Advertisement for orthosearch.org.uk
Results 1 - 11 of 11
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 84 - 84
11 Apr 2023
Amirouche F Leonardo Diaz R Koh J Lin C Motisi M Mayo B Tafur J Hutchinson M
Full Access

Postoperative knee stability is critical in determining the success after reconstruction; however, only posterior and anterior stability is assessed. Therefore, this study investigates medial and lateral rotational knee laxity changes after partial and complete PCL tear and after PCL allograft reconstruction. The extending Lachman test assessed knee instability in six fresh-frozen human cadaveric knees. Tibia rotation was measured for the native knee, after partial PCLT (pPCLT), after full PCLT (fPCLT), and then after PCLR tensioned at 30° and 90°. In addition, tests were performed for the medial and lateral sides. The tibia was pulled with 130N using a digital force gauge. A compression load of 50N was applied to the joint on the universal testing machine (MTS Systems) to induce contact. Three-dimensional tibial rotation was measured using a motion capture system (Optotrak). On average, the tibia rotation increased by 33%-42% after partial PCL tear, and by 62%-75% after full PCL tear when compared to the intact case. After PCL reconstruction, the medial tibia rotation decreased by 33% and 37% compared to the fPCL tear in the case that the allograft was tensioned at 30° and 90° of flexion, respectively. Similarly, lateral tibial rotation decreased by 15% and 2% for allograft tensioned at 30° and 90° of flexion respectively, compared to the full tear. Rotational decreases were statistically significant (p<0.005) at the lateral pulling after tensioning the allograft at 90°. PCLR with the graft tensioned at 30° and 90° both reduced medial knee laxity after PCLT. These results suggest that while both tensioning angles restored medial knee stability, tensioning the Achilles graft at 30° of knee flexion was more effective in restoring lateral knee stability throughout the range of motion from full extension to 90° flexion, offering a closer biomechanical resemblance to native knee function


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 90 - 90
1 Nov 2021
Kowalski E Catelli D Lamontagne M Dervin G
Full Access

Introduction and Objective. Gait variability is the amplitude of the fluctuations in the time series with respect to the mean of kinematic (e.g., joint angles) or kinetic (e.g., joint moments) measurements. Although gait variability increases with normal ageing or pathological mechanisms, such as knee osteoarthritis (OA). The purpose was to determine if a patient who underwent a total knee arthroplasty (TKA) can reduce gait variability. Materials and Methods. Twenty-five patients awaiting TKA were randomly assigned to receive either medial pivot (MP, m=7/f=6, age=62.4±6.2 years) or posterior stabilized (PS, m=7/f=5, age=63.7±8.9 years) implants, and were compared to 13 controls (CTRL, m=7/f=6, age=63.9±4.3 years). All patients completed a gait analysis within one month prior and 12 months following surgery, CTRLs completed the protocol once. A waveform F-Test Method (WFM) was used to compare the variance in knee biomechanics variables at each interval of the gait cycle. Results. Preoperatively, the PS group had greater sagittal knee angle variability compared to the MP (32–58% gait cycle) and CTRL (21–53% gait cycle) groups. Postoperatively, no difference in sagittal knee angle variability existed between any of the groups. Preoperatively, sagittal knee moment variability was greater in the MP (2–39% gait cycle) and PS (5–19% and 42–57% gait cycle) groups compared to the CTRL. Postoperatively, sagittal knee moment was lower in the MP (49–55% gait cycle) and greater in the PS (23–36% gait cycle) compared to the CTRL. Knee power variability was greater preoperatively in the MP (52–61% gait cycle) and PS (52–62% gait cycle) compared to the CTRL. Postoperatively, knee power variability was lower in the MP (17–22% and 45–50% gait cycle) and PS (6–23%, 34–41% and 45–49% gait cycle) compared to the CTRL group. Conclusions. Preoperatively, knee OA patients have greater variability in knee moments than CTRLs during the transition from double-limb support to single-limb support on the affected limb. This indicates knee instability as patients are adopting a gait strategy that refers to knee muscle contraction avoidance. The MP group showed greater knee stability postoperatively as they had lower knee moment and power variability compared to the CTRL. The significance of having less variability than CTRLs is not well understood at this time. Future research on muscle activity is needed to determine if neuromuscular adaptations are causing these reductions in variability after TKA


