenital scoliosis (30%). The incidence of deterioration based on diagnosis was 9/153 (6%) for AIS, 6/30 (20%) for congenital scoliosis, and 2/16 (12.5%) for spinal tuberculosis. Deterioration was much more common in congenital scoliosis than in AIS (p = 0.020). Overall, 65% of alerts occurred during rod instrumentation: 15% occurred during decompression of the internal apex in vertebral column resection surgery. Four alert cases (20%) awoke with clinically detectable neurological compromise. Conclusion. Surgeon-directed TcMEP monitoring has a 100% negative predictive value and allows early identification of physiological cord distress, thereby enabling immediate intervention. In resource constrained environments, surgeon-directed TcMEP is a viable and effective method of intraoperative spinal cord monitoring. Level of evidence: III. Cite this article: Bone Joint J 2021;103-B(3):547–552


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_11 | Pages 7 - 7
1 Sep 2021
Gill S Papworth M Fragkakis E Marrocco A Lui D Bishop T
Full Access

A previously fit and well 58 year old male suffered from a bilateral psoas haematoma (PH) following 52 days of veno-venous extracorporeal membranous oxygenation (VV-ECMO) for severe Coronavirus disease (COVID-19), refractory to all non-invasive and medical therapies. He developed multiple complications, including inability to walk or weight-bear, due to lumbar plexopathy triggered by bilateral PH compression, compounded by COVID-19-related mononeuritis multiplex. The patient was referred to our institution with a known diagnosis of bilateral PH and after spinal multidisciplinary team (MDT) input, was deemed not for surgical or interventional radiology treatments. The patient received extensive neurorehabilitation, coordinated by multiple MDTs. Although PH has been correlated to COVID-19, to the best of our knowledge this is the first reported case of such a complex presentation resulting in a dramatic bilateral PH. Health records from 3 large UK teaching hospitals were collected regarding treatment and follow up appointments, following patient's written informed consent. Patient's comorbidities, duration in hospital units, MDT inputs, health assessments, mobilisation progress and neurologic assessments, were all recorded. Data was collected retrospectively then prospectively due to lengthy in-patient stay. The literature review was conducted via PubMed and open access sources, selecting all the relevant studies and the ECMO guidelines. Patient received treatment from 3 different units in 3 hospitals over 212 days including 103 days in neurorehabilitation. Involvement of physiotherapy, dietitians, speech and language teams, neurologist, neurophysiotherapists, occupational therapists was required. The patient progressed from a bed-bound coma and inability to walk, to standing with lower limb backslab at discharge. Additionally, he was referred for elective exploratory surgery of the psoas region for scar debridement and potential nerve graft repair of the lumbosacral plexus. The surgery outcome is cautiously optimistic, with some improvement in nerve conduction studies, however is currently unknown regarding recovery progress and return to premorbid functional baseline. The novelty of this presentation yields significant learning points regarding early recognition of PH, requirements for vast MDT input and specialist use of VV-ECMO in severe COVID-19 patients. It also highlights the broad pathophysiology of SARS-CoV-2 causing neuropathy and coagulopathy; understanding this will optimise robust anticoagulation guidelines, required in VV-ECMO


The Bone & Joint Journal
Vol. 106-B, Issue 1 | Pages 53 - 61
1 Jan 2024
Buckland AJ Huynh NV Menezes CM Cheng I Kwon B Protopsaltis T Braly BA Thomas JA

Aims

The aim of this study was to reassess the rate of neurological, psoas-related, and abdominal complications associated with L4-L5 lateral lumbar interbody fusion (LLIF) undertaken using a standardized preoperative assessment and surgical technique.

