Advertisement for orthosearch.org.uk
Results 1 - 20 of 22
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 559 - 559
1 Dec 2013
Thienpont E
Full Access

Background

Finding the anatomical landmarks used for correct femoral rotational alignment can be difficult. The Posterior Condylar Line (PCL) is probably the easiest to find during surgery. The aim of this study was to analyze if a predetermined fixed angle referencing of the PCL could help obtain good femoral alignment in TKA patients.

Methods

2637 CT scans used for preoperative planning and creation of patient-specific instrumentation (PSI) were used to analyze the Posterior Condylar Angle (PCA) between the Surgical Epicondylar Axis (SEA) and the PCL.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 16 - 16
1 Feb 2020
Dagneaux L Karl G Michel E Canovas F Rivière C
Full Access

Introduction. The constitutional knee anatomy in the coronal plane includes the distal femoral joint line obliquity (DFJLO) which in most patients is in slight valgus positioning. Despite this native anatomy, the mechanical positioning of the femoral component during primary total knee arthroplasty (TKA) often ignores the native DFJLO opting to place the femur in a set degree of valgus that varies upon the practitioner's practice and experience. Unfortunately, this technique is likely to generate high rate of distal lateral femoral overstuffing. This anatomical mismatch might be a cause of anterior knee pain and therefore partly explain the adverse functional outcomes of mechanically aligned (MA) TKA. Our study aims at assessing the relationship between constitutional knee anatomy and clinical outcomes of MA TKA. We hypothesized that a negative relationship would be found between the constitutional frontal knee deformity, the distal femoral joint line obliquity, and functional outcomes of MA TKA with a special emphasize on patellofemoral (PF) specific outcomes. Methods. One hundred and thirteen patients underwent MA TKA (posterior-stabilized design) for primary end-stage knee osteoarthritis. They were prospectively followed for one year using the New KSS 2011 and HSS Patella score. Residual anterior knee pain was also assessed. Knee phenotypes using anatomical parameters (such as HKA, HKS, DFJLO and LDFA (Lateral distal femoral angle)) were measured from preoperative and postoperative lower-limb EOS® images (Biospace, Paris, France). We assessed the relationship between the knee anatomical parameters and the functional outcome scores at 1 year postoperatively. Results. We investigated four groups according to the preoperative obliquity of the distal femur and HKA. The group with high DFJLO and varus knee deformity demonstrated lower HSS scores (drop>10%, p=0.03) and higher rate of anterior knee pain (p=0.03). Higher postoperative variation of LDFA was associated with lower HSS scores (r = −0.2367, p=0.03) and with higher preoperative DFJLO (p=0.0001) due to the MA technique. Knee phenotypes with LDFA<87° presented higher risk of variation of LDFA. No correlation was found using New KSS 2011 outcomes at one-year follow-up. Discussion/Conclusion. Disregard of the constitutional knee anatomy (LDFA and DFJLO) when performing a MA TKA may generate a non-physiologic knee kinematics that impact patellofemoral outcomes and resulting in residual anterior knee pain. While these results are restricted to modern posterior-stabilized TKA design, recent in silico and in vitro studies supported the negative effect of the lateral overstuffing of the femoral component in the coronal plane during knee flexion. This study provides further evidence that suggest patient-specific anatomical considerations are needed to optimize component position and subsequent outcomes following primary TKA. Additional studies are needed to integrate the rotational status of the femoral component in this analysis. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 9 - 9
1 Jul 2020
Vendittoli P Blakeney W Kiss M Riviere C Puliero B Beaulieu Y
Full Access