Although remnant-preserved ACL reconstruction (ACLR) restores knee joint stability and dampens the problem of acute ACL rupture-induced knee pain, an increasing number of patients still develop post-traumatic osteoarthritis (PTOA) after 10 to 15 years of ACLR. We previously found that remnant-preserved ACLR with concomitant medial and lateral meniscus repair may not prevent cartilage degeneration and weaken muscle strength, while the clinical features of PTOA are not clear. We hypothesized that remnant-preserved ACLR with concomitant medial and lateral meniscus tears is related to early cartilage damage, worse function recovery, patient-reported outcomes (PROs) and delayed duration to return to sports. The aim is to evaluate the remnant-preserved ACLR with complicated meniscal injuries in predicting which patients are at higher risk of osteoarthritic changes, worse function and limited activities after ACLR for 12 months. Human ethical issue was approved by a committee from Xi'an Jiaotong University. 26 young and active patients (24 male, 2 female) with ACL injuries (Sherman type I and II) with concomitant medial and lateral meniscus within 2 months were included from January 2014 to March 2022. The average age of the ACLR+ meniscus repair was 26.77±1.52 (8 right, 5 left) and isolated ACLR control was 31.92±2.61 years old (7 left, 6 right). Remnant-preserved ACLR with a 5- to 6-strand hamstring tendon graft was operated on by the same sports medicine specialists. MRI CUBE-T. 2. scanning with 48 channels was conducted by a professional radiologist. The volume of the ACL graft was created through 3 dimensional MRI model (Mimics 19, Ann Arbor). Anterior Cruciate Ligament OsteoArthritis Score (ACLOAS) was applied to score visible cartilage damage. IKDC 2000 score and VAS were assessed by two blinded researchers. Results were presented as mean± SEM of each group. The cross-sectional area and 3D volume of the ACL graft were greater in the remnant-preserved ACLR+meniscus group compared with isolated ACLR (p=0.01). It showed that ACLR+ meniscus group had early signs of joint damage and delayed meniscus healing regarding ACLOAS compared to control group (p=0.045). MRI CUBE-T. 2. prediction of radiographic cartilage degeneration was not obvious in both groups post remnant-preserved ACLR over 12 months (p>0.05). However, higher VAS scores, lower IKDC scores, and long-last joint swelling were reported in the ACLR+ meniscus repair group at the end of 12 months follow-up. Although remnant-preserved ACLR+ meniscus was able to maintain the restore the knee function, it showed delayed timing (>12 months) to return to play at the pre-injury stage, while no difference between the timing of returning to the normal daily routine of their ACLR knee compared to control (p=0.30). The cost of ACLR+ meniscus (average 10,520.76$) was higher than the control group (6,452.92$, p=0.018). Remnants-preserved ACLR with concomitant injured medial and lateral meniscus repair shows a higher risk of cartilage damage, greater cost, worse functional performance, and longer time for young male patients to return to sports after 12-month follow-up compared to isolated ACLR. Further evidence and long-term follow-up are needed to better understand the association between these results and the risk of development of PTOA in this patient cohort


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 116 - 116
1 Mar 2021
van Groningen B van der Steen MC Janssen DM van Rhijn LW van der Linden T Janssen RPA
Full Access

