The purpose of our study was to identify possible risk factors of patients with GCT of the long bones after curettage and packing the bone cavity with bone cement or bone allografts. We retrospectively reviewed the records of 249 patients with GCT of the limbs treated at Musculoskeletal Oncology Department of our institution between 1990 and 2013, confirmed histologically and recorded in the Bone Tumor Registry. We reviewed 219 cases located in the lower limb and 30 of the upper limb. This series includes 135 females and 114 males, with mean age 32 years (ranging 5 to 80 yrs). According to Campanacci's grading system, 190 cases were stage 2, 48 cases stage 3, and 11 cases stage 1. Treatment was curettage (intralesional surgery). Local adjuvants, such as phenol and cement, were used in 185 cases; whereas in the remaining 64 cases the residual cavity was filled with allografts or autografts only. Oncological outcome shows 203 patients alive and continuously disease-free (CDF), 41 patients NED1 after treatment of
Chordoma of the cervical spine is a rare but life-threatening disease with a relentless tendency towards
Primary bone tumors are rare, complex and highly heterogeneous. Its diagnostic and treatment are a challenge for the multidisciplinary team. Developments on tumor biomarkers, immunohistochemistry, histology, molecular, bioinformatics, and genetics are fundamental for an early diagnosis and identification of prognostic factors. The personalized medicine allows an effective patient tailored treatment. The bone biopsy is essential for diagnosis. Treatment may include systemic therapy and local therapy. Frequently, a limb salvage surgery includes wide resection and reconstruction with endoprosthesis, biological or composites. The risk for
Aneurysmal bone cyst (ABC) of the spine is a locally aggressive benign lesion which can be treated by en bloc resection with wide margin to reduce the risk of
Purpose. Extraskeletal chondrosarcoma is a rare tumor with an indolent course and high propensity for
Introduction and Objective. Aneurysmal bone cyst (ABC) of the spine is a locally aggressive benign lesion which can be treated by en bloc resection with wide margin to reduce the risk of
Residual tumor cells left in the bone defect after malignant bone tumor resection can result in
Photodynamic therapy (PDT) uses the strong cytotoxicity of singlet oxygen and hyperthermia produced by irradiating excitation light on a photosensitizer. The phototoxic effects of indocyanine green (ICG) and near-infrared light (NIR) have been studied in different types of cancer cells. Plasma proteins bind strongly to ICG, followed by rapid clearance by the liver, resulting in no tumor-selective accumulation after systemic administration. Kimura et al. have proposed using a novel nanoparticle labeled with ICG (ICG-lactosome) that has tumor selective accumulation owing to enhanced permeability and retention (EPR) effect. In this study, we investigated the efficacy of PDT using ICG-lactosome and NIR for a bone metastatic mouse model of breast cancer. Cells from the human breast cancer cell line, MDA-MB-231 were injected into the right tibia of 26 anesthetized BALB/C nu/nu mice at a concentration. The mice were then randomly divided into three groups: the PDT group (n = 9), the laser (laser irradiation only) group (n = 9), and the control group (n = 8). PDT was performed thrice (7, 21, 35 days after cell inoculation) following ICG-lactosome administration via the tail vein 24 hours before irradiation. The mice were percutaneously irradiated with an 810-nm medical diode laser for 10 min. In the laser group, mice were irradiated following saline administration 24 hours before irradiation. Radiographic analysis was performed for 49 days after cell inoculation. The area of osteolytic lesion was quantified. The right hind legs of 3 mice were amputated 24 hours after the third treatment. Histological analysis was performed using hematoxylin-eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining of sagittal sections. The data was analyzed using Tukey-Kramer post-hoc test. P-value of <0.05 was considered significant. X-ray on day 49 of the three groups are considered. The area of osteolytic lesion in the PDT group (7.9 ± 1.2 mm. 2. : mean ± SD) was significantly smaller than that of the control (11.4 ± 1.4 mm. 2. ) and laser (11.9 ± 1.2 mm. 2. ) groups. In histological findings, we observed many TUNEL-positive cells in the metastatic tissue 24 hours after PDT. In the control and laser groups, TUNEL-positive cells were occasionally observed. We have previously reported the effect of ICG-lactosome-enhanced PDT on the cytotoxicity of human breast cancer cells in vitroand on the delay of paralysis in a rat spinal metastasis model. In this study, we demonstrated the inhibitory effect of ICG-lactosome-enhanced PDT on bone destruction caused by human breast cancer cells in vivo. This PDT induced apoptosis and necrosis in the tumor cells. Intralesional resection is often performed for spinal metastases in an emergency. The residual tumor may regrow and cause neurological deficits. We believe that ICG-lactosome-enhanced PDT can decrease the rate of