Mechanical alignment (MA) techniques for total knee arthroplasty (TKA) may introduce significant anatomic modifications, as it is known that few patients have neutral femoral, tibial or overall lower limb mechanical axes. A total of 1000 knee CT-Scans were analyzed from a database of patients undergoing TKA. MA tibial and femoral bone resections were simulated. Femoral rotation was aligned with either the trans-epicondylar axis (TEA) or with 3° of external rotation to the posterior condyles (PC). Medial-lateral (DML) and flexion-extension (DFE) gap differences were calculated. Extension space ML imbalances (3mm) occurred in 25% of varus and 54% of valgus knees and significant imbalances (5mm) were present in up to 8% of varus and 19% of valgus knees. For the flexion space DML, higher imbalance rates were created by the TEA technique (p < 0 .001). In valgus knees, TEA resulted in a DML in flexion of 5 mm in 42%, compared to 7% for PC. In varus knees both techniques performed better. When all the differences between DML and DFE are considered together, using TEA there were 18% of valgus knees and 49% of varus knees with < 3 mm imbalances throughout, and using PC 32% of valgus knees and 64% of varus knees. Significant anatomic modifications with related ML or FE gap imbalances are created using MA for TKA. Using MA techniques, PC creates less imbalances than TEA. Some of these imbalances may not be correctable by the surgeon and may explain post-operative TKA instability. Current imaging technology could predict preoperatively these intrinsic imitations of MA. Other alignment techniques that better reproduce knee anatomies should be explored


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 10 - 10
1 Feb 2020
Vendittoli P Blakeney W Puliero B Beaulieu Y Kiss M
Full Access

INTRODUCTION. Mechanical alignment in TKA introduces significant anatomic modifications for many individuals, which may result in unequal medial-lateral or flexion-extension bone resections. The objective of this study was to calculate bone resection thicknesses and resulting gap sizes, simulating a measured resection mechanical alignment technique for TKA. METHODS. Measured resection mechanical alignment bone resections were simulated on 1000 consecutive lower limb CT-Scans from patients undergoing TKA. Bone resections were simulated to reproduce the following measured resection mechanical alignment surgical technique. The distal femoral and proximal tibial cuts were perpendicular to the mechanical axis, setting the resection depth at 8mm from the most distal femoral condyle and from the most proximal tibial plateau (Figure 1). If the resection of the contralateral side was <0mm, the resection level was increased such that the minimum resection was 0mm. An 8mm resection thickness was based on an implant size of 10mm (bone +2mm of cartilage). Femoral rotation was aligned with either the trans-epicondylar axis or with 3 degrees of external rotation to the posterior condyles. After simulation of the bone cuts, media-lateral gap difference and flexion-extension gaps difference were calculated. The gap sizes were calculated as the sum of the femoral and tibial bone resections, with a target bone resection of 16mm (+ cartilage corresponding to the implant thickness). RESULTS. For both the varus and valgus knees, the created gaps in the medial and lateral compartments were reduced in the vast majority of cases (<16mm). The insufficient lateral condyle resection distalises the lateral joint surface by a mean of 2.1mm for the varus and 4.4mm for the valgus knees. The insufficient medial tibial plateau resection proximalises the medial joint surface by 3.3mm for the varus and 1.2mm for the valgus knees. Medio-lateral gap imbalances in the extension space of more than 2mm) occurred in 25% of varus and 54% of valgus knees and significant imbalances of more than 5mm were present in up to 8% of varus and 19% of valgus knees. Higher medio-lateral gap imbalances in the flexion space were created with trans epicondylar axis versus 3 degrees to the posterior condyles (p<0.001). Using trans epicondylar axis, only 49% of varus and 18% of valgus knees had less than 3mm of imbalance in both media-lateral and flexion-extension gaps together. DISCUSSION AND CONCLUSION. A systematic use of the tested measured resection mechanical alignment technique for TKA leads to many cases with medio-lateral or flexion-extension gap asymmetries. Some medio-lateral imbalances may not be correctable surgically and may results in TKA instability. Other versions of the mechanical alignment technique or other alignment methods that better reproduce knee anatomies should be explored. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 67 - 67
1 Apr 2019
DesJardins J Lucas E Chillag K Voss F
Full Access