The purpose of this investigation was to evaluate systematically the literature concerning biopsy, MRI signal to noise quotient (SNQ) and clinical outcomes in graft-maturity assessment after autograft anterior cruciate ligament reconstruction (ACLR) and their possible relationships. Methods: The systematic review was reported and conducted according to the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) guidelines. Studies through May 2019 evaluating methods of intra-articular ACL autograft maturity assessment were considered for inclusion. Eligible methods were histologic studies of biopsy specimens and conventional MRI studies reporting serial SNQ and/ or correlation with clinical parameters. Ten biopsy studies and 13 imaging studies, with a total of 706 patients, met the inclusion criteria. Biopsy studies show that graft remodeling undergoes an early healing phase, a phase of remodeling or proliferation and a ligamentization phase as an ongoing process even 1 year after surgery. Imaging studies showed an initial increase in SNQ, peaking at approximately 6 months, followed by a gradual decrease over time. There is no evident correlation between graft SNQ and knee stability outcome scores at the short- and long-term follow-up after ACLR. The remodeling of the graft is an ongoing process even 1 year after ACLR, based on human biopsy studies. MRI SNQ peaked at approximately 6 months, followed by a gradual decrease over time. Heterogeneity of the MRI methods and technical restrictions used in the current literature limit prediction of graft maturity and clinical and functional outcome measures by means of MRI graft SNQ after ACLR


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 72 - 72
1 Dec 2020
PEHLIVANOGLU T BEYZADEOGLU T
Full Access

Introduction. Simultaneous correction of knee varus malalignment with medial open wedge high tibial osteotomy (MOWHTO) combined with anterior cruciate ligament (ACL) surgery aims to address symptomatic unicompartmental osteoarthritis in addition to restore knee stability in order to improve outcomes. The aim of this study is to present at least 5 years results of 32 patients who underwent simultaneous knee realignment osteotomy with ACL surgery. Methods. Patients with symptomatic instability due to chronic ACL deficiency or failed previous ACL surgery together with a varus malalignment of ≥6°, previous medial meniscectomy and symptomatic medial compartment pain who were treated with MOWHTO combined with ACL surgery were enrolled. ACL surgery was performed with the anatomical single bundle all-inside technique using TightRope. ®. RT (Arthrex, Naples, FL, USA) and MOWHTO using TomoFix. ®. medial high tibia plate (DePuy Synthes, Raynham, MA, USA) in all cases. Patients were evaluated preoperatively and at 6 months, 12 months and annually postoperatively using the Knee Injury and Osteoarthritis Outcome Score (KOOS), Oxford Knee Score (OKS) and Euroqol's Visual Analogue Score (VAS) for pain. Results. 32 patients (22 men and 10 women) with a mean age of 41.2 years and mean BMI of 28.6 kg/m. 2. , underwent the combined procedures. Tibiofemoral neutral re-alignment was achieved in all patients with HTO. Complete subjective and objective scores have been obtained in 84.4% of patients with at least 5 years of follow-up (mean 8.7 years). An improvement in total KOOS of 27.1 points (p<0.003), OKS of 15.1 (p<0.003) and VAS for pain of 24.7 points (p<0.001) were detected. No ACL reconstruction failure was noted. Complications consisted of one superficial wound infection and one delayed union. Plate removal was needed in 20 (62.5%) patients due to pes anserinus pain. Conclusions. Simultaneous restoration of coronal knee axis by applying HTO and stability by ACL reconstruction/revision were reported to offer excellent improvement in early outcomes in patients with ACL rupture and symptomatic unicompartmental osteoarthritis. The combined procedure requires careful pre-operative planning and is therefore technically challenging. However, by restoring the neutral axis and providing stability, it represents a good joint preserving alternative to arthroplasty for active middle-aged patients


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 90 - 90
1 Jan 2017
Conconi M Sancisi N Parenti-Castelli V
Full Access

