Advertisement for orthosearch.org.uk
Results 1 - 20 of 542
Results per page:

Several studies have evaluated the risk of peroneal nerve (PN) injuries in all-inside lateral meniscal repair using standard knee magnetic resonance imaging (MRI) with the 30 degrees flexed knee position which is different from the knee position during actual arthroscopic lateral meniscal repair. The point of concern is “Can the risk of PN injury using standard knee MRIs be accurately determined”. To evaluate and compare the risk of PN injury in all-inside lateral meniscal repair in relation to both borders of the popliteus tendon (PT) using MRIs of the two knee positions in the same patients. Using axial MRI studies with standard knee MRIs and figure-of-4 with joint fluid dilatation actual arthroscopic lateral meniscal repair position MRIs, direct lines were drawn simulating a straight all-inside meniscal repair device from the anteromedial and anterolateral portals to the medial and lateral borders of the PT. The distance from the tip of each line to the PN was measured. If a line touched or passed the PN, a potential risk of iatrogenic injury was noted and a new line was drawn from the same portal to the border of the PN. The danger area was measured from the first line to the new direct line along the joint capsule. In 28 adult patients, the closest distances from each line to the PN in standard knee MRI images were significantly shorter than arthroscopic position MRI images (all p-values < 0.05). All danger areas assessed in the actual arthroscopic position MRIs were included within the danger areas as assessed by the standard knee MRIs. We found that the standard knee MRIs can be used to determine the risk of peroneal nerve injury in arthroscopic lateral meniscal repair, although the risks are slightly overestimated


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 25 - 25
17 Nov 2023
Mok S Almaghtuf N Paxton J
Full Access

Abstract. The lateral ligaments of the ankle composed of the anterior talofibular (ATFL), calcaneofibular (CFL) and posterior talofibular ligaments (PTFL), are amongst the most commonly injured ligaments of the human body. Although treatment methods have been explored exhaustively, healing outcomes remain poor with high rates of re-injury, chronic ankle instability and pain persisting. The introduction and application of tissue engineering methods may target poor healing outcomes and eliminate long-term complications, improving the overall quality of life of affected individuals. For any surgical procedure or tissue-engineered replacement to be successful, a comprehensive understanding of the complete anatomy of the native structure is essential. Knowledge of the dimensions of ligament footprints is vitally important for surgeons as it guides the placement of bone tunnels during repair. It is also imperative in tissue-engineered design as the creation of a successful replacement relies on a thorough understanding of the native anatomy and microanatomical structure. Several studies explore techniques to describe ligament footprints around the body, with limited studies describing in-depth footprint dimensions of the ATFL, CFL and PTFL. Techniques currently used to measure ligament footprints are complex and require resources which may not be readily available, therefore a new methodology may prove beneficial. Objectives. This study explores the application of a novel technique to assess the footprint of ankle ligaments through a straightforward inking method. This method aims to enhance surgical technique and contribute to the development of a tissue-engineered analogue based on real anatomical morphometric data. Methods. Cadaveric dissection of the ATFL, CFL and PTFL was performed on 12 unpaired fresh frozen ankles adhering to regulations of the Human Tissue (Scotland) Act. The ankle complex with attaching ligaments was immersed in methylene blue. Dissection of the proximal and distal entheses of each ligament was carried out to reveal the unstained ligament footprint. Images of each ligament footprint were taken, and the area, length and width of each footprint were assessed digitally. Results. The collective area of the proximal entheses of the ATFL, CFL and PTFL measures 142.11 ± 12.41mm2. The mean areas of the superior (SB) and inferior band (IB) of the distal enthesis of the ATFL measured 41.72 ± 5.01mm2 and 26.66 ± 3.12mm2 respectively. The footprint of the distal enthesis of the CFL measured 146.07 ± 14.05mm2, while the footprint of the distal PTFL measured 126.26 ± 8.88mm2. The proximal footprint of the ATFL, CFL and PTFL measured 11.06 ± 0.69mm, 7.87 ± 0.43mm and 10.52 ± 0.63mm in length and 8.66 ± 0.50mm, 9.10 ± 0.92mm and 14.41 ± 1.30mm in width on average. The distal footprint of the ATFL (SB), ATFL (IB), CFL and PTFL measured 10.92 ± 0.81 mm, 8.46 ± 0.46mm, 13.98 ± 0.93mm and 11.25 ± 0.95mm in length and 7.76 ± 0.59mm, 7.51 ± 0.64mm, 18.98 ± 1.15mm and 24.80 ± 1.25mm in width on average. Conclusions. This methodology provides an effective approach in the identification of the footprint of the lateral ligaments of the ankle to enhance surgical precision and accuracy in tissue-engineered design. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 56 - 56
2 Jan 2024
Zderic I Warner S Stoffel K Woodburn W Castle R Penman J Saura-Sanchez E Helfet D Gueorguiev B Sommer C
Full Access