Background. Clinical and anatomical complications from total knee replacement (TKR) procedures are debilitating, and include weakness, damage, and the loss of native anatomy. As the annual number of primary TKR surgeries in the United States has continued to rise, to a projected 3.48 million in 2030, there has been a concomitant rise in revision surgery. Damage to or loss of native knee anatomy as a result of TKR revision can leave the patient with irreversible knee dysfunction, which is a contra-indication for most TKR systems on the market. This leaves the multi-revision patient with limited medical options. Complete fusion of the joint, known as arthrodesis, is indicated in some cases. Arthrodesis is also commonly indicated for traumatic injury, bone loss, quadriceps extensor mechanism damage, and osteosarcoma. While this treatment may resolve pain and allow a patient to walk, the inability to flex the knee results in considerable functional complications. Patients with arthrodesis are unable to drive, sit in close-quarter spaces, or engage in a significant number of activities of daily living. Product Statement. The authors have developed and patented the Engage Knee System, a novel TKR system that allows a patient to lock and unlock the knee joint by means of a handheld, non-invasive device. An internal locking mechanism is constructed of materials that have been used in orthopedic joint replacements that have been approved through the FDA 510(k) process. A lightweight, handheld magnetic device is used to actuate the locking mechanism. No percutaneous components are required or present. This device allows a patient to lock their knee joint in full extension to ambulate with the functional equivalence of an arthrodesis, but allows a patient to unlock the device and bend the knee to engage in passive activities that would be otherwise difficult or impossible. The IP portfolio for this technology is owned by Clemson University, and they are seeking a partner/licensee to pursue further technology development and validation. Methods. A literature review of knee arthrodesis incidence and prevalence has been published by the inventors. Three- dimensional gait analysis was used to characterize rigid-knee gait kinematics and kinetics to verify potential implant design loads. Multiple physical prototypes of the design were created and implanted in Sawbones synthetic knee models, and a final prototype using industry-standard arthroplasty materials was contract-manufactured. Results. The Engage system is capable of locking and unlocking in full extension with the use of a non-invasive hand-held device. The device will support the loading patterns and magnitudes during stiff knee gait, as estimated through gait analysis and musculoskeletal modeling, when it is locked in full extension. Conclusion. The Engage Knee System bridges the gulf between existing treatments, and addresses not only patients who would otherwise undergo arthrodesis, but also patients who have avoided treatment or who currently undergo high-risk revision procedures. The device is also a viable option for arthrodesis takedown, providing patients who have already undergone arthrodesis a means of regaining knee flexion


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 33 - 33
1 May 2019
Rodriguez J
Full Access

Knee replacement is a proven and reproducible procedure to alleviate pain, re-establish alignment and restore function. However, the quality and completeness to which these goals are achieved is variable. The idea of restoring function by reproducing condylar anatomy and asymmetry has been gaining favor. As knee replacements have evolved, surgeons have created a set of principles for reconstruction, such as using the femoral transepicondylar axis (TEA) in order to place the joint line of the symmetric femoral component parallel to the TEA, and this has been shown to improve kinematics. However, this bony landmark is really a single plane surrogate for independent 3-dimensional medial and lateral femoral condylar geometry, and a difference has been shown to exist between the natural flexion-extension arc and the TEA. The TEA works well as a surrogate, but the idea of potentially replicating normal motion by reproducing the actual condylar geometry and its involved, individual asymmetry has great appeal. Great variability in knee anatomy can be found among various populations, sizes, and genders. Each implant company creates their specific condylar geometry, or “so called” J curves, based on a set of averages measured in a given population. These condylar geometries have traditionally been symmetric, with the individualised spatial placement of the (symmetric) curves achieved through femoral component sizing, angulation, and rotation performed at the time of surgery. There is an inherent compromise in trying to achieve accurate, individual medial and lateral condylar geometry reproduction, while also replicating size and avoiding component overhang with a set implant geometry and limited implant sizes. Even with patient-specific instrumentation using standard over-the-counter implants, the surgeon must input his/her desired endpoints for bone resection, femoral rotation, and sizing as guidelines for compromise. When all is done, and soft tissue imbalance exists, soft tissue release is the final, common compromise. The custom, individually made knee design goals include reproducible mechanical alignment, patient-specific fit and positioning, restoration of articular condylar geometry, and thereby, more normal kinematics. A CT scan allows capture of three-dimensional anatomical bony details of the knee. The individual J curves are first noted and corrected for deformity, after which they are anatomically reproduced using a Computer-Aided Design (CAD) file of the bones in order to maximally cover the bony surfaces and concomitantly avoid implant overhang. No options for modifications are offered to the surgeon, as the goal is anatomic restoration. Given these ideals, to what extent are patients improved? The concept of reproducing bony anatomy is based on the pretext that form will dictate function, such that normal-leaning anatomy will tend towards normal-leaning kinematics. Therefore, we seek to evaluate knee function based on objective assessments of movement or kinematics. In summary, the use of custom knee technology to more closely reproduce an individual patient's anatomy holds great promise in improving the quality and reproducibility of postoperative function. Compromises of fit and rotation are minimised, and implant overhang is potentially eliminated as a source of pain. Early results have shown objective improvements in clinical outcomes. Admittedly, this technology is limited to those patients with mild to moderate deformity at this time, since options like constraint and stems are not available. Yet these are the patients who can most clearly benefit from a higher functional state after reconstruction. Time will reveal if this potential can become a reproducible reality