The evaluation of knee stability is fundamental for the clinical discrimination between healthy and pathological joints, for the design and evaluation of prostheses and for the definition of articular models. Knee stability can be quantified by measuring the relation between applied single-axis constant loads and corresponding tibio-femoral displacements (i.e., translations and rotations), namely the joint stiffness, at a given flexion angle. No many studies are available in the literature on this topic [1–3]. In particular, the translations/rotations along/about directions different from the loaded one were not deeply investigated. A fresh frozen lower-limb specimen (female, 63 years old, weight 68 Kg, height 158 cm) was considered. The forefoot and all soft tissues outside the knee were removed by a surgeon, keeping the knee joint capsule intact. A stereophotogrammetric system (Vicon Motion Systems Ltd.) was used to measure the femoro-tibial relative motion by two trackers fixed to the bones, thus introducing no soft-tissue artifact. The specimen was then mounted on a test rig capable to exert general loading conditions [4], and constant loads were applied to the tibia: ±100 N in antero-posterior (AP) and medio-lateral (ML) direction; ±10 Nm about abb-adduction (AA) and in-external (IE) rotations. Loads were applied approximately at the mid-point between the lateral and medial epicondyles, and were kept constant while the femur was flexed over a 135° range. Displacements were defined with respect to the joint natural motion (RTNM), also registered with the same rig. The relative motion of the bones was expressed by a standard joint coordinate system [5]. Considerable translations/rotations appeared also on different directions than the loaded one. At 90° of flexion, an anterior load of +100 N produced 5.5 mm of anterior translation, 10.9 mm of medial translation and 12° of external rotation of the tibia (RTNM). When not directly loaded in ML and IE directions, the tibia translated medially and rotated externally, independently from the sign of the applied load: at 90° of flexion, an AA torque of +10 Nm and −10 Nm produced respectively 5 mm and 8.9 mm of medial translation, and 5.5° and 7.5° of external rotation of the tibia (RTNM). The load/displacement relation was highly non linear also for the loading direction. At 90° of flexion, IE torques of +10 Nm and −10 Nm produced respectively 3.6° of internal and 14.2° of external rotation of the tibia (RTNM). The knee joint structures make the relation between applied loads and bone displacements highly non linear. As a result, a load acting on one direction produces a complex three-dimensional joint motion. Future work will extend the presented analysis on several specimens, also increasing the magnitude and the number of loading conditions


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_30 | Pages 44 - 44
1 Aug 2013
McGraw I Dearing J
Full Access

Injuries of the posterolateral corner (PLC) of the knee are uncommon, but can lead to chronic disability from persistent instability and resultant articular cartilage degeneration if not appropriately treated. Although numerous reconstructive techniques have been described in the literature, there is no consensus on a single surgical approach due to a lack of consistent, long-term clinical outcomes. Nonanatomic reconstructions, in particular, have produced variable results, while anatomic reconstructions offer the most promise by restoring normal knee stability and kinematics and are now favoured by most. We describe the novel use of the BICEPTOR™ Tenodesis screw (Smith & Nephew) as an effective and technically straight forward means of performing a PLC reconstruction. We describe the technique and present the first 10 consecutive cases from a single surgeon series. All of the patients had a positive dial test pre-operatively with increased external rotation of 10 degrees or more at 30 degrees of knee flexion indicating clinical PLC injury. They all had the PLC reconstructed at the same time as an arthroscopic ACL reconstruction. Mean time from injury to surgery was 4 months (range 2–12). Patients were seen in clinic at maximum follow-up (11.1 months mean, range 6–24 months) and assessed clinically using the dial test at 30 and 90 degrees of knee flexion. Lysholm Knee Questionnaire and Tegner Activity Scale were also performed at maximum follow-up. Mean Lysholm Score was 68 (range 32–96). Mean Tegner Score pre-operatively was 3.5 (range 3–6) and at maximum follow-up was 4.5 (range 3–7). Of particular note only one patient reported any symptoms at all of giving way at maximum follow-up. Dial test was negative on all patients. Further work is warranted but we describe this as an effective and straight forward means of performing a PLC reconstruction


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 15 - 15
1 May 2012
Button K Van Deursen R
Full Access

