Introduction. There are over ½ million total knee replacement (TKR) procedures performed each year in the United States and is projected to increase to over 3.48 million by 2030. Concurrent with the increase in TKR procedures is a trend of younger patients receiving knee implants (under the age of 65). These younger patients are known to have a 5% lower implant survival rate at 8 years post-op compared to older patients (65+ years), and they are also known to live more active lifestyles that place higher demands on the durability and functional performance of the TKR device. Conventional TKR designs increase articular conformity to increase stability, but these articular constraints decrease patient range of knee motion, often limiting key measures of femoral rollback, A/P motion, and deep knee flexion. Without this articular constraint however, many patients report TKR “instability” during activities such as walking and stair descent, which can significantly impede confidence of movement. Therefore, there is a need for a TKR system that can offer enhanced stability while also maintaining active ranges of motion. Materials and Methods. A novel knee arthroplasty system has been designed that uses synthetic ligament systems that can be surgically replaced, to provide ligamentous stability and natural motion to increase the functional performance of the implant. A computational anatomical model (AnyBody) was developed that incorporated ligaments into an existing Journey II TKR.
Introduction. The role of soft tissue balancing in optimizing functional outcome and patient satisfaction after total knee arthroplasty surgery is gaining interest. This is due in part to the inability of pure alignment to demonstrate excellent functional outcomes 6. Consistent soft tissue balancing has been aided by novel technologies that can quantify loads across the joint at the time of surgery 4. In theory, compressive load equilibrium should be correlated with ligamentous equilibrium between the medial and lateral collateral ligaments. The authors propose to use the Collateral
Introduction. The role of soft tissue balancing in optimising functional outcome and patient satisfaction after total knee arthroplasty surgery is gaining interest. Consistent soft tissue balancing has been aided by novel technologies that can quantify loads across the joint at the time of surgery. Based on free body diagram theory, compressive load equilibrium should be correlated with ligamentous equilibrium between the medial and lateral collateral ligaments. The authors propose to use the Collateral
Carpal bone mechanics are complex and poorly understood. An anatomic model that explains observed kinematic results is yet to be achieved. The aim of this study is to determine if morphologic sub-typing of the STT and TH joints exists. The study used 100 sets of dry disarticulated carpal bones and 50 cadaveric wrists. A digital microscribe was used to reconstruct and measure the articular surfaces of the STT and TH joints and distal lunate of all specimens.
While posterior cruciate retaining (PCR) implants are a more common total knee arthroplasty (TKA) design, newer bi-cruciate retaining (BCR) TKAs are now being considered as an option for many patients, especially those that are younger. While PCR TKAs remove the ACL, the BCR TKA designs keep both cruciate ligaments intact, as it is believed that the resection of the ACL greatly affects the overall kinematic patterns of TKA designs. Various fluoroscopic studies have focused on determination of kinematics but haven't defined differentiators that affect motion patterns. This research study assesses the importance of the cruciate ligaments and femoral geometry for Bi-Cruciate Retaining (BCR) and Posterior Cruciate Retaining (PCR) TKAs having the same femoral component, compared to the normal knee. The in vivo 3D kinematics were determined for 40 subjects having a PCR TKA, 10 having a BCR TKA, and 10 having a normal knee, in a retrospective study. All TKA subjects had the same femoral component. All subjects performed a deep knee bend under fluoroscopic surveillance. The kinematics were determined during early flexion (ACL dominant), mid flexion (ACL/PCL transition) and deep flexion (PCL dominant).Background
Methods
The patella experiences large forces and variable kinematic patterns throughout flexion which could influence function and patient satisfaction after a total knee arthroplasty (TKA). Therefore, the objective of this study is to analyze in vivo patellar mechanism forces and kinematics throughout flexion to determine influencing factors that may lead to patient dissatisfaction. Fifty subjects were evaluated in this study, 40 having a Journey II bi-cruciate stabilized (BCS) TKA and 10 having normal, healthy knees. Similar demographics were controlled for each group. Each subject performed a deep knee bend. Kinematics were evaluated using a validated 3D-to-2D fluoroscopic technique while forces were determined using a validated inverse mathematical knee model. A two-tailed t-test was used to evaluate statistical significance.Introduction
Methods
The Interosseous Membrane (IOM) of the forearm is made up of ligaments, which are involved in load balancing of the radioulnar joint and the shaft. Motion models of the forearm are necessary for planning orthopedic surgeries, such as osteotomies, which aim at solving limit of the range of motion or instabilities. However, existing models focus on a pure kinematic approach, omitting the physical properties of the ligaments, thus limiting the range of application by missing dynamical effects. We developed a model that takes into account the mechanical properties of the IOM. We simulated the pro-supination by creating an elastic coupling to the desired motion around the standard axis of rotation. We tested our model on a healthy subject, using CT-reconstructed bone models, and literature data for the ligaments. Multiple parameters, including forces of ligaments and positions of landmarks, are output for analysis. The length of the ligaments over pro-supination was in agreement with the literature. Their rest lengths must be recorded in future anatomical studies. The IOM helps in maintaining the contact with cartilage, except in late pronation. Scarring of the central band increases the force generated along the axis of rotation toward the wrist, while scarring of the proximal part does the opposite in pronation. In contrast to kinematic models, the proposed model is helpful to study the effect of physical properties of the IOM, such scarring, on the forearm motion. Future work will be to apply our model to pathological cases, and to compare to clinical observations.