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 84 - 84
1 Jun 2018
Rodriguez J
Full Access

Knee replacement is a proven and reproducible procedure to alleviate pain, re-establish alignment and restore function. However, the quality and completeness to which these goals are achieved is variable. The idea of restoring function by reproducing condylar anatomy and asymmetry has been gaining favor. As knee replacements have evolved, surgeons have created a set of principles for reconstruction, such as using the femoral transepicondylar axis (TEA) in order to place the joint line of the symmetric femoral component parallel to the TEA, and this has been shown to improve kinematics. However, this bony landmark is really a single plane surrogate for independent 3-dimensional medial and lateral femoral condylar geometry, and a difference has been shown to exist between the natural flexion-extension arc and the transepicondylar axis. The TEA works well as a surrogate, but the idea of potentially replicating normal motion by reproducing the actual condylar geometry and its involved, individual asymmetry has great appeal. Great variability in knee anatomy can be found among various populations, sizes, and genders. Each implant company creates their specific condylar geometry, or “so called” J curves, based on a set of averages measured in a given population. These condylar geometries have traditionally been symmetric, with the individualised spatial placement of the (symmetric) curves achieved through femoral component sizing, angulation, and rotation performed at the time of surgery. There is an inherent compromise in trying to achieve accurate, individual medial and lateral condylar geometry reproduction, while also replicating size and avoiding component overhang with a set implant geometry and limited implant sizes. Even with patient-specific instrumentation using standard over-the-counter implants, the surgeon must input his/her desired endpoints for bone resection, femoral rotation, and sizing as guidelines for compromise. When all is done, and soft tissue imbalance exists, soft tissue release is the final, common compromise. The custom, individually made knee design goals include reproducible mechanical alignment, patient-specific fit and positioning, restoration of articular condylar geometry, and thereby, more normal kinematics. A CT scan allows capture of three-dimensional anatomical bony details of the knee. The individual J curves are first noted and corrected for deformity, after which they are anatomically reproduced using a Computer-Aided Design (CAD) file of the bones in order to maximally cover the bony surfaces and concomitantly avoid implant overhang. No options for modifications are offered to the surgeon, as the goal is anatomic restoration. In summary, the use of custom knee technology to more closely reproduce an individual patient's anatomy holds great promise in improving the quality and reproducibility of post-operative function. Compromises of fit and rotation are minimised, and implant overhang is potentially eliminated as a source of pain. Early results have shown objective improvements in clinical outcomes. Admittedly, this technology is limited to those patients with mild to moderate deformity at this time, since options like constraint and stems are not available. Yet these are the patients who can most clearly benefit from a higher functional state after reconstruction. Time will reveal if this potential can become a reproducible reality


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 86 - 86
1 Dec 2016
Thienpont E
Full Access

A majority of patients present with varus alignment and predominantly medial compartment disease. The secret of success in osteoarthritis (OA) treatment is patient selection and patient specific treatment. Different wear patterns have been described and that knowledge should be utilised in modern knee surgery. In case of isolated anteromedial OA, unicompartmental knee arthroplasty (UKA) should be one of the therapeutic options available to the knee surgeon. The discussion not to offer a UKA to patients is based on the fear of the surgeon not being able to identify the right patient and not being able to perform the surgery accurately. The common modes of failure for UKA, which are dislocation or overcorrection leading to disease progression, can be avoided with a fixed bearing implant. Wear can probably be avoided with newer polyethylenes and avoidance of overstuffing in flexion of the knee. Revision for unexplained pain and unknown causes should disappear once surgeons understand persistent pain after surgery much better than they do today. The choice in favor of UKA is a choice of function over survivorship, a choice for reduced comorbidity and lower mortality. Many of the common problems in TKA are not an issue in UKA. Component overhang, decreased posterior offset, changed joint line height, gap mismatch, flexion gap instability, lift off and paradoxical motion hardly exist in UKA if the replacement is performed according to resurfacing principles with respect for the native knee anatomy. New technologies like navigation, PSI and robotics will help with alignment and component positioning. Surgeon education and training should allow over time UKA to be performed by all of us