Treatment of both simple and complex patella fractures is a challenging clinical problem. The aim of this study was to investigate the biomechanical performance of recently developed lateral rim variable angle locking plates versus tension band wiring used for fixation of simple and complex patella fractures. Twelve pairs of human anatomical knees were used to simulate either two-part transverse simple AO/OTA 34C1 or five-part complex AO/OTA 34C3 patella fractures by means of osteotomies, with each fracture model created in six pairs. The complex fracture pattern was characterized by a medial and a lateral proximal fragment, together with an inferomedial, an inferolateral, and an inferior fragment mimicking comminution around the distal patellar pole. The specimens with simple fractures were pairwise assigned for fixation with either tension band wiring through two parallel cannulated screws, or a lateral rim variable angle locking plate. The knees with complex fractures were pairwise treated with either tension band wiring through two parallel cannulated screws plus circumferential cerclage wiring, or a lateral rim variable angle locking plate. Each specimen was tested over 5000 cycles by pulling on the quadriceps tendon, simulating active knee extension and passive knee flexion within the range of 90° flexion to full knee extension. Interfragmentary movements were captured via motion tracking. For both fracture types, the longitudinal and shear articular displacements measured between the proximal and distal fragments at the central patella aspect between 1000 and 5000 cycles, together with the relative rotations of these fragments around the mediolateral axis were all significantly smaller following the lateral rim variable angle locked plating compared with tension band wiring, p<0.01. Lateral rim locked plating of both simple and complex patella fractures provides superior construct stability versus tension band wiring under dynamic loading


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 124 - 124
4 Apr 2023
van Knegsel K Hsu C Huang K Benca E Ganse B Pastor T Gueorguiev B Varga P Knobe M
Full Access

The lateral wall thickness (LWT) in trochanteric femoral fractures is a known predictive factor for postoperative fracture stability. Currently, the AO/OTA classification uses a patient non-specific measure to assess the absolute LWT (aLWT) and distinguish stable A1.3 from unstable A2.1 fractures based on a threshold of 20.5 mm. This approach potentially results in interpatient deviations due to different bone morphologies and consequently variations in fracture stability. Therefore, the aim of this study was to explore whether a patient-specific measure for assessment of the relative LWT (rLWT) results in a more precise threshold for prediction of unstable fractures. Part 1 of the study evaluated 146 pelvic radiographs to assess left-right symmetry with regard to caput-collum-angle (CCD) and total trochanteric thickness (TTT), and used the results to establish the rLWT measurement technique. Part 2 reevaluated 202 patients from a previous study cohort to analyze their rLWT versus aLWT for optimization purposes. Findings in Part 1 demonstrated a bilateral symmetry of the femur regarding both CCD and TTT (p ≥ 0.827) allowing to mirror bone's morphology and geometry from the contralateral intact to the fractured femur. Outcomes in Part 2 resulted in an increased accuracy for the new determined rLWT threshold (50.5%) versus the standard 20.5 mm aLWT threshold, with sensitivity of 83.7% versus 82.7% and specificity 81.3% versus 77.8%, respectively. The novel patient-specific rLWT measure can be based on the contralateral femur anatomy and is a more accurate predictor of a secondary lateral wall fracture in comparison to the conventional aLWT. This study established the threshold of 50.5% rLWT as a reference value for prediction of fracture stability and selection of an appropriate implant for fixation of trochanteric femoral fractures


Although remnant-preserved ACL reconstruction (ACLR) restores knee joint stability and dampens the problem of acute ACL rupture-induced knee pain, an increasing number of patients still develop post-traumatic osteoarthritis (PTOA) after 10 to 15 years of ACLR. We previously found that remnant-preserved ACLR with concomitant medial and lateral meniscus repair may not prevent cartilage degeneration and weaken muscle strength, while the clinical features of PTOA are not clear. We hypothesized that remnant-preserved ACLR with concomitant medial and lateral meniscus tears is related to early cartilage damage, worse function recovery, patient-reported outcomes (PROs) and delayed duration to return to sports. The aim is to evaluate the remnant-preserved ACLR with complicated meniscal injuries in predicting which patients are at higher risk of osteoarthritic changes, worse function and limited activities after ACLR for 12 months. Human ethical issue was approved by a committee from Xi'an Jiaotong University. 26 young and active patients (24 male, 2 female) with ACL injuries (Sherman type I and II) with concomitant medial and lateral meniscus within 2 months were included from January 2014 to March 2022. The average age of the ACLR+ meniscus repair was 26.77±1.52 (8 right, 5 left) and isolated ACLR control was 31.92±2.61 years old (7 left, 6 right). Remnant-preserved ACLR with a 5- to 6-strand hamstring tendon graft was operated on by the same sports medicine specialists. MRI CUBE-T. 2. scanning with 48 channels was conducted by a professional radiologist. The volume of the ACL graft was created through 3 dimensional MRI model (Mimics 19, Ann Arbor). Anterior Cruciate Ligament OsteoArthritis Score (ACLOAS) was applied to score visible cartilage damage. IKDC 2000 score and VAS were assessed by two blinded researchers. Results were presented as mean± SEM of each group. The cross-sectional area and 3D volume of the ACL graft were greater in the remnant-preserved ACLR+meniscus group compared with isolated ACLR (p=0.01). It showed that ACLR+ meniscus group had early signs of joint damage and delayed meniscus healing regarding ACLOAS compared to control group (p=0.045). MRI CUBE-T. 2. prediction of radiographic cartilage degeneration was not obvious in both groups post remnant-preserved ACLR over 12 months (p>0.05). However, higher VAS scores, lower IKDC scores, and long-last joint swelling were reported in the ACLR+ meniscus repair group at the end of 12 months follow-up. Although remnant-preserved ACLR+ meniscus was able to maintain the restore the knee function, it showed delayed timing (>12 months) to return to play at the pre-injury stage, while no difference between the timing of returning to the normal daily routine of their ACLR knee compared to control (p=0.30). The cost of ACLR+ meniscus (average 10,520.76$) was higher than the control group (6,452.92$, p=0.018). Remnants-preserved ACLR with concomitant injured medial and lateral meniscus repair shows a higher risk of cartilage damage, greater cost, worse functional performance, and longer time for young male patients to return to sports after 12-month follow-up compared to isolated ACLR. Further evidence and long-term follow-up are needed to better understand the association between these results and the risk of development of PTOA in this patient cohort