There are over one-half million total knee replacement (TKR) procedures performed each year in the United States and is projected to increase to over 3.48 million by 2030. Concurrent with the increase in TKR procedures is a trend of younger patients receiving knee implants (under the age of 65). These younger patients are known to have a 5% lower implant survival rate at 8 years post-op compared to older patients (65+ years), and they are also known to live more active lifestyles that place higher demands on the durability and functional performance of the TKR device. Conventional TKR designs increase articular conformity to increase stability, but these articular constraints decrease patient range of knee motion, often limiting key measures of femoral rollback, A/P motion, and deep knee flexion. Without this articular constraint however, many patients report TKR “instability” during activities such as walking and stair descent, which can significantly impede confidence of movement. Therefore there is a need for a TKR system that can offer enhanced stability while also maintaining active ranges of motion. A novel knee arthroplasty system was designed that uses synthetic ligament systems that can be surgically replaced, to provide ligamentous stability and natural motion to increase the functional performance of the implant. Using an anatomical knee model from the AnyBody software, a computational model that incorporated ligaments into an existing Journey II TKR was developed. Using the software ligaments were modeled and given biomechanical properties developed from equations from literature. Simulated A/P drawer tests and knee flexion test were analyzed for 2,916 possible cruciate ligament location and length combinations to determine the effects on the A/P stability of the TKR. A physical model was constructed, and the design was verified by performing 110 N A/P drawer tests under 710 N of simulated body weight.Introduction
Materials and Methods
Anterior cruciate ligament (ACL) of four major knee ligaments is most crucial ligament to maintain normal knee kinematics. It is well know that ACL dysfunction causes secondary osteoarthritis of the knee. The influence of age on the biomechanical properties of the ACL was examined. The structural properties of 27 pairs of human cadaver knees without OA were evaluated. Specimens were equally divided into three groups of nine pairs each based on age: younger (22 to 35 years), middle (40 to 50 years), and older (60 to 97 years). Tensile tests of the femur-ACL-tibia complex were performed at 30 degrees of knee flexion with the ACL aligned vertically along the direction of applied tensile load. Structural properties of the femur-ACL-tibia complex, as represented by the linear stiffness, ultimate load, and energy absorbed, were found to decrease significantly with specimen age. On the other hand, little has been written about the arthritic ACL. This study was designed to evaluate the relationship among ROM, cross sections of the intercondylar notch and the macroscopic condition of ACL degeneration. Fifty osteoarthritic patients who underwent TKA as a result of severe osteoarthritis were randomly selected. Occupation rate of the osteophytes to the notch width were measured at the anterior 1/3, middle 1/3, and posterior 1/3 notche images obtained from preoperative tunnel view. ROM was measured preoperatively and under anesthesia. Macroscopic conditions of the ACL and PCL were classified into four types of Normal, Frayed, Partial rupture, and Absent. The macroscopic ACL conditions were Normal: 12 cases, Frayed: 15 cases, Partial rupture: 14 cases, and Absent: 9 cases. The macroscopic PCL conditions were Normal: 34 cases, Frayed: 9 cases, Partial rupture: 7 cases, and Absent: 0 case. Occupation rate of the osteophytes to the notch correlated to the preoperative varus deformity (p < 0.05). In terms of ACL, the occupation rate of the osteophytes to the notch were 22.9%, 28.8%, 46.0%, and 81.8% in Normal, Frayed, partial ruptured, and Absent, respectively. The patients with more than 40% occupation rate and less than 110 degree of knee flexion angle showed either partial rupture or absent of the ACL during the surgery. Those results correlated with the degree of OA deterioration. We conclude that occupation rate of the osteophytes to the notch poor preoperative ROM is a good predictor of evaluating the ACL degeneration in osteoarthritic knee. We also conclude that ACL dysfunction due to joint space narrowing accelerates the advancement of the knee OA.