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_13 | Pages 14 - 14
1 Jun 2016
Madhusudhan T Gardner S Harvey R
Full Access

Patient specific instrumentation (PSI) for elective knee replacements in arthritic knees with severe deformities and in revision scenarios is becoming increasingly popular due to the advantage of restoring the limb axes, improved theatre efficiency and outcomes. Currently available systems use CT scan or MRI for pre-operative templating for design considerations with varied accuracy for sizing of implants. We prospectively evaluated 200 knees in 188 patients with arthritic knees with deformities requiring serial clinical assessment, radiographs and CT scans for PSI templating for TruMatch knee system (DepuySynthes, Leeds, UK). The common indications included severe arthritic deformities, previous limb fractures and in obese limbs with difficult clinical assessment. Surgical procedure was performed on standard lines with the customised cutting blocks. The ‘lead up’ time between the implant request and the operating date was 5 weeks on an average. We compared the pre op CT images and the best fit post-operative x- rays. The sizing accuracy for femur and tibia was 98.93 % and 95.75% respectively. All blocks fitted the femur and tibia. There were no bail outs, no cutting block breakage, 1 patient had residual deformity of 20 degrees, and 1 patient had late infection. The length of hospital stay, economic viability in terms of theatre turnover, less operating time, cost of sterilisation in comparison to conventional knee replacement surgery with other factors being unchanged was also assessed. The projected savings was substantial along with improved geometrical restoration of the knee anatomy. We recommend the use of PSI based on CT scan templating in difficult arthritic knees


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 35 - 35
1 Aug 2017
Rodriguez J
Full Access

Knee replacement is a proven and reproducible procedure to alleviate pain, re-establish alignment and restore function. However, the quality and completeness to which these goals are achieved is variable. The idea of restoring function by reproducing condylar anatomy and asymmetry has been gaining favor As knee replacements have evolved, surgeons have created a set of principles for reconstruction, such as using the femoral transepicondylar axis (TEA) in order to place the joint line of the symmetric femoral component parallel to the TEA, and this has been shown to improve kinematics. However, this bony landmark is really a single plane surrogate for 3-dimensional medial and lateral femoral condylar geometry, and a difference has been shown to exist between the natural flexion-extension arc and the TEA. The TEA works well as a surrogate, but the idea of potentially replicating normal motion by reproducing the actual condylar geometry and its involved, individual asymmetry has great appeal. Great variability in knee anatomy can be found among various populations, sizes, and genders. Each implant company creates their specific condylar geometry, or “so called” J curves, based on a set of averages measured in a given population. These condylar geometries have traditionally been symmetric, with the individualised spatial placement of the (symmetric) curves achieved through femoral component sizing, angulation, and rotation performed at the time of surgery. There is an inherent compromise in trying to achieve accurate, individual medial and lateral condylar geometry reproduction, while also replicating size and avoiding component overhang with a set implant geometry and limited implant sizes. Even with patient-specific instrumentation using standard over-the-counter implants, the surgeon must input his/her desired endpoints for bone resection, femoral rotation, and sizing as guidelines for compromise. When all is done, and soft tissue imbalance exists, soft tissue release is the final, common compromise. The custom, individually made knee design goals include reproducible mechanical alignment, patient-specific fit and positioning, restoration of articular condylar geometry, and thereby, more normal kinematics. A CT scan allows capture of three-dimensional anatomical bony details of the knee. The individual J curves are first noted and corrected for deformity, after which they are anatomically reproduced using a Computer-Aided Design (CAD) file of the bones in order to maximally cover the bony surfaces and concomitantly avoid implant overhang. No options for modifications are offered to the surgeon, as the goal is anatomic restoration. Given these ideals, to what extent are patients improved? The concept of reproducing bony anatomy is based on the pretext that form will dictate function, such that normal-leaning anatomy will tend towards normal-leaning kinematics. Therefore, we seek to evaluate knee function based on objective assessments of movement or kinematics. The use of custom knee technology to more closely reproduce an individual patient's anatomy holds great promise in improving the quality and reproducibility of post-operative function. Compromises of fit and rotation are minimised, and implant overhang is potentially eliminated as a source of pain. Early results have shown objective improvements in clinical outcomes. Admittedly, this technology is limited to those patients with mild to moderate deformity at this time, since options like constraint and stems are not available. Yet these are the patients who can most clearly benefit from a higher functional state after reconstruction. Time will reveal if this potential can become a reproducible reality