Methods

This was a multicentre retrospective study involving consecutively enrolled patients who underwent L4-L5 LLIF by seven surgeons at seven institutions in three countries over a five-year period. The demographic details of the patients and the details of the surgery, reoperations and complications, including femoral and non-femoral neuropraxia, thigh pain, weakness of hip flexion, and abdominal complications, were analyzed. Neurological and psoas-related complications attributed to LLIF or posterior instrumentation and persistent symptoms were recorded at one year postoperatively.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1342 - 1347
1 Nov 2024
Onafowokan OO Jankowski PP Das A Lafage R Smith JS Shaffrey CI Lafage V Passias PG

Aims

The aim of this study was to investigate the impact of the level of upper instrumented vertebra (UIV) in frail patients undergoing surgery for adult spine deformity (ASD).

Methods

Patients with adult spinal deformity who had undergone T9-to-pelvis fusion were stratified using the ASD-Modified Frailty Index into not frail, frail, and severely frail categories. ASD was defined as at least one of: scoliosis ≥ 20°, sagittal vertical axis (SVA) ≥ 5 cm, or pelvic tilt ≥ 25°. Means comparisons tests were used to assess differences between both groups. Logistic regression analyses were used to analyze associations between frailty categories, UIV, and outcomes.


The Bone & Joint Journal
Vol. 105-B, Issue 5 | Pages 575 - 582
1 May 2023
Kato S Demura S Yokogawa N Shimizu T Kobayashi M Yamada Y Murakami H Tsuchiya H

Aims

Patients with differentiated thyroid carcinomas (DTCs) have a favourable long-term survival. Spinal metastases (SMs) cause a decline in performance status (PS), directly affecting mortality and indirectly preventing the use of systemic therapies. Metastasectomy is indicated, if feasible, as it yields the best local tumour control. Our study aimed to examine the long-term clinical outcomes of metastasectomy for SMs of thyroid carcinomas.

Methods

We collected data on 22 patients with DTC (16 follicular and six papillary carcinomas) and one patient with medullary carcinoma who underwent complete surgical resection of SMs at our institution between July 1992 and July 2017, with a minimum postoperative follow-up of five years. The cancer-specific survival (CSS) from the first spinal metastasectomy to death or the last follow-up was determined using Kaplan-Meier analysis. Potential factors associated with survival were evaluated using the log-rank test. We analyzed the clinical parameters and outcome data, including pre- and postoperative disability (Eastern Cooperative Oncology Group PS 3), lung and non-spinal bone metastases, and history of radioiodine and kinase inhibitor therapies.


The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 315 - 322
1 Mar 2023
Geere JH Swamy GN Hunter PR Geere JL Lutchman LN Cook AJ Rai AS

Aims

To identify the incidence and risk factors for five-year same-site recurrent disc herniation (sRDH) after primary single-level lumbar discectomy. Secondary outcome was the incidence and risk factors for five-year sRDH reoperation.

Methods

A retrospective study was conducted using prospectively collected data and patient-reported outcome measures, including the Oswestry Disability Index (ODI), between 2008 and 2019. Postoperative sRDH was identified from clinical notes and the centre’s MRI database, with all imaging providers in the region checked for missing events. The Kaplan-Meier method was used to calculate five-year sRDH incidence. Cox proportional hazards model was used to identify independent variables predictive of sRDH, with any variable not significant at the p < 0.1 level removed. Hazard ratios (HRs) were calculated with 95% confidence intervals (CIs).


The Bone & Joint Journal
Vol. 104-B, Issue 6 | Pages 715 - 720
1 Jun 2022
Dunsmuir RA Nisar S Cruickshank JA Loughenbury PR

Aims

The aim of the study was to determine if there was a direct correlation between the pain and disability experienced by patients and size of their disc prolapse, measured by the disc’s cross-sectional area on T2 axial MRI scans.