The Authors present a ligament tensor for the evaluation of the ligaments balance used during the implant of total knee prosthesis, which is able to suggest the orientation of the bone resection, not only in knee flexion, but also in extention. This instrument provides for the placement of the endomedullary rod equipped (figures 1 and 2) with a plate of various valgus levels on which, the balancing part of the tensor, is pushing against, while the stable part is leaning against the tibial resected surface (figure 3). This system allows to choose the right valgus level, without having to recur to the ligamentous lysis, if so only minimum, and above all, allows this way to aviod the error of orienting the distal femoral resection due to the imperfect coaxiality between the endomedullary rod and the femoral canal. This mistake might happen because of the imperfect point of entrance and/or because of a not so small difference between the rod caliber and the femoral canal width.
Preservation of the anterior cruciate ligament (ACL), along with the posterior cruciate ligament, is believed to improve functional outcomes in total knee replacement (TKR). The purpose of this study was to examine gait differences and muscle activation levels between ACL sacrificing (ACL-S) and bicruciate retaining (BCR) TKR subjects during level walking, downhill walking, and stair climbing. Ten ACL-S (Vanguard CR) (69±8 yrs, 28.7±4.7 kg/m2) and eleven BCR (Vanguard XP, Zimmer-Biomet) (63±11 yrs, 31.0±7.6 kg/m2) subjects participated in this IRB approved study. Except for the condition of the ACL, both TKR designs were similar. Subjects were tested 8–14 months post-op in a motion analysis lab using a point cluster marker set and surface electrodes applied to the Vastus Medialis Oblique (VMO), Rectus Femoris (RF), Biceps Femoris (BF) and Semitendinosus (ST). 3D motion and force data and electromyography (EMG) data were collected simultaneously. Subjects were instructed to walk at a comfortable walking speed across a walkway, down a 12.5% downhill slope, and up a staircase. Five trials per activity were collected. Knee kinematics and kinetics were analyzed using BioMove (Stanford, Stanford, CA). The EMG dataset underwent full-wave rectification and was smoothed using a 300ms RMS window. Gait cycle was time normalized to 100%; relative voluntary contraction (RVC) was calculated by dividing the average activation during downhill walking by the maximum EMG value during level walking and multiplying by 100%.Introduction
Methods
Lubricin is a proteoglycan that is a boundary lubricant in synovial joints and both a surface and collagen inter-fascicular lubricant in ligaments. The purpose of this study was to characterise the mRNA levels for lubricin in the anterior cruciate ligament (ACL), posterior cruciate ligament (PCL), medial collateral ligament (MCL), and lateral collateral ligament (LCL) in aging and surgically-induced menopausal rabbits. We hypothesised that lubricin mRNA levels would be increased in ligaments from aging and menopausal rabbits compared with ligaments from normal rabbits. All four knee ligaments (ACL, PCL, MCL, LCL) were isolated from normal (1-year-old rabbits, n=8), aging (3-year-old rabbits, n=6), and menopausal (1-year-old rabbits fourteen weeks after surgical ovariohysterectomy, n=8) female New Zealand White rabbits. RT-qPCR was used to evaluate the mRNA levels for lubricin normalised to the housekeeping gene 18S. After removing outliers, data for normal, aging, and menopausal rabbits for each knee ligament (ACL, PCL, MCL, LCL) were compared using ANOVA with linear contrasts or Kruskal-Wallis test with Conover post-hoc analysis. For ACLs, the mRNA levels for lubricin were increased in menopausal and aging rabbits compared with normal rabbits (p<0.056). For PCLs, trends for increased lubricin mRNA levels were found when comparing menopausal and aging rabbits with normal rabbits (p<0.092). For MCLs, the mRNA levels for lubricin were increased in menopausal and aging rabbits compared with normal rabbits (p<0.050). For LCLs, no differences in lubricin mRNA levels were detected comparing the three groups. For all four knee ligaments (ACL, PCL, MCL, LCL), no differences in lubricin mRNA levels were detected comparing the ligaments from menopausal rabbits with those from aging rabbits. Lubricin plays a role in collagen fascicle lubrication in ligaments (1,2). Increased lubricin gene expression was associated with mechanical changes (including decreased modulus and increased failure strain) in the aging rabbit MCL (3). Detection of similar molecular changes in the ACL, and possibly the PCL, may indicate that their mechanical properties may also change as a result of increased lubricin gene expression, thereby potentially pre-disposing these ligaments to damage accumulation. Compared to aging ligaments, aging tendons exhibited decreased lubricin gene and protein expression, and increased stiffness (4). Although opposite changes than aging ligaments, these findings support the relationship between lubricin and modulus/stiffness. The similarities between ligaments in the aging and menopausal groups may suggest that surgically-induced menopause results in a form of accelerated aging in the rabbit ACL, MCL and possibly PCL.