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 126 - 126
11 Apr 2023
Kim Y Choi Y Cho S
Full Access

Chronic lateral ankle instability (CLAI) is treated operatively, whereas acute ligament injury is usually treated nonoperatively. Such treatments have been widely validated. Apoptosis is known to cause ligament degeneration; however, few reports have focused on the possible role of apoptosis in degeneration of ruptured lateral ankle ligaments. The aim of our study is to elucidate the apoptosis that occurs within anterior talofibular ligament (ATFL) to further validate current CLAI treatments by adducing molecular and cellular evidence. Between March 2019 and February 2021, 50 patients were prospectively enrolled in this study. Ruptured ATFL tissues were collected from 21 CLAI patients (group C) and 17 acute ankle fracture patients (group A). Apoptotic cells were counted using the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) assay. Western blotting for caspases 3, 7, 8, and 9 and cytochrome c, was performed to explore intrinsic and extrinsic apoptotic pathways. Immunohistochemistry was used to detect caspases 3, 7, 8, and 9 and cytochrome c, in ligament vessel endothelial cells. More apoptotic cells were observed in group C than group A in TUNEL assay. Western blotting revealed that the apoptotic activities of group C ligaments were significantly higher than those of group A (all p < 0.001). Immunohistochemistry revealed increased expression of caspases 3, 7, 8, and 9, and cytochrome c, in group C compared to group A. The ATFL apoptotic activities of CLAI patients were significantly higher than those of acute ankle fracture patients, as revealed biochemically and histologically. Our data further validate current CLAI treatments from a molecular and cellular perspective. Efforts should be made to reverse or prevent ATFL apoptosis in CLAI patients


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 20 - 20
1 Dec 2021
Yang I Gammell JD Murray DW Mellon SJ
Full Access

Abstract. Background. The Oxford Domed Lateral (ODL) Unicompartmental Knee Replacement (UKR) has some advantages over other lateral UKRs, but the mobile bearing dislocation rate is high (1–6%). Medial dislocations, with the bearing lodged on the tibial component wall, are most common. Anterior/posterior dislocations are rare. For a dislocation to occur distraction of the joint is required. We have developed and validated a dislocation analysis tool based on a computer model of the ODL with a robotics path-planning algorithm to determine the Vertical Distraction required for a Dislocation (VDD), which is inversely related to the risk of dislocation. Objectives. To modify the ODL design so the risk of medial dislocation decreases to that of an anterior/posterior dislocation. Methods. The components were modified using Solidworks. For each modification the dislocation analysis tool was used to determine the VDD for medial dislocation (with bearing 0–6mm from the tibial wall). This was compared with the original implant to identify the modifications that were most effective at reducing the dislocation risk. These modifications were combined into a final design, which was assessed. Results. Modifying the tibial component plateau, changing the femoral component width and making the bearing wider medially had little effect on VDD. Shifting the femoral sphere centre medially decreased VDD. Shifting the femoral sphere laterally, increasing tibial wall height and increasing bearing width laterally increased VDD. A modified implant with a femoral sphere centre 3mm lateral, wall 2.8mm higher, and bearing 2mm wider laterally, implanted so the bearing is ≤4mm from the tibial wall with a bearing thickness ≥4mm had a minimum VDD for medial dislocation of 5.75mm, which is larger than the minimum VDD for anterior/posterior dislocation of 5.5mm. Conclusions. A modified ODL design should decrease the dislocation rate to an acceptable level, however, further testing in cadavers is required. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 43 - 43
11 Apr 2023
Amirouche F Mok J Leonardo Diaz R Forsthoefel C Hussain A
Full Access

Lateral lumbar interbody fusion (LLIF) has biomechanical advantages due to the preservation of ligamentous structures (ALL/PLL), and optimal cage height afforded by the strength of the apophyseal ring. We compare the biomechanical motion stability of multiple levels LLIF (4 segments) utilising PEEK interbody 26mm cages to stand-alone cage placement and with supplemental posterior fixation with pedicle screw and rods. Six lumbar human cadaver specimens were stripped of the paraspinal musculature while preserving the discs, facet joints, and osteoligamentous structures and potted. Specimens were tested under 5 conditions: intact, posterior bilateral fixation (L1-L5) only, LLIF-only, LLIF with unilateral fixation and LLIF with bilateral fixation. Non-destructive testing was performed on a universal testing machine (MTS Systems Corp) to produce flexion-extension, lateral-bending, and axial rotation using customized jigs and a pulley system to define a non-constraining load follower. Three-dimensional spine motion was recorded using a motion device (Optotrak). Results are reported for the L3-L4 motion segment within the construct to allow comparison with previously published works of shorter constructs (1-2 segments). In all conditions, there was an observed decrease in ROM from intact in flexion/extension (31%-89% decrease), lateral bending (19%-78%), and axial rotation (37%-60%). At flexion/extension, the decreases were statistically significant (p<0.007) except for stand-alone LLIF. LLIF+unilateral had similar decreases in all planes as the LLIF+bilateral condition. The observed ROM within the 4-level construct was similar to previously reported results in 1-2 levels for stand-alone LLIF and LLIF+bilateral. Surgeons may be concerned about the biomechanical stability of an approach utilizing stand-alone multilevel LLIF. Our results show that 4-level multilevel LLIF utilizing 26 mm cages demonstrated ROM comparable to short-segment LLIF. Stand-alone LLIF showed a decrease in ROM from the intact condition. The addition of posterior supplemental fixation resulted in an additional decrease in ROM. The results suggest that unilateral posterior fixation may be sufficient