Primary bony tumours of the elbow account for approximately 1% of all osseous tumours. The delayed diagnosis is commonly reported in the literature as a result of lack of clinician familiarity. We present the largest series of primary bone tumours of the elbow in the English literature. We sought to identify characteristics specific to primary elbow tumours and compare these to the current literature. We discuss cases of misdiagnosis and reasons for any delay in diagnosis. The authors also recommend a collaborative protocol for the diagnosis and management of these rare tumours. A prospectively collected national database of all bone tumours is maintained by an independent clerk. The registry and case notes were retrospectively reviewed from January 1954 until June 2013. Eighty cases of primary osseous elbow tumours were studied. Tumours were classified as benign or malignant and then graded according to the Enneking spectrum. There were no benign latent cases in this series. All cases in this series required surgical intervention. These cases presented with persistent rest pain, with or without swelling. The distal humerus was responsible for the majority and most aggressive of cases. The multidisciplinary approach at a specialist centre is integral to management. Misdiagnosis was evident in 12.5 % of all cases. Malignant tumours carried a 5-year mortality of 61%. Benign tumours exhibited a 19% recurrence rate and in particular, giant cell tumour was very aggressive. The evolution in treatment modalities has clearly benefited patients. Clinicians should be aware that elbow tumours can be initially misdiagnosed as soft tissue injuries or cysts. The suspicion of a tumour should be raised in the patient with unremitting, unexplained non-mechanical bony elbow pain. We suggest an investigatory and treatment protocol to avoid a delay to diagnosis. With high rates of
Introduction. Hand tumors are usually rare and there is not much literature about series of cases. We have studied a series of 110 cases. Hand tumors do consists of both benign and malignant cases. Methods. We studied series of 110 cases at Karnataka Institute of Medical Sciences, Hubli and Mysore Medical College & Research Institute, Mysore. We retrospectively reviewed the records of 110 patients who underwent double ray amputations at our center over few years: few had amputations of the fourth and fifth rays and others amputation of the second and third rays. Mean age at surgery was 34 years (range, 10–45 years), and minimum follow up was 64 months (mean, 98 months; range, 64–136 months). Some patients had high-grade soft tissue sarcomas of the hand, synovial sarcomas, malignant peripheral nerve sheath tumors, and undifferentiated sarcoma. No patients had detectable metastases at surgery. Results. All patients were completely disease-free at latest follow up. One patient was alive with lung metastases detected 32 months after surgery. No patients developed
Curettage and packing with polymethylmethacrylate cement is a routine treatment for giant-cell tumour (GCT) of bone. We performed an We found that the cytotoxic effect of eluted drugs depended on their concentration and the time interval, with even the lowest dose of each drug demonstrating an acceptable rate of cytotoxicity. Even in low doses, cytotoxic drugs mixed with polymethylmethacrylate cement could therefore be considered as effective local adjuvant treatment for GCTs.
Various chemicals are commonly used as adjuvant treatment to surgery for giant-cell tumour (GCT) of bone. The comparative effect of these solutions on the cells of GCT is not known. In this study we evaluated the cytotoxic effect of sterile water, 95% ethanol, 5% phenol, 3% hydrogen peroxide (H2O2) and 50% zinc chloride (ZnCI2) on GCT monolayer tumour cultures which were established from six patients. The DNA content, the metabolic activity and the viability of the cultured samples of tumour cells were assessed at various times up to 120 hours after their exposure to these solutions. Equal cytotoxicity to the GCT monolayer culture was observed for 95% ethanol, 5% phenol, 3% H2O2 and 50% ZnCI2. The treated samples showed significant reductions in DNA content and metabolic activity 24 hours after treatment and this was sustained for up to 120 hours. The samples treated with sterile water showed an initial decline in DNA content and viability 24 hours after treatment, but the surviving cells were viable and had proliferated. No multinucleated cell formation was seen in these cultures. These results suggest that the use of chemical adjuvants other than water could help improve local control in the treatment of GCT of bone.
