Several synthetic polymers have been widely investigated for their use in bone tissue engineering applications, but the ideal material is yet to be engineered. Triazine-trione (TATO) based materials and their derivatives are novel in the field of biomedical engineering but have started to draw interest. Different designs of the TATO monomers and introduction of different chemical
Device-associated bacterial infections are a major and costly clinical challenge. This project aimed to develop a smart new biomaterial for implants that helps to protect against infection and inflammation, promote bone growth, and is biodegradable. Gallium (Ga) doped strontium-phosphate was coated on pure Magnesium (Mg) through a chemical conversion process. Mg was distributed in a graduated manner throughout the strontium-phosphate coating GaSrPO4, with a compact structure and a Ga-rich surface. We tested this sample for its biocompatibility, effects on bone remodeling and antibacterial activities including Staphylococcus aureus, S. epidermidis and E. coli - key strains causing infection and early failure of the surgical implantations in orthopaedics and trauma. Ga was distributed in a gradient way throughout the entire strontium-phosphate coating with a compact structure and a gallium-rich surface. The GaSrPO4 coating protected the underlying Mg from substantial degradation in minimal essential media at physiological conditions over 9 days. The liberated Ga ions from the coatings upon Mg specimens inhibited the growth of bacterial tested. The Ga dopants showed minimal interferences with the SrPO4 based coating, which boosted osteoblasts and undermined osteoclasts in in vitro co-cultures model. The results evidenced this new material may be further translated to preclinical trial in large animal model and towards clinical trial. Acknowledgements: Authors are grateful to the financial support from the Australian Research Council through the
Cranio-cervical connection is a well-established biomechanical concept. However, literature of this connection and its impact on cervical alignment is scarce. Chin incidence (CI) is defined as a complementary to the angle between chin tilt (CHT) and C2 slope (C2S) axes. This study aims to investigate the relationship between cervical sagittal alignment parameters and CI with its derivatives. A retrospective cross-sectional study carried out in a tertiary center. CT-neck radiographs of non-orthopedics patients were included. They had no history of spine related symptoms or fractures in cranium or pelvis. Images’ reports were reviewed to exclude those with tumors in the c-spine or anterior triangle of the neck. A total of 80 patients was included with 54% of them were males. The mean of age was 30.96± 6.03. Models of predictability for c2-c7 cobb's angle (CA) and C2-C7 sagittal vertical axis (SVA) using C2S, CHT, and CI were significant and consistent r20.585 (f(df3,76) =35.65, P ≤0.0001, r=0.764), r20.474 (f(df2,77) =32.98, P ≤0.0001, r=-0.550), respectively. In addition, several positive significant correlations were detected in our model in relation to sagittal alignment parameters. Nonetheless, models of predictability for CA and SVA in relation to neck tilt (NT), T1 slope (T1S) and thoracic inlet axis (TIA) were less consistent and had a significant marginally weaker attributable effect on CA, however, no significant effect was found on SVA r20.406 (f(df1,78) =53.39, P ≤0.0001, r=0.620), r20.070 (f(df3,76) =1.904, P 0.19), respectively. Also, this study shows that obesity and aging are linked to decreased CI which will result in increasing SVA and ultimately decreasing CA. CI model has a more valid attributable effect on the sagittal alignment in comparison to TIA model. Future investigations factoring this parameter might enlighten its
Abstract. Objectives. Intra-articular corticosteroid injections (IACIs) are a well-established non-surgical treatment for the symptoms of osteoarthritis (OA), which can provide short-term improvements in pain, disability and quality of life (QoL). Many patients receive recurrent IACIs as temporary relief of their symptoms. Longer-term outcomes for recurrent IACIs remain less well-researched. This meta-analysis aimed to investigate the longer-term risks and benefits of IACIs beyond 3 months. Methods. We searched MEDLINE, EMBASE, and CENTRAL from inception to January 07, 2021, for randomised controlled trials (RCTs) where patients with OA had received recurrent IACIs. Our primary outcomes were pain and function. Secondary outcomes included QoL, disease progression, radiological changes, and adverse events. Mean differences with 95% confidence intervals were reported. Results. Ten RCTs met eligibility criteria (eight for knee OA [n=378], two for trapeziometacarpal OA [n=57]). Patients received 2–5 injections. Follow-up ranged from 6–24 months. Patients with knee OA showed mild improvement in pain at 3, 6, and 9 months but not at 12 months post-injection compared to baseline. Improvements in function were seen from 3–24 months post-injection, decreasing over time. Improvements in QoL continued at 24 months. For patients with trapeziometacarpal OA, mild improvements in pain, function, and QoL were demonstrated at 3–6 months (and 12 months for pain) compared to baseline. No serious adverse events were recorded. No studies reported on time-to-future interventions, or risk of future periprosthetic joint infection. Conclusions. Only mild improvements in pain, function, and QoL were noted after recurrent IACIs up to 6–24 months post-injection. Existing RCTs on recurrent IACI lacks sufficient follow-up data to assess disease progression and time-to-future interventions. These results will inform the RecUrrent Intra-articular Corticosteroid injections in Osteoarthritis (RUbICOn) study which aims to establish the long-term safety outcomes of IACI through data