Following acute ACL rupture patients are routinely referred for rehabilitation but the timing and level of functional recovery related to rehabilitation outcome are poorly defined. The primary aim of this study was to measure functional recovery following acute ACL rupture in the clinical setting using a two dimensional movement analysis system. A longitudinal research design was used; we aimed for three clinical movement analysis sessions over the course of rehabilitation. One hundred and fifteen patients were recruited. Sixty three uninjured matched controls were recorded once performing all the functional activities; walking, jogging, distance hop and run and stop. Participants were filmed in the sagittal plane using a digital camcorder to extract kinematic data. Average recovery over time was modelled using a least squares third order polynomial. The secondary aim was to define the outcome measures and treatment goals used in ACL rehabilitation by specialist knee physiotherapists. A questionnaire was distributed to 300 hospitals across the UK. From the 44 responses insight was obtained about parameters physiotherapists use to plan treatment and evaluate recovery. Repeated movement analysis showed that gait velocity took on average 85 days to recover to within the normal limits of uninjured controls. Jogging velocity took 30 days; Hop distance took 55 days for the non-injured leg and 100 days for the injured leg; Knee range during the landing phase of run and stop took 80 days to recover but demonstrated some deterioration. The questionnaire identified that specialist knee physiotherapists use 60 different outcome measures and 34 rehabilitation treatment goals, which can be sub-divided into patient reported (PR), functional activities (A) and impairments (I). The percentage usage by physiotherapists for each category of outcome measure were 55.8% (A), 62.8% (I) to 67.4% (PR) and for treatment goals 55.8% (PR), 69.8% (A) to 81.4% (I). Hopping is the most frequently evaluated functional activity but there are large differences in its utilisation. The application of functional goals and outcome measures in rehabilitation is not universal with specialist physiotherapists generally adopting an impairment approach. Repeated movement analysis in the clinical setting provided objective data on the recovery of functional activities that progressively challenge knee stability. Gait and hop distance appear to be the most useful variables for tracking performance over time but their predictive value needs to be explored further. Adaptations in the non-injured leg indicate that its use as a control needs to be done with caution. For jogging and run and stop there appears to be a threshold after which patients can perform these activities rather than a gradual recovery. Clinical movement analysis could be used to provide objective feedback on recovery levels and help guide the rehabilitation process. However, currently functional goals and milestones are not always included in the planning and evaluation of rehabilitation. Developing better rehabilitation should involve greater integration of functional activity measures into practice. This would require a shift from an impairment rehabilitation approach to focus on functional goals


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 94 - 94
1 Jul 2014
Gauthier P Benoit D
Full Access

Summary. This study describes the use of a quasi-static, 6DOF knee loading simulator using cadaveric specimens. Muscle force profiles yield repeatable results. Intra-articular pressure and contact area are dependent on loading condition and ACL integrity. Introduction. Abnormal contact mechanics of the tibiofemoral joint is believed to influence the development and progression of joint derangements. As such, understanding the factors that regulate joint stability may provide insight into the underlying injury mechanisms. Muscle action is believed to be the most important factor since it is the only dynamic regulator of joint stability. Furthermore, abnormal muscle control has been experimentally linked to the development of OA [Herzog, 2007] and in vivo ACL strain [Fleming, 2001]. However, the individual contributions to knee joint contact mechanics remain unclear. Thus, the purpose of this study was to examine the effects of individual muscle contributions on the tibiofemoral contact mechanics using an in-vitro experimental protocol. Methodology. Contact mechanics of 6 fresh frozen cadaver knee specimens were evaluated using the UofO Oxford knee loading device. Various combinations of quadriceps-hamstring co-contraction ratios were applied to the knee while it was “suspended” between the hip and foot components of the device. Loads of six muscle groups were computed using a hill-type musculoskeletal model [Buchanan, 2004]. Simulated ground reaction forces were also applied to the knee to represent force profiles of weight acceptance during gait as it has been shown to produce peak knee joint force in the gait cycle [Shelburne et al., 2006]. For respective medial and lateral joint compartments, the mean contact area (MC-CA and LC-CA), mean contact pressure (MC-CP and LC-CP), peak pressure (MC-PP and LC-PP), and centre of force displacement (MC-COFD and LC-COFD) were determined using a 4011 piezoelectric sensor form Tekscan (Tekscan Inc. Boston, MA). Additionally, the ACL was resected and measurements were repeated. Pearson correlations (r) examined the reliability of measurements as well as the effect an ACL transection on articular loads. Results. Positive correlations were computed for the following: COFD with intact ACL (r=0.99), COFD with resected ACL (r=0.82), MC-COFD pre vs. post ACL- resection (0.91). Furthermore, preliminary results indicated a positive correlation between MC-CA and ACL integrity (r=0.97). Discussion. The repeatability of the measured dependant variables validates the use of the knee-loading device. Interestingly, contact mechanics are more variable post ACL resection for a given muscle loading condition, indicating a decrease in knee joint stability. Also, the COFD is dependent on the different ratios of muscle loads applied to the knee, which demonstrates the importance of muscle action to the modulation of contact forces