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 69 - 69
1 Nov 2021
Pastor T Zderic I Richards G Gueorguiev B Knobe M
Full Access

Introduction and Objective. Distal femoral fractures are commonly treated with a straight plate fixed to the lateral aspects of both proximal and distal fragments. However, the lateral approach may not always be desirable due to persisting soft-tissue or additional vascular injury necessitating a medial approach. These problems may be overcome by pre-contouring the plate in helically shaped fashion, allowing its distal part to be fixed to the medial aspect of the femoral condyle. The objective of this study was to investigate the biomechanical competence of medial femoral helical plating versus conventional straight lateral plating in an artificial distal femoral fracture model. Materials and Methods. Twelve left artificial femora were instrumented with a 15-hole Locking Compression Plate – Distal Femur (LCP-DF) plate, using either conventional lateral plating technique with the plate left non-contoured, or the medial helical plating technique by pre-contouring the plate to a 180° helical shape and fixing its distal end to the medial femoral condyle (n=6). An unstable extraarticular distal femoral fracture was subsequently simulated by means of an osteotomy gap. All specimens were tested under quasi-static and progressively increasing cyclic axial und torsional loading until failure. Interfragmentary movements were monitored by means of optical motion tracking. Results. Initial axial stiffness was significantly higher for helical (185.6±50.1 N/mm) versus straight (56.0±14.4) plating, p<0.01. However, initial torsional stiffness in internal and external rotation remained not significantly different between the two fixation techniques (helical plating:1.59±0.17 Nm/° and 1.52±0.13 Nm/°; straight plating: 1.50±0.12 Nm/° and 1.43±0.13Nm/°), p≥0.21. Helical plating was associated with significantly higher initial interfragmentary movements under 500 N static compression compared to straight plating in terms of flexion (2.76±1.02° versus 0.87±0.77°) and shear displacement under 6 Nm static rotation in internal (1.23±0.28° versus 0.40±0.42°) and external (1.21±0.40° versus 0.57±0.33°) rotation, p≤0.01. In addition, helical plating demonstrated significantly lower initial varus/valgus deformation than straight plating (4.08±1.49° versus 6.60±0.47°), p<0.01. Within the first 10000 cycles of dynamic loading, helical plating revealed significantly bigger flexural movements and significantly lower varus/valgus deformation versus straight plating, p=0.02. No significant differences were observed between the two fixation techniques in terms of axial and shear displacement, p≥0.76. Cycles to failure was significantly higher for helical plating (13752±1518) compared to straight plating (9727±836), p<0.01. Conclusions. Although helical plating using a pre-contoured LCP-DF was associated with higher shear and flexion movements, it demonstrated improved initial axial stability and resistance against varus/valgus deformation compared to straight lateral plating. Moreover, helical plate constructs demonstrated significantly improved endurance to failure, which may be attributed to the less progressively increasing lever bending moment arm inherent to this novel fixation technique. From a biomechanical perspective, helical plating may be considered as a valid alternative fixation technique to standard straight lateral plating of unstable distal femoral fractures


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 87 - 87
11 Apr 2023
Koh J Leonardo Diaz R Tafur J Lin C Amirouche F
Full Access

Chondral defects in the knee have cartilage biomechanical differences due to defect size and orientation. This study examines how the tibiofemoral contact pressure is affected by increasing full-thickness chondral defect size on the medial and lateral condyle at full extension. Isolated full-thickness, square chondral defects increasing from 0.09cm. 2. to 1.0cm. 2. were created sequentially on the medial and lateral femoral condyles of six human cadaveric knees with intact ligaments and menisci. Chondral defects were created 1.0cm from the femoral notch posteriorly. The knees were fixed to a uniaxial load frame and loaded from 0N to 600N at full extension. Contact pressures between the femoral and tibial condyles were measured using pressure mapping sensors. The peak contact pressure was defined as the highest value in the 2.54mm. 2. area around the defect. The location of the peak contact pressure was determined relative to the centre of the defect. Peak contact pressure was significantly different between (4.30MPa) 0.09cm. 2. and (6.91MPa) 1.0cm. 2. defects (p=0.04) on the medial condyle. On the lateral condyle, post-hoc analysis showed differences in contact pressures between (3.63MPa) 0.09cm. 2. and (5.81MPa) 1.0cm. 2. defect sizes (p=0.02). The location of the stress point shifted from being posteromedial (67% of knees) to anterolateral (83%) after reaching a 0.49cm. 2. defect size (p < 0.01) in the medial condyle. Conversely, the location of the peak contact pressure point moved from being anterolateral (50%) to a posterolateral (67%) location in defect sizes greater than 0.49cm. 2. (p < 0.01). Changes in contact area redistribution and cartilage stress from 0.49cm. 2. to 1.0cm. 2. impact adjacent cartilage integrity. The location of the maximum stress point also varied with larger defects. This study suggests that size cutoffs exist earlier in the natural history of chondral defects, as small as 0.49cm. 2. , than previously studied, suggesting a lower threshold for intervention