Dupuytren Disease (DD), the most common connective tissue disease in man, presents as a benign fibromatosis of the hands and fingers resulting in the formation of nodules and cords and often leading to flexion contractures in association with keloids or Peyronie disease. Surgical resection of the fibrotic nodules, and more recently intra-lesional collagenase injection are the main therapeutic options for these patients. While the exact cause of DD is still unknown,
Summary Statement. Tendon-bone interface becomes matured with the perforating fiber and the cells striding over the bone area. We suggest that both “perforating fiber” and “cell stride” could play a crucial role in regeneration after rotator cuff repair. Introduction. To obtain a successful outcome after rotator cuff repair, repaired tendon requires to be anchored biologically to the bone. However, it is well known that the histological structure of the repaired tendon-bone insertion is totally different from the normal insertion. This morphological alteration may contribute to biological instability after surgical repair. To address these issues, it is fundamental to clarify the difference of the structure between the normal and the repaired insertion in detail. Surprisingly, few studies on the tendon-bone insertion using electron microscopy has been performed so far, since the insertion area is solid (bone/cartilage) and extremely limited for the analysis. Recently, a new scanning electron microscopical method (FIB/SEM tomography) has been developed, making it possible to analyze the wider area with the higher resolution and reconstruct 3D ultrastructures. The purpose of this study was to analyze the ultrastructure of the repaired supraspinatus tendon-bone insertion in rat using FIB/SEM tomography. Materials and Methods. Adult Sprague-Dawley rats underwent complete cuff tear and subsequent repair of the supraspinatus tendon. The repaired supraspinatus tendon-bone interface was evaluated at 2 and 4 weeks after surgery. At each time point, 6 shoulders were used for biomechanical testing (ultimate load-to-failure and linear stiffness), 3 shoulders for conventional histological analysis and 3 shoulders for the ultrastructural analysis. The supraspinatus tendon insertion of the age-matched adult SD rats was used as normal control. For statistical analysis, the Wilcoxon's rank sum test was used to compare load-to-failure and linear stiffness. Differences of P<0.05 were considered significant. Results. <Biomechanical testing> All shoulders failed at the tendon-bone interface. The ultimate load-to-failure and the linear stiffness were significantly greater at 8 weeks than at 4 weeks (p<0.05). Normal tendon-bone insertion: The normal supraspinatus insertion consists of four-layered structure: tendon, fibrocartilage, mineralised fibrocartilage and bone. Repaired tendon-bone interface. At week 2, the fibro-vascular tissue was intervened between the tendon and bone at the repaired site. At week 4, the fibro-vascular tissue became organised, and perforating fibers were partially observed. <Ultrastructure using FIB/SEM tomography> Normal tendon-bone insertion: The ultrastructure of the normal supraspinatus insertion was very smooth. The cells were located between collagen bundles and arranged with their cell processes parallel to the bundles. Repaired tendon-bone interface: At week 2, the cells in the fibro-vascular tissue were arranged irregularly. At week 4, a part of the cells became arranged regularly and participated in
Fusion is the main goal in the surgical management of the injured and unstable spine. A wide variety of implants is available to enhance this. Our study was performed to evaluate the stabilising characteristics of several anterior, posterior and combined systems of fixation. Six thoracolumbar (T11 to L2) spines from 13-week-old calves were first tested intact. Then the vertebral body of T13 was removed and the defect replaced and supported by a wooden block to simulate bone grafting. Dorsal implants consisting of a Universal Spine System (USS) fracture system and an AO Fixateur interne (AOFI), and ventral implants comprising of a Kaneda Classic, a Kaneda SR, a prototype of the VentroFix single clamp/single rod construct (SC/SR) and the VentroFix single clamp/double rod construct (SC/DR) were first implanted individually to stabilise the removal of the vertebral body. Simulating the combined anteroposterior stabilisations, all ventral implants were combined with the AOFI. The range of motion (ROM) was measured under loads of up to 7.5 Nm. The load was applied in a custom-made spine tester in the three primary directions while measuring the intervertebral movements using a goniometric
Given the function of adiponectin (ADIPOQ) on the inflammatory condition of obesity and osteoarthritis (OA), we hypothesized that the ADIPOQ gene might be a candidate gene for a marker of susceptibility to OA. We systematically screened three tagging polymorphisms (rs182052, rs2082940 and rs6773957) in the ADIPOQ gene, and evaluated the association between the genetic variants and OA risk in a case-controlled study that included 196 OA patients and 442 controls in a northern Chinese population. Genotyping was performed using the Sequenom MassARRAY iPLEX platform.Objectives