Today controversy exists whether restoration of neutral mechanical alignment should be attempted in all patients undergoing TKA. The restoration of constitutional rather than neutral mechanical alignment may in theory lead to a more physiological strain pattern in the collateral ligaments, and could therefore potentially be beneficial to patients. It was therefore our purpose to measure collateral ligament strains during three motor tasks in the native knee and compare them with the strains noted after TKA in different postoperative alignment conditions. Six cadaver specimens were examined using a validated knee kinematics rig under physiological loading conditions. The effect of coronal malalignment was evaluated by using custom made tibial implant inserts in order to induce different alignment conditions. The results indicated that after TKA insertion the strains in the collateral ligaments resembled best the preoperative pattern of the native knee specimens when constitutional alignment was restored. Restoration to neutral mechanical alignment was associated with greater collateral strain deviations from the native knee. Based upon this study, we conclude that restoration of constitutional alignment during TKA leads to more physiological periarticular soft tissue strains during loaded as well as unloaded motor tasks.
This in-vitro study finds which hip joint soft tissues act as primary and secondary passive internal and external rotation restraints so that informed decisions can be made about which soft tissues should be preserved or repaired during hip surgery. The capsular ligaments provide primary hip rotation restraint through a complete hip range of motion protecting the labrum from impingement. The labrum and ligamentum teres only provided secondary stability in a limited number of positions. Within the capsule, the iliofemoral lateral arm and ischiofemoral ligaments were primary restraints in two-thirds of the positions tested and so preservation/repair of these tissues should be a priority to prevent excessive hip rotation and subsequent impingement/instability for both the native hip and after hip arthroplasty.
Outcome measures are an essential element of our industry: comparing a novel procedure against an established one requires a reliable set of metrics that are comprehensible to both the technologist and the layman. We surmised that a detailed assessment of function before and after knee arthroplasty, combined with a detailed set of personal goals would enable us to test the hypothesis that less invasive joint and ligament preserving operations could be demonstrated to be more successful, and cost effective. We asked the simple question: how well can people walk following arthroplasty, and can we measure this? Using a treadmill, instrumented with force plates, we developed a regime of walking at increasing speeds and on varying inclines, both up and down hill. The data from the force plates was then extracted directly, without using the proprietary software that filtered it. Code was written in matlab script to ensure that missed steps were not mistakenly attributed to the wrong leg, automatically downloading of all the gait data at all speeds and inclines. The pattern of gait of both legs could then be compared over a range of activities. Wide variation is seen in gait both before and after arthroplasty. The variables that are easiest to explain are these:
width of gait – this appears to be a pre-morbid variable, not easily correctible with surgery. (figure 1) top walking speed – total knee replacement is associated with 11% lower top speeds than uni knees or normals (p < 0.05) change in stride length with increasing speed: normal people increase their walking speed by increasing both their cadence and their stride length incrementally until a top stride length is reached. Patients with a total knee replacement do not increase their stride length at a normal rate, having to rely on increasing cadence to deliver speed increase. Patients with uni or bi-compartmental knee replacements increase speed like normal people. Downhill gait: as many as 40% of fit patients with ‘well functioning’ total knee replacements choose not to walk downhill at all, while all fit patients with ‘well functioning’ partial replacements are able to do this. Those who can manage, can only manage 90% of the normal speed, unlike unis which are indistinguishable from normal (p < 0.05)Materials and methods
Results