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 152 - 152
1 Nov 2021
Selim A Seoudi N Algeady I Barakat AS
Full Access

Introduction and Objective. Hip fractures represent one of the most challenging injuries in orthopaedic practice due to the associated morbidity, mortality and the financial burden they impose on the health care systems. By many still considered as the gold standard in the management of intertrochanteric fractures, the Dynamic Hip Screw utilizes controlled collapse during weight bearing to stabilize the fracture. Despite being a highly successful device, mechanical failure rate is not uncommon. The most accepted intraoperative indicator for lag screw failure is the tip apex distance (TAD), yet lateral femoral wall thickness (LWT) is another evolving parameter for detecting the potential for lateral wall fracture with subsequent medialization and implant failure. The aim of this study is to determine the mean and cut off levels for LWT that warrant lateral wall fracture and the implications of that on implant failure, revision rates and implant choice. Materials and Methods. This prospective cohort study included 42 patients with a mean age of 70.43y with intertrochanteric hip fractures treated with DHS fixation by the same consultant surgeon from April 2019 to December 2019. The study sample was calculated based on a confidence level of 90% and margin of error of 5%. Fracture types included in the study are 31A1 and 31A2 based on the AO/OTA classification system. LWT was assessed in all patients preoperatively using Surgimap (Nemaris, NY, USA) software. Patients were divided into two groups according to the post-operative integrity of the lateral femoral wall, where group (A) sustained a lateral femoral wall fracture intraoperatively or within 12 months after the index procedure, while in group (B) the lateral femoral wall remained intact. All patients were regularly followed up radiologically and clinically per the Harris Hip Score (HHS) for a period of 12 months. Results. At 12 months five patients (12%) suffered a postoperative lateral wall fracture, while in 37 patients (88%) the lateral femoral wall remained intact. The mean preoperative LWT of patients with a postoperative lateral wall fracture was 18.04 mm (SD ± 1.58) compared to 26.22mm (SD ± 5.93) in the group without a lateral wall fracture. All patients with post-operative lateral femoral wall fracture belong to 31A2 group, while 78.4% of the patients that did not develop post-operative lateral femoral wall fracture belong to 31A1 group. Eighty percent of patients in group (A) experienced shortening, collapse, shaft medialization and varus deformity. The mean Harris hip score of group (A) was 39.60 at 3 months and 65.67 at 6 months postoperatively, while that of group (B) was 80.75 and 90.65 at 3 and 6 months respectively, denoting a statistically significant difference (P<0.001). Treatment failure meriting a revision surgery was 40 % in group (A) and 8% in group (B) denoting a statistically significant difference (p<0.001). The cut-off point of LWT below which there is a high chance of post-operative lateral wall fracture when fixed with DHS is 19.6mm. This was shown on the receiver operating curve (ROC) by plotting the sensitivity against the 100 % specificity with a set 95% confidence interval 0.721 – 0.954. When lateral wall thickness was at 19.6 mm, the sensitivity was 100% and specificity was 81.8%. The area under the curve (AUC) was 0.838, which was statistically significant (P = 0.015). Conclusions. Preoperative measurement of LWT in elderly patients with intertrochanteric hip fractures is decisive. The cut off point for postoperative lateral wall fracture according to our study is 19.6 mm; hence, intramedullary fixation has to be considered in this situation


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 41 - 41
1 Dec 2020
Ulucakoy C Kaptan AY Eren TK Ölmez SB Ataoğlu MB Kanatlı U
Full Access

Purpose. To evaluate the clinical results of arthroscopic repair and open Ahlgren Larsson method in patients with chronic lateral ankle instability. Methods. We retrospectively evaluated 87 patients who were operated in our clinic between 2010 and 2018 with the diagnosis of chronic lateral ankle instability. 16 patients with osteochondral lesion, 5 patients with rheumatoid arthritis, 4 patients with ankle fractures of the same side, 2 patients with a history of active or previous malignancy were excluded. Preoperative and postoperative clinical evaluations were performed with AOFAS ankle-hindfoot score, FAOS and VAS scores. Results. Sixty patients with chronic lateral ankle instability were evaluated. 28 patients, treated with Ahlgren-Larsson method and 32 patients, treated with arthroscopic repair. 36 of the patients were female and 24 were male; the mean age of the arthroscopy group was 44 ± 9; the mean age of the open surgery group was 46 ± 11. There was no significant difference between the groups in terms of demographic features (age, sex, VKI). Postoperative clinical improvement was observed in both groups. There was no statistically significant difference between the groups in terms of functionality. However, there was a statistically significant difference in pain and satisfaction of VAS in favor of arthroscopy group. Conclusions. Ahlgren-Larsson method and arthroscopic repair technique are safe and effective for chronic lateral ankle instability. Arthroscopic technique may be preferred for pain and patient satisfaction as it is less invasive and less morbid