Surgery is considered to be the most effective treatment for cartilaginous tumours. In recent years, a trend has emerged for patients with low-grade tumours to be treated less invasively using curettage followed by various forms of adjuvant therapy. We investigated the potential for phenol to be used as an adjuvant. Using a human chondrosarcoma-derived cartilage-producing cell line OUMS-27 as an in vitro model we studied the cytotoxic effect of phenol and ethanol. Since ethanol is the standard substance used to rinse phenol out of a bone cavity, we included an assessment of ethanol to see whether this was an important secondary factor with respect to cell death. The latter was assessed by flow cytometry. A cytotoxic effect was found for concentrations of phenol of 1.5% and of ethanol of 42.5%. These results may provide a clinical rationale for the use of both phenol and ethanol as adjuvant therapy after intralesional curettage in low-grade central chondrosarcoma and justify further investigation.
We examined osteochondral autografts, obtained at a mean of 19.5 months (3 to 48) following extracorporeal irradiation and re-implantation to replace bone defects after removal of tumours. The specimens were obtained from six patients (mean age 13.3 years (10 to 18)) and consisted of articular cartilage (five), subchondral bone (five), external callus (one) and tendon (one). The tumour cells in the grafts were eradicated by a single radiation dose of 60 Gy. In three cartilage specimens, viable chondrocytes were detected. The survival of chondrocytes was confirmed with S-100 protein staining. Three specimens from the subchondral region and a tendon displayed features of regeneration. Callus was seen at the junction between host and irradiated bone.
Short intense electrical pulses transiently increase the permeability of the cell membrane, an effect known as electroporation. This can be combined with antiblastic drugs for ablation of tumours of the skin and subcutaneous tissue. The aim of this study was to test the efficacy of electroporation when applied to bone and to understand whether the presence of mineralised trabeculae would affect the capability of the electric field to porate the membrane of bone cells. Different levels of electrical field were applied to the femoral bone of rabbits. The field distribution and modelling were simulated by computer. Specimens of bone from treated and control rabbits were obtained for histology, histomorphometry and biomechanical testing. After seven days, the area of ablation had increased in line with the number of pulses and/or with the amplitude of the electrical field applied. The osteogenic activity in the ablated area had recovered by 30 days. Biomechanical testing showed structural integrity of the bone at both times. Electroporation using the appropriate combination of voltage and pulses induced ablation of bone cells without affecting the recovery of osteogenic activity. It can be an effective treatment in bone and when used in combination with drugs, an option for the treatment of metastases.
We undertook a study of the anti-tumour effects of hyperthermia, delivered via magnetite cationic liposomes (MCLs), on local tumours and lung metastases in a mouse model of osteosarcoma. MCLs were injected into subcutaneous osteosarcomas (LM8) and subjected to an alternating magnetic field which induced a heating effect in MCLs. A control group of mice with tumours received MCLs but were not exposed to an AMF. A further group of mice with tumours were exposed to an AMF but had not been treated with MCLs. The distribution of MCLs and local and lung metastases was evaluated histologically. The weight and volume of local tumours and the number of lung metastases were determined. Expression of heat shock protein 70 was evaluated immunohistologically. Hyperthermia using MCLs effectively heated the targeted tumour to 45°C. The mean weight of the local tumour was significantly suppressed in the hyperthermia group (p = 0.013). The mice subjected to hyperthermia had significantly fewer lung metastases than the control mice (p = 0.005). Heat shock protein 70 was expressed in tumours treated with hyperthermia, but was not found in those tumours not exposed to hyperthermia. The results demonstrate a significant effect of hyperthermia on local tumours and reduces their potential to metastasise to the lung.
We evaluated the possible induction of a systemic immune response to increase anti-tumour activity by the re-implantation of destructive tumour tissue treated by liquid nitrogen in a murine osteosarcoma (LM8) model. The tumours were randomised to treatment by excision alone or by cryotreatment after excision. Tissue from the tumour was frozen in liquid nitrogen, thawed in distilled water and then re-implanted in the same animal. In addition, some mice received an immunological response modifier of OK-432 after treatment. We measured the levels of interferon-gamma and interleukin-12 cytokines and the cytotoxicity activity of splenocytes against murine LM8 osteosarcoma cells. The number of lung and the size of abdominal metastases were also measured. Re-implantation of tumour tissue after cryotreatment activated immune responses and inhibited metastatic tumour growth. OK-432 synergistically enhanced the anti-tumour effect. Our results suggest that the treatment of malignant bone tumours by reconstruction using autografts containing tumours which have been treated by liquid nitrogen may be of clinical value.