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 166 - 166
1 Jul 2014
Flaxman T Smith A Benoit D
Full Access

Summary Statement. Using a weight-bearing force control task, age-related changes in muscle action were observed in osteoarthritic subjects, however, greater activation of rectus femoris and medial hamstring muscles in the OA group compared to control indicates greater cocontraction and varied stabilisation strategies. Introduction. Osteoarthritis (OA) is the most debilitating condition among older adults. OA is thought to be mechanically driven by altering the stabilising integrity of the joint. The main contributor to knee joint stability is that of muscular contraction. In cases where the history of a traumatic knee joint injury is not a causal factor, a change in muscle function, resulting in reduced strength and force control in believed to induce OA development and progression. Since age is also a determining factor of OA, the purpose of this study was to investigate the muscle activation patterns of young healthy adults (YC), older healthy adults (OC), and adults with OA during a standing isometric force control task. Patients & Methods. A force matching protocol was used to evaluate muscle activation patterns of 41 YC (23.1±1.9 years of age) 18 OC (59.7±5.14 years), and 19 OA (63.5±8.1 years). Subjects stood with their leg of interest fixed to a force platform and modulated ground reaction forces while exposing equal body weight to each leg. Surface electromyography (EMG) of 8 muscles that cross the knee joint, kinetics and kinematics were recorded while subjects generated 30% of their maximal force in 12 different directions, corresponding to various combinations of medial-lateral-anterior-posterior ground reaction forces. Processed EMG was normalised to previously recorded maximum voluntary isometric contraction (MVIC) and ensemble averaged into group means for each loading direction. Muscle activation patterns were displayed in EMG polar plots and were quantified with symmetry analyses, mean activation levels (X. EMG. ), directions (Φ), and specificity indices (SI). Group differences were tested with independent T-tests at the p<0.05 level. Results. Muscle activation patterns were similar between groups (i.e. symmetry and Φ). However, X. EMG. of 7 muscles was significantly greater in both the OA and OC groups compared to YC. OA group also demonstrated significantly greater X. EMG. in the rectus femoris and tensor fascia lata as well as lower SI in semitendinosus hamstrings compared to OC. Discussion/Conclusion. Our results indicate that regardless of loading direction, both OC and OA groups have greater levels of muscle co-contraction than YC. This is suggested to be an adaptive response to age-related changes in muscle strength and force control. Since individuals with OA have reduced muscle strength and force control compared to age-matched controls, our results suggest that the OA group's greater, less specific activation of knee joint muscles relative to the OC is this “stiffening” response adapted by the OA group, however, to an extent that may expose the joint to detrimental loading conditions, contributing to the progression of OA. Further investigation regarding age-related neuromuscular changes and their influence on joint loading conditions and development of OA is warranted


Objectives

Preservation of both anterior and posterior cruciate ligaments in total knee arthroplasty (TKA) can lead to near-normal post-operative joint mechanics and improved knee function. We hypothesised that a patient-specific bicruciate-retaining prosthesis preserves near-normal kinematics better than standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining prostheses in TKA.

Methods

We developed the validated models to evaluate the post-operative kinematics in patient-specific bicruciate-retaining, standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under gait and deep knee bend loading conditions using numerical simulation.