Methods

Patients were asked to prospectively complete visual analogue scale (VAS) and Oswestry Disability Index (ODI) scores on the day of their MRI scan. All patients with primary disc herniation were included. Exclusion criteria included recurrent disc herniation, cauda equina syndrome, or any other associated spinal pathology. T2 weighted MRI scans were reviewed on picture archiving and communications software. The T2 axial image showing the disc protrusion with the largest cross sectional area was used for measurements. The area of the disc and canal were measured at this level. The size of the disc was measured as a percentage of the cross-sectional area of the spinal canal on the chosen image. The VAS leg pain and ODI scores were each correlated with the size of the disc using the Pearson correlation coefficient (PCC). Intraobserver reliability for MRI measurement was assessed using the interclass correlation coefficient (ICC). We assessed if the position of the disc prolapse (central, lateral recess, or foraminal) altered the symptoms described by the patient. The VAS and ODI scores from central and lateral recess disc prolapses were compared.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 47 - 47
1 Oct 2019
Chitgopkar S
Full Access

Background. Gore and Nadkarni described a ‘Gore sign’ of reproducing radiating leg pain by palpation of distal nerve root endings in the foot for L5 and S1 nerve roots in lumbar radiculopathy due to disc prolapse. Purpose. This sign was explored and observation of symptoms recorded. Results. There were 31 patients, 20 females and 11 males, aged 25 to 76 years. 13 patients had acute disc prolapse, 14 had lumbar canal stenosis, 3 had annular tears and one had a facet cyst. Radiating leg pain was reproduced in all patients by palpation of distal nerve root endings and was immediately relieved by local anaesthetic injection around distal nerve root endings in all patients (second part of Gore test). New clinical signs were observed which have not been described before:. Back pain was reproduced in 21 patients. L4 nerve root pain was reproduced in 13 patients by palpation of the proximal tibia. Crossed leg pain was reproduced in 5 patients. Reproduction of pain by palpation of more than one distal nerve root ending was observed in 16 patients. Cessation of radiating leg pain by palpation of distal nerve root endings in two patients. These test were positive in patients with varied pathology producing radiculopathy, not just disc prolapse. Conclusion. Provocative nerve root tension signs can be difficult in severe pain. The tests described above can be performed without having to move the patient's lower limb. These observations open up discussion on the mechanism of radiculopathy and new ways of treatment. Conflicts of interest: None. Sources of funding: None


Bone & Joint Open
Vol. 3, Issue 5 | Pages 348 - 358
1 May 2022
Stokes S Drozda M Lee C

This review provides a concise outline of the advances made in the care of patients and to the quality of life after a traumatic spinal cord injury (SCI) over the last century. Despite these improvements reversal of the neurological injury is not yet possible. Instead, current treatment is limited to providing symptomatic relief, avoiding secondary insults and preventing additional sequelae. However, with an ever-advancing technology and deeper understanding of the damaged spinal cord, this appears increasingly conceivable. A brief synopsis of the most prominent challenges facing both clinicians and research scientists in developing functional treatments for a progressively complex injury are presented. Moreover, the multiple mechanisms by which damage propagates many months after the original injury requires a multifaceted approach to ameliorate the human spinal cord. We discuss potential methods to protect the spinal cord from damage, and to manipulate the inherent inhibition of the spinal cord to regeneration and repair. Although acute and chronic SCI share common final pathways resulting in cell death and neurological deficits, the underlying putative mechanisms of chronic SCI and the treatments are not covered in this review.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_10 | Pages 18 - 18
1 May 2017
Deane J Papi E Phillips A McGregor A
Full Access

Introduction. Low back pain (LBP) is the top leading global cause of years lived with disability. In order to examine LBP, researchers have typically viewed the spine in isolation. Clinically, it is imperative that the lower limbs are also considered. The aim of this study was to design a holistic and reliable multi-segmental kinematic model of the spine and lower limbs. Method. The spine was modelled according to easily identifiable anatomical landmarks, including upper thoracic (T1-T6), lower thoracic (T7-T12) and lumbar (L1-L5) segments. Pelvis, thigh, shank and foot segments were included. A 10-camera 3D motion capture system was used to track retro-reflective markers, which were used to define each segment of 10 healthy participants as they walked 3 times at a comfortable speed over a 6km walkway. The relative peak angles between each segment were calculated using the Joint Coordinate System convention and Intraclass Correlation Coefficients (ICCs) were used to determine intra-rater and inter-rater reliability (between an experienced clinician and biomechanical scientist). Results. Intra-rater and inter-rater ICCs were good to excellent (0.6–0.99). This implies that the system could be used reliably by one tester or by testers with limited anatomical expertise. Subjective participant reports implied that the system was acceptable and suitable for patient use (average application time of 10 minutes). Conclusion. The ‘Imperial Spinal Model’ is a holistic and reliable multi-segmental model. It is suitable for the kinematic assessment of the spine and could be used to enhance our understanding of a variety of spinal conditions. No conflicts of interest. Funding: Janet Deane is funded by an Allied Health Professional Doctoral Fellowship awarded by Arthritis Research U.K. (ARUK). Enrica Papi is funded by the National Centre of Excellence for Musculoskeletal Health and Work funded by ARUK and the Medical Research Council