Post-operative check radiographs following Total Hip Replacements (THR) are routine practice in most orthopaedic units. In our unit an Anteroposterior and Turned Lateral View (TLV) radiograph was used routinely in this assessment, but the TLV method has anecdotally been reported as painful by patients. We undertook a study to evaluate patients' experiences of pain using this technique and to consider if a change to a Horizontal Beam Lateral View (HBLV) radiograph method would result in a reduction in pain. The study was conducted in two phases. Patients who underwent a primary THR and subsequent post-operative TLV over 3months (n=46) were contacted by telephone and asked to grade their experience using a numerical and descriptive pain scale. After a change in practice to HBLV, the study was repeated (n=53) to identify any difference in pain. Ten radiographs were randomly selected from each group and assessed for radiation exposure and quality by two independent assessors. 87.0% of patients who underwent the TLV radiograph described the post-operative radiograph as painful, with a mean pain score of 7.44+1.5. After a change in practice to the HBLV radiograph, only 28.4% of patients experienced any pain, with a significantly lower mean pain score of 1.00+1.89 (p< 0.001). There was a significant increase in radiation dose in the HBLV vs. TLV method (62.4mAs vs. 25.8mAs, p< 0.001). HBLV X-ray quality was only slightly inferior to TLV when evaluating stem alignment and cement mantle quality. There was a dramatic reduction in both number of patients experiencing pain and level of pain experienced when switching from TLV to HBLV radiographs; this is most likely due to reduced direct pressure on the wound post-operatively. X-ray quality was not compromised, and whilst there was increased radiation exposure, the benefits in patient experience were felt to outweigh this. We recommend the HBLV radiograph method when performing a lateral post-operative check x-ray following THR


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 128 - 128
1 Nov 2018
Zadran S Christensen K Petersen T Rasmussen S
Full Access

Acute lateral ankle sprain accounts for 85% of sprains. The lateral sprain is associated with other ligament injuries e.g. medial and syndesmosis sprain. Long-term, approximately 20% of acute lateral sprains develop into chronic lateral ankle instability (CLAI) which includes persistent pain, and recurring ankle sprains. This study evaluated the grade of an ankle ligament injury by ultrasonography (US) and compared the findings to the outcome of patient-reported questionnaires. 48 subjects (18–40 years) diagnosed with an ankle sprain attended a clinical and US examination of ankle ligaments within two weeks after the sprain. Evaluation was done by US of acute lateral ligament injuries (ATFL, CFL), syndesmosis injury (AiTFL), and medial injury (dPT, TCt) only in participants with the positive clinical signs of medial injury. Participants were then mailed a questionnaire (PROMQ) every third month for a year. 29 women and 19 men participated with a mean age at 26.50 years. One-year follow-ups need to be analyzed further for final results. Temporary results include data based on the initial 26 patients: Two clinical signs statistically correlated. Multiple logistic regression analysis confirmed the results. Positive palpated tenderness AiTFL predicted with partial ruptured ATFL and reported pain during active plantar flexion of ankle predicted with normal CFL confirmed by the US. Patients with partial rupture of ATFL presented with tenderness at AiTFL point. Patients presenting with intact CFL reported pain during active plantar flexion. Compared to the US findings, the overall examinations were inconclusive in predicting ATFL, CFL, AiTFL, and medial ligament injuries


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 121 - 121
1 Mar 2021
Kjaer M Penny JO Basse P
Full Access

Limited information is published regarding the activity level after gracilis autograft reconstruction, and usually a knee-injury based score is used rather than a specific ankle PROM. The purpose of this study was to investigate the activity level and functional results after lateral ankle gracilis autograft reconstruction in patients with severe lateral ankle instability. The hypothesis was that patients would regain their pre-injury Tegner activity level or one level below and secondary to compare a specific ankle activity score, instability and function score. Finally, donor site and graft complications, clinical stability and range of motion were measured. All 69 patients (50 women, 19 men) recorded at the hospital with severe instability who underwent reconstruction of the anterior talofibular and the calcaneofibular ligament with a gracilis autograft and were minimum 6 months post-operative, were invited to participate in the study. Outcomes measures included the Tegner Activity level (1–10), Ankle Activity Score (0–10) recorded as pre-injury and at follow up. The Karlsson Petterson Ankle Function Score (0–100) and Visual Analog Score (VAS)(0–10) recorded pre-operatively and at follow up. All pre-injury and pre-operative data were recalled retrospectively from memory. Identification of functional ankle instability (IDFAI)(0–37) was recorded at follow up. The clinical tests, Anterior drawer test (0–4), Talar tilt test (0–4) and Range of motion (ROM)(degrees) were compared to the unaffected side at follow up. A difference of 1 in the activity scores was chosen as a clinical relevant difference. Data was tested for normal distribution and for statistical significant difference with a students t-test. study design: Cross sectional clinical study with a retrospective questionnaire. A total of 33 patients (27 women, 6 men), with a mean age on 45 years (range 19–68), were included in this study. Mean follow up was 3.7 years. Mean pre-operative Tegner score was 5.8 vs 5.6 at follow up (p. On average, the patients returned to their pre-injury activity level, with similar specific ankle activity scores to the Tegner. The majority had good functional results and few residual symptoms of functional instability. The response rate was low with few men responding; hence a prospective study is called for to establish the true effect of the surgical technique