Methods
Several genome-wide association studies (GWAS) of bone mineral density (BMD) have successfully identified multiple susceptibility genes, yet isolated susceptibility genes are often difficult to interpret biologically. The aim of this study was to unravel the genetic background of BMD at pathway level, by integrating BMD GWAS data with genome-wide expression quantitative trait loci (eQTLs) and methylation quantitative trait loci (meQTLs) data We employed the GWAS datasets of BMD from the Genetic Factors for Osteoporosis Consortium (GEFOS), analysing patients’ BMD. The areas studied included 32 735 femoral necks, 28 498 lumbar spines, and 8143 forearms. Genome-wide eQTLs (containing 923 021 eQTLs) and meQTLs (containing 683 152 unique methylation sites with local meQTLs) data sets were collected from recently published studies. Gene scores were first calculated by summary data-based Mendelian randomisation (SMR) software and meQTL-aligned GWAS results. Gene set enrichment analysis (GSEA) was then applied to identify BMD-associated gene sets with a predefined significance level of 0.05.Objectives
Method
Excessive acetabular coverage is the most common cause of pincer-type
femoroacetabular impingement. To date, an association between acetabular
over-coverage and genetic variations has not been studied. In this
study we investigated the association between single nucleotide
polymorphisms (SNPs) of paralogous Homeobox (HOX)9 genes and acetabular
coverage in Japanese individuals to identify a possible genetic
variation associated with acetabular over-coverage. We investigated 19 total SNPs in the four HOX9 paralogs, then
focused in detail on seven of those located in the 3’ untranslated
region of Objectives
Methods
The human acetabulofemoral joint is commonly modelled as a pure ball-and-socket joint, but there has been no quantitative assessment of this assumption in the literature. Our aim was to test the limits and validity of this hypothesis. We performed experiments on four adult cadavers. Cortical pins, each equipped with a marker cluster, were implanted in the pelvis and the femur. Movements were recorded using stereophotogrammetry while an operator rotated the cadaver’s acetabulofemoral joint, exploiting the widest possible range of movement. The functional consistency of the acetabulofemoral joint as a pure spherical joint was assessed by comparing the magnitude of the translations of the hip joint centre as obtained on cadavers, with the centre of rotation of two metal segments linked through a perfectly spherical hinge. The results showed that the radii of the spheres containing 95% of the positions of the estimated centres of rotation were separated by less than 1 mm for both the acetabulofemoral joint and the mechanical spherical hinge. Therefore, the acetabulofemoral joint can be modelled as a spherical joint within the considered range of movement (flexion/extension 20° to 70°; abduction/adduction 0° to 45°; internal/external rotation 0° to 30°).
An understanding of the remodelling of tendon is crucial for the development of scientific methods of treatment and rehabilitation. This study tested the hypothesis that tendon adapts structurally in response to changes in functional loading. A novel model allowed manipulation of the mechanical environment of the patellar tendon in the presence of normal joint movement via the application of an adjustable external fixator mechanism between the patella and the tibia in sheep, while avoiding exposure of the patellar tendon itself. Stress shielding caused a significant reduction in the structural and material properties of stiffness (79%), ultimate load (69%), energy absorbed (61%), elastic modulus (76%) and ultimate stress (72%) of the tendon compared with controls. Compared with the material properties the structural properties exhibited better recovery after re-stressing with stiffness 97%, ultimate load 92%, energy absorbed 96%, elastic modulus 79% and ultimate stress 80%. The cross-sectional area of the re-stressed tendons was significantly greater than that of stress-shielded tendons. The remodelling phenomena exhibited in this study are consistent with a putative feedback mechanism under strain control. This study provides a basis from which to explore the interactions of tendon remodelling and mechanical environment.
Normal function of the patellofemoral joint is maintained by a complex interaction between soft tissues and articular surfaces. No quantitative data have been found on the relative contributions of these structures to patellar stability. Eight knees were studied using a materials testing machine to displace the patella 10 mm laterally and medially and measure the force required. Patellar stability was tested from 0° to 90° knee flexion with the quadriceps tensed to 175 N. Four conditions were examined: intact, vastus medialis obliquus relaxed, flat lateral condyle, and ruptured medial retinaculae. Abnormal trochlear geometry reduced the lateral stability by 70% at 30° flexion, while relaxation of vastus medialis obliquus caused a 30% reduction. Ruptured medial retinaculae had the largest effect at 0° flexion with 49% reduction. There was no effect on medial stability. There is a complex interaction between these structures, with their contributions to loss of lateral patellar stability varying with knee flexion.