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_9 | Pages 10 - 10
1 Sep 2019
Deane J Lim A Strutton P McGregor A
Full Access

Introduction. Patients with recurrent low back pain (LBP) exhibit changes in postural control. Stereotypical muscle activations resulting from external perturbations include anticipatory (APAs) and compensatory (CPAs) postural adjustments. This study aimed to determine differences in postural control strategies (APAs and CPAs) between those with and without lumbar disc degeneration (LDD) and LBP. Methods. Ninety-seven subjects participated in the study (mean age 50 years (SD 12)). 3T MRI was used to acquire T2 weighted images (L1-S1). LDD was determined using Pfirrmann grading and LBP using the numerical rating scale (NRS). A bespoke perturbation platform was designed to deliver postural perturbations. Electrical activity was analysed from 16 trunk and lower limb muscles during four typical APA and CPA epochs. A Kruskal-Wallis H test with Bonferroni correction for multiple comparisons was conducted. Results. Four groups were identified; ‘no LDD no pain’ (n = 19), ‘LDD no pain’ (n =38), ‘LDD pain’ (n =35) and ‘no LDD pain’ (n = 5). There was no significant difference in age or gender between groups. Although, increased BMI was associated with LBP it did not correlate with significant findings. Significant differences in APAs and CPAs were observed between ‘LDD pain’ and ‘LDD no pain’ groups during predicted and unpredicted perturbations (p=0.009–0.049, r=0.31–0.43). Significant CPAs correlated with LBP (p=0.001–0.03) but did not correlate with LDD (p=0.22–0.94). Conclusion. Postural control strategies are different between those with LDD and pain and those without. Differences in compensatory strategy are associated with the presence of pain and not LDD. No conflicts of interest. Sources of Funding: Janet Deane is funded by an Allied Health Professional Doctoral Fellowship awarded by Arthritis Research U.K. (ARUK)


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 103 - 111
1 Jan 2022
Li J Hu Z Qian Z Tang Z Qiu Y Zhu Z Liu Z

Aims

The outcome following the development of neurological complications after corrective surgery for scoliosis varies from full recovery to a permanent deficit. This study aimed to assess the prognosis and recovery of major neurological deficits in these patients, and to determine the risk factors for non-recovery, at a minimum follow-up of two years.

Methods

A major neurological deficit was identified in 65 of 8,870 patients who underwent corrective surgery for scoliosis, including eight with complete paraplegia and 57 with incomplete paraplegia. There were 23 male and 42 female patients. Their mean age was 25.0 years (SD 16.3). The aetiology of the scoliosis was idiopathic (n = 6), congenital (n = 23), neuromuscular (n = 11), neurofibromatosis type 1 (n = 6), and others (n = 19). Neurological function was determined by the American Spinal Injury Association (ASIA) impairment scale at a mean follow-up of 45.4 months (SD 17.2). the patients were divided into those with recovery and those with no recovery according to the ASIA scale during follow-up.