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 74 - 74
1 Nov 2021
Conforti LG Faggiani M Risitano S
Full Access

Introduction and Objective. Interest for direct anterior approach (DAA) in hip hemiarthroplasty (HHA) has greatly increased in recent years, however which is the best surgical approach in hip replacement treating femoral neck fractures (FNFs) is already unclear. The aim of this study is to perform a radiographic and perioperative complications analysis by comparing the direct anterior approach (DAA) with the direct lateral approach (DLA) in patients treated with hemiarthroplasty for FNFs. Materials and Methods. Patients with FNFs surgically treated between 2016–2020 with HHA were enrolled. The radiographical outcomes of DAA and DLA are compared. Several peri-operative and post-operative variables were evaluated: mean surgery time, complications as periprosthetic fractures or episodes of dislocation, the average of post-operative diaphyseal filling of the stem (Canal Fill Index, CFI), the extent of heterotopic ossification (HO) (simplified Broker classification) and metadiaphiseal bone loss (Paprosky classification) within one year from surgery. Results. 86 patients underwent HHA by DAA and 80 patients by DLA. The two groups are qualitatively comparable. No statistically significate differences were showed in all variables analyzed (p>0.05). The average of surgical time of DAA were 61 minutes compared to 67 of DLA. No differences were showed in the post-operative CFI (DAA 0.71 ± 6.1; DLA 0.76 ± 13.5), the extent of the HO (DAA 79.07% low; DLA 75% low) and metadiaphiseal bone loss (DAA Grade I 91.86%; DLA Grade I 93.75%). Regarding perioperative complications, we have discovered only one periprosthetic fracture each group. Although there was no statistically significant difference, we highlighted a higher number of dislocations in the group of DLA (2 episodes vs no one). Conclusions. In this study we have shown that the DAA is an adequate surgical choice comparing with the classical DLA for FNFs treated with HHA. The analysis of our radiographic parameters and perioperative complications have not shown a significant difference between the two surgical approach. This study is limited by a purely radiographic analysis without addition of clinical parameters


Bone & Joint Research
Vol. 6, Issue 8 | Pages 522 - 529
1 Aug 2017
Ali AM Newman SDS Hooper PA Davies CM Cobb JP

Objectives. Unicompartmental knee arthroplasty (UKA) is a demanding procedure, with tibial component subsidence or pain from high tibial strain being potential causes of revision. The optimal position in terms of load transfer has not been documented for lateral UKA. Our aim was to determine the effect of tibial component position on proximal tibial strain. Methods. A total of 16 composite tibias were implanted with an Oxford Domed Lateral Partial Knee implant using cutting guides to define tibial slope and resection depth. Four implant positions were assessed: standard (5° posterior slope); 10° posterior slope; 5° reverse tibial slope; and 4 mm increased tibial resection. Using an electrodynamic axial-torsional materials testing machine (Instron 5565), a compressive load of 1.5 kN was applied at 60 N/s on a meniscal bearing via a matching femoral component. Tibial strain beneath the implant was measured using a calibrated Digital Image Correlation system. Results. A 5° increase in tibial component posterior slope resulted in a 53% increase in mean major principal strain in the posterior tibial zone adjacent to the implant (p = 0.003). The highest strains for all implant positions were recorded in the anterior cortex 2 cm to 3 cm distal to the implant. Posteriorly, strain tended to decrease with increasing distance from the implant. Lateral cortical strain showed no significant relationship with implant position. Conclusion. Relatively small changes in implant position and orientation may significantly affect tibial cortical strain. Avoidance of excessive posterior tibial slope may be advisable during lateral UKA. Cite this article: A. M. Ali, S. D. S. Newman, P. A. Hooper, C. M. Davies, J. P. Cobb. The effect of implant position on bone strain following lateral unicompartmental knee arthroplasty: A Biomechanical Model Using Digital Image Correlation. Bone Joint Res 2017;6:522–529. DOI: 10.1302/2046-3758.68.BJR-2017-0067.R1


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 67 - 67
1 Apr 2017
Ezzat A Iobst C
Full Access

Background. Plate fixation is one of several options available to surgeons for the management of pediatric femur fractures. Recent literature reports distal femoral valgus can be a complication following lateral plate fixation of femur fractures. We report on a case of extreme distal femoral valgus deformity and a lateral dislocation of the patella four years after having plate fixation of a left distal femoral fracture. Method. A single case was anonymised and retrospectively reviewed through examination of clinical and radiographic data. Results. A 15 year old male presented with 35 degree femoral valgus deformity, one inch leg length discrepancy, painful retained hardware and a lateral dislocation of the patella four years after undergoing lateral plate fixation of a left distal femur fracture. The fracture site healed after plate insertion, but later the patient reported worsening in alignment of lower extremity and complained of pain in the limb. Antero-posterior and lateral radiographs of the femur revealed 35 degrees of left distal femoral valgus. The previous femoral plate migrated proximally and was encased in bone. Due to plate migration, screws that were originally in the distal femoral metaphysis were protruding through the femoral shaft into soft tissues of the medial thigh. Successful treatment involved removal of prominent distal screws and use of a Taylor Spatial external fixator frame to correct the deformity. Lateral soft tissue release was performed to allow patellar relocation. At 12 weeks follow up leg alignment was restored, pain resolved and the patient was mobilising. Conclusion. Femoral valgus is a possible complication of lateral plate fixation in up to 30% of pediatric distal femur fractures. With this patient's combination of deformities as an example, we suggest early hardware removal after fracture union, preventing deformities developing. If plate removal is not chosen, then continued close monitoring of the patient is necessary until skeletal maturity. Level of Evidence. Type 4 (case report)