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 77 - 77
1 Apr 2017
Rodriguez J
Full Access

Knee replacement is a proven and reproducible procedure to alleviate pain, re-establish alignment and restore function. However, the quality and completeness to which these goals are achieved is variable. The idea of restoring function by reproducing condylar anatomy and asymmetry has been gaining favor. As knee replacements have evolved, surgeons have created a set of principles for reconstruction, such as using the femoral transepicondylar axis (TEA) in order to place the joint line of the symmetric femoral component parallel to the TEA, and this has been shown to improve kinematics. However, this bony landmark is really a single plane surrogate for 3-dimensional medial and lateral femoral condylar geometry, and a difference has been shown to exist between the natural flexion-extension arc and the TEA. The TEA works well as a surrogate, but the idea of potentially replicating normal motion by reproducing the actual condylar geometry and its involved, individual asymmetry has great appeal. Great variability in knee anatomy can be found among various populations, sizes, and genders. Each implant company creates their specific condylar geometry, or “so called” J curves, based on a set of averages measured in a given population. These condylar geometries have traditionally been symmetric, with the individualised spatial placement of the (symmetric) curves achieved through femoral component sizing, angulation, and rotation performed at the time of surgery. There is an inherent compromise in trying to achieve accurate, individual medial and lateral condylar geometry reproduction, while also replicating size and avoiding component overhang with a set implant geometry and limited implant sizes. Even with patient-specific instrumentation using standard over-the-counter implants, the surgeon must input his/her desired endpoints for bone resection, femoral rotation, and sizing as guidelines for compromise. When all is done, and soft tissue imbalance exists, soft tissue release is the final, common compromise. The custom, individually made knee design goals include reproducible mechanical alignment, patient-specific fit and positioning, restoration of articular condylar geometry, and thereby, more normal kinematics. A CT scan allows capture of three-dimensional anatomical bony details of the knee. The individual J curves are first noted and corrected for deformity, after which they are anatomically reproduced using a Computer-Aided Design (CAD) file of the bones in order to maximally cover the bony surfaces and concomitantly avoid implant overhang. No options for modifications are offered to the surgeon, as the goal is anatomic restoration. Given these ideals, to what extent are patients improved? The concept of reproducing bony anatomy is based on the pretext that form will dictate function, such that normal-leaning anatomy will tend towards normal-leaning kinematics. Therefore, we seek to evaluate knee function based on objective assessments of movement or kinematics. In summary, the use of custom knee technology to more closely reproduce an individual patient's anatomy holds great promise in improving the quality and reproducibility of post-operative function. Compromises of fit and rotation are minimised, and implant overhang is potentially eliminated as a source of pain. Early results have shown objective improvements in clinical outcomes. Admittedly, this technology is limited to those patients with mild to moderate deformity at this time, since options like constraint and stems are not available. Yet these are the patients who can most clearly benefit from a higher functional state after reconstruction. Time will reveal if this potential can become a reproducible reality


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 116 - 116
1 Feb 2017
Lee J Hyung J Jeong H
Full Access