Abstract

MAGnetic Expansion Control (MAGEC) rods are used in the surgical treatment of children with early onset scoliosis. The magnetically controlled lengthening mechanism enables rod distractions without the need for repeated invasive surgery. The CE certification of these devices was suspended in March 2021 due, primarily, to performance evidence gaps in the documents provided by the manufacturer to regulators and notified bodies. MAGEC rods are therefore not permitted for use in countries requiring CE marking. This was a survey of 18 MAGEC rod surgeons in the UK about their perception of the impact of the CE suspension on the clinical management of their patients. Unsurprisingly, virtually all perceived a negative impact, reflecting the complexity of this patient group. Reassuringly, these surgeons are highly experienced in alternative treatment methods.

Cite this article: Bone Jt Open 2022;3(2):155–157.


The Bone & Joint Journal
Vol. 103-B, Issue 9 | Pages 1464 - 1471
1 Sep 2021
Barker TP Steele N Swamy G Cook A Rai A Crawford R Lutchman L

Aims

Cauda equina syndrome (CES) can be associated with chronic severe lower back pain and long-term autonomic dysfunction. This study assesses the recently defined core outcome set for CES in a cohort of patients using validated questionnaires.

Methods

Between January 2005 and December 2019, 82 patients underwent surgical decompression for acute CES secondary to massive lumbar disc prolapse at our hospital. After review of their records, patients were included if they presented with the clinical and radiological features of CES, then classified as CES incomplete (CESI) or with painless urinary retention (CESR) in accordance with guidelines published by the British Association of Spinal Surgeons. Patients provided written consent and completed a series of questionnaires.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_4 | Pages 10 - 10
1 Feb 2014
Sperry M Phillips A McGregor A
Full Access

Statement of Purpose. It is well known that individuals with a history of low back pain (hLBP) exhibit altered movement patterns that are caused by changes in neuromuscular control. Postural disturbance provides an effective method for creating these differentiable movement patterns. This study has explored the response of the lower limb and spine to a translational perturbation similar to that experienced on public transport in healthy volunteers and those with hLBP. Methods. Healthy volunteers (n=16) and subjects with hLBP (n=10) were subjected to 31 identical postural disturbances at varying time intervals while standing atop a moving platform. Skeletal kinematics and muscle activation were recorded using a 10-camera Vicon system (Oxford, UK) and Myon electromyography (EMG) at the trunk (lumbar, lower thoracic, and upper thoracic segments), pelvis, thigh, calf, and foot. Joint angles were calculated using Body Builder (Vicon) and a unilateral seven-segment custom model. Results. Examination of the total range of joint motion (RoM) exhibited during the trial demonstrated similar RoM at the knee and hip (p=0.90 and 0.97 respectively), but less RoM for the hLBP group at the ankle and lumbar spine (p=0.21 and 0.38, respectively). EMG signals revealed higher muscle activation of the lower limbs from the hLBP cohort compared to healthy controls, yet greater activation at the gluteal and oblique muscles in the control group. Conclusions. In the presently small cohorts, trends demonstrate that differences in postural strategies exist between the healthy and hLBP cohorts, yet further testing of LBP patients will further clarify targets for rehabilitation


The Bone & Joint Journal
Vol. 95-B, Issue 1 | Pages 90 - 94
1 Jan 2013
Patel MS Braybrooke J Newey M Sell P

The outcome of surgery for recurrent lumbar disc herniation is debatable. Some studies show results that are comparable with those of primary discectomy, whereas others report worse outcomes. The purpose of this study was to compare the outcome of revision lumbar discectomy with that of primary discectomy in the same cohort of patients who had both the primary and the recurrent herniation at the same level and side. A retrospective analysis of prospectively gathered data was undertaken in 30 patients who had undergone both primary and revision surgery for late recurrent lumbar disc herniation. The outcome measures used were visual analogue scales for lower limb (VAL) and back (VAB) pain and the Oswestry Disability Index (ODI). There was a significant improvement in the mean VAL and ODI scores (both p < 0.001) after primary discectomy. Revision surgery also resulted in improvements in the mean VAL (p < 0.001), VAB (p = 0.030) and ODI scores (p < 0.001). The changes were similar in the two groups (all p > 0.05). Revision discectomy can give results that are as good as those seen after primary surgery. Cite this article: Bone Joint J 2013;95-B:90–4