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 15 - 15
1 Jan 2019
Rochelle D Herbert A Ktistakis I Redmond AC Chapman G Brockett CL
Full Access

Whilst lateral ankle sprain is often considered a benign injury it represents between 3–5% of all A&E visits in the UK. The mechanical characteristics of ankle ligaments under sprain-like conditions are scarcely reported. The lateral collateral ankle ligaments were dissected from n=6 human cadaveric specimens to produce individual bone-ligament-bone specimens. An Instron Electropuls E10000 was used to uni-axially load the ankle ligaments in tension. The ligaments were first preconditioned between 2 N and a load value corresponding to 3.5% strain for 15 cycles and then strained to failure at a rate of 100%/s. The mean ultimate failure loads and their standard deviations for the anterior talofibular (ATFL), calcaneofibular (CFL) and posterior talofibular (PTFL) ligaments are 351.4±105.6 N, 367.8±76.1 N and 263.6±156.6 N, respectively. Whilst the standard deviation values are high they align with those previously reported for ankle ligament characterisation. The large standard deviations are partly due to the inherent variability of human cadaveric tissue but could also be due to varying previous activity levels of participants or a prior unreported ankle sprain. Although the sample size is relatively small the results were stratified to identify any potential correlations of age, BMI and weight with ultimate load. A strong Pearson correlation (r=0.919) was found between BMI and ultimate load of the CFL but a larger sample size is required to confirm a link. The ligament failure modes were observed and categorised as avulsion or intra-ligamentous failure. The ATFL avulsed from the fibula in five instances and intra-ligamentous failure occurred once. The CFL avulsed from the fibula twice and failed four times through intra-ligamentous failure. Finally, the PTFL avulsed from the fibula once, avulsed from the talus once and failed through intra-ligamentous failure in four instances. The results identify the forces required to severely sprain the lateral collateral ankle ligaments and their failure modes


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 24 - 24
1 Nov 2021
Gueorguiev B Zderic I Pastor T Gehweiler D Richards G Knobe M
Full Access

Introduction and Objective. Plating of geriatric distal femoral fractures with Locking Compression Plate Distal Femur (LCP–DF) often requires augmentation with a supplemental medial plate to achieve sufficient stability allowing early mobilization. However, medial vital structures may be impaired by supplemental medial plating using a straight plate. Therefore, a helically shaped medial plate may be used to avoid damage of these structures. Aim of the current study was to investigate the biomechanical competence of augmented LCP–DF plating using a supplemental straight versus helically shaped medial plate. Materials and Methods. Ten pairs of human cadaveric femora with poor bone quality were assigned pairwise for instrumentation using a lateral anatomical 15-hole LCP–DF combined with a medial 14-hole LCP, the latter being either straight or manually pre-contoured to a 90-degree helical shape. An unstable distal femoral fracture AO/OTA 33–A3 was simulated by means of osteotomies. All specimens were biomechanically tested under non-destructive quasi-static and destructive progressively increasing combined cyclic axial and torsional loading in internal rotation, with monitoring by means of optical motion tracking. Results. Initial axial stiffness and torsional stiffness in internal and external rotation for straight double plating (548.1 ± 134.2 N/mm, 2.69 ± 0.52 Nm/° and 2.69 ± 0.50 Nm/°) was significantly higher versus helical double plating (442.9 ± 133.7 N/mm, 2.07 ± 0.32 Nm/° and 2.16 ± 0.22 Nm/°), p≤0.04. Initial interfragmentary axial displacement and flexural rotation under 500 N static loading were significantly smaller for straight plating (0.11 ± 0.14 mm and 0.21 ± 0.10°) versus helical plating (0.31 ± 0.14 mm and 0.68 ± 0.16°), p<0.01. However, initial varus deformation under this loading remained not significantly different between the two fixation methods (straight: 0.57 ± 0.23°, helical: 0.75 ± 0.34°), p=0.08. During dynamic loading, within the course of the first 4000 cycles the movements of the distal fragment in flexion were significantly bigger for helical over straight plating (1.03 ± 0.33° versus 0.40 ± 0.20°), p<0.01. However, no significant differences were observed between the two fixation methods in terms of varus, internal rotation, axial and shear displacements at the fracture site, and number of cycles to failure. Conclusions. Augmented lateral plating of unstable distal femoral fractures with use of supplemental helically shaped medial plate was associated with more elastic bone-implant construct behavior under static and dynamic loading compared to straight double plating. Both fixation methods resulted in comparable number of cycles to failure. From a biomechanical perspective, the more elastic helical double plating may be considered as useful alternative to straight plating, potentially reducing stress risers at the distal bone-implant interface due to its ameliorated damping capacities