The aim of this study was to compare the diagnostic accuracy of the Magnetic Resonance Imaging with that of Stress views of the ankle in testing the integrity of the lateral ankle ligaments. Arthroscopic diagnosis was used as the gold standard. This was a prospective study involving 45 patients who had previous trauma to the ankle and reported symptoms of ankle instability. Our patients were recreational athletes or military patients. These patients had MRI evaluation prior to arthroscopic evaluation and treatment of the ankle. The diagnosis regarding the integrity of the Calcaneofibular ligament (CFL) and the Anterior Talo-fibular ligament (ATFL), as obtained from the MRI was compared against the assessment of integrity from the stress views. These were compared against the assessment made by direct visualisation of the ligaments during arthroscopy. The sensitivity, specificity, negative (NPV) and positive predictive values (PPV) and accuracy were then calculated.Aim
Methods
In replacing the human knee, we attempt to reproduce the stability of the normal knee so that the knee will feel as close to normal as possible to the patient. To answer the question, “Which features matter?” we must first examine the stability of the normal knee. Compliance and stiffness: Stability is measured as “force-displacement” behavior. That is, a force is applied to the knee and the relative motion is measured. Engineers refer to the curves generated by this type of experiment as “stiffness”. Because stiffness is not a term that orthopaedists like to hear when referring to a knee, the inverse term “compliance” often is used. Ligament stress-strain: The force-displacement test for ligaments is called a “stress-strain” curve and shows three regions of force-displacement response. Early in loading a small force causes considerable displacement. This is called the “toe region” of the curve. After a certain amount of displacement, the ligament enters the “elastic region” of the curve and becomes markedly more stiff. Finally, if enough force is applied, the ligament begins to fail at its “yield point”.
INTRODUCTION. Proper ligament engagement is an important topic of discussion for total knee arthroplasty; however, its importance to total ankle arthroplasty (TAA) is uncertain.
INTRODUCTION. Postoperative functional limitations after Total Knee Arthroplasty (TKA) are caused, in part, by a mismatch between a patient's natural anatomy and conventional “off-the-shelf” implants. To address this, we propose a new concept combining off-the-shelf femur and tibia implants with custom polyethylene tibial inserts designed to account for a patient's unique anatomy. Our goal in this study was to use knee specific computational modeling to determine the neutral path of motion and laxity of an intact knee under axial compression and shear forces through full flexion and compare intact motion against the same knee implanted with a conventional off-the-shelf vs. a custom tibial insert. METHODS. 3D models of a healthy knee joint were acquired from an open development repository funded by the National Institute of Biomedical Imagining and Bioengineering (Harris et al., 2016). The knee model was virtually implanted with conventional (off-the-shelf) posterior cruciate retaining (CR) components including the femoral component, tibial tray, and a conventional insert. A custom CR tibial insert was designed taking into account native articular geometry and compatibility with placement of the off-the-shelf femoral/tibial tray. Bone, cartilage and implant models were imported into ANSYS Workbench.
Most total knee prostheses are designed to have limited congruence between the femoral and tibial components to reduce constraint, based on the widely accepted principle that “constraint causes loosening”. Studies of the normal knee, however, indicate that stability under axial load occurs mostly by the geometric conformity of the surfaces. When moving in the plane of flexion-extension, the ligaments contribute little to stability because the ligaments are in the “toe-region” of their force-displacement curve. When an “out-of-plane” load is applied (i.e., load outside the plane of flexion-extension), ligaments are “recruited” for stability by being stressed into the elastic portion of the curve to resist the load. For the traditional total knee prosthesis, because of the lack of geometric congruity, the ligaments must provide all stability by being “balanced”, i.e. tensioned into the elastic portion of the force-displacement curve. Further, they must remain in that tensioned state indefinitely, with no stretching or migration of the implant. The medial pivot knee design has a fully conforming medial “ball-in-socket” articulation that provides stability to the knee through the geometric conformity.