BACKGROUNDS. Total knee arthroplasty (TKA) using an imageless navigation is widely used in these days. Despite the usefulness of navigation-assisted TKA, there are still limitations of accuracy. From previous studies, many factors have been suggested as causes of the discordance between pre-op planning and post-op results. In Addition, Registration of reliable landmark is very important factor in navigation-assisted TKA, fundamentally. Nevertheless, current method of registration process is substantially affected by subjective preference of operators. Until now, However, there is no consensus about the optimal range of reference point. Moreover, the tolerance of imageless navigation system is still questionable. We investigated the effect of variation during the manual registration in this study. We compared the measured alignment and calculated plan of navigation system which were collected from repeated independent registration processes. METHODS. From 7 March 2016 to 13 May 2016, 44 patients (49 knees) underwent navigation assisted TKA with Orthopilot® Aesculap system. The subject group were severe osteoarthritis patients, they have evaluated radiographically and clinically before the operation. we excluded candidates who have shown very severe mal-alignment (>20 °) and metaphyseal bowing in Pre-op radiographic evaluation. All patients were followed for postoperative long axis film that could measure the correction angle, and followed clinically for functional score. Authors executed multiple registration trials in a single case, each trial was implemented by different surgeons (Senior surgeon JHJ and trainee LJH1, LJH2). At first, Senior surgeon (JHJ) start the operation from initial approach. Standard sub-vastus approach was applied to all-patients. After the procedure of joint exposure, each participating surgeon did the examination of knee anatomy and registered optimal point of his own. It was repeated three times (J,L1,L2) via imageless navigation system. Then, we collected the information of measured limb alignments and calculated plans of tibia cutting from navigation system. RESULTS. 33 knees were evaluated as Gr. 4 in Kellgren-Lawrence classification. The other 16 knees were Gr. 3. In repeated registration processes, patients who were scored Gr. 3 have shown no significant differences in mechanical limb alignments, both coronal and sagittal. There were also no significant differences in Gr. 4 patients, too. Initial tibia planning has shown the largest variance between medial and lateral cutting level (0.4 ± 1.3 mm, in neutral alignment). But, no statistical significance was observed. There is a tendency that the deviation of tibia planning has diminished gradually with the progression of this study. In radiographic evaluation, all cases have satisfactory limb alignments postoperatively. CONCLUSION. Our experiment suggest that variation of landmark registration alone couldn't have a significant effect on the calculated alignment of navigation system. In this study, we concluded that tolerable range of registration process for alignment calculation is relatively wide. Additionally, we think that the cutting depth is more vulnerable than alignment calculation, and it may need further study with more cases. Measured limb alignment is almost reliable in imageless navigation. Even though operators were not so experienced for the registration process


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 91 - 91
1 Nov 2016
Almaawi A Alsheikh K Masse V Lavigne M Vendittoli P
Full Access

Modifying Knee anatomy during mechanical Total Knee Arthroplasty (TKA) may impact ligament balance, patellar tracking and quadriceps function. Although well fixed, patients may report high levels (20%) of dissatisfaction. One theory is that putting the knee in neutral mechanical alignment may be responsible for these unsatisfactory results. Kinematic TKA has gained interest in recent years; it aims to resurface the knee joint and preservation of natural femoral flexion axis about which the tibia and patella articulate, recreating the native knee without the need for soft tissue relaease. That's being said, it remains the question of whether all patients are suitable for kinematic alignment. Some patients' anatomy may be inherently biomechanically inferior and recreating native anatomy in these patients may result in early implant failure. The senior author (PAV) has been performing Kinematic TKA since 2011, and has developed an algorithm in order to better predict which patient may benefit from this technique. Lower limb CT scans from 4884 consecutive patients scheduled for TKA arthroplasty were analysed. These exams were performed for patient-specific instrumentation production (My Knee®, Medacta, Switzerland). Multiple anatomical landmarks used to create accurate CT-based preoperative planning and determine the mechanical axis of bone for the femur and tibia and overall Hip-knee-Ankle (HKA). We wanted to test the safe range for kinematic TKA for the planned distal resection of the femur and tibia. Safe range algorithm was defined as the combination of the following criteria: – Independent tibial and femoral cuts within ± 5° of the bone neutral mechanical axis and HKA within ± 3°. The purpose of this study is to verify the applicability of the proposed safe range algorithm on a large sample of individual scheduled for TKA. The preoperative tibial mechanical angle average 2.9 degrees in varus, femoral mechanical angle averaged 2.7 degrees in valgus and overall HKA averaged of 0.1 in varus. There were 2475 (51%) knees out of 4884, with femur and tibia mechanical axis within ±5° and HKA within ±3° without need for bony corrections. After applying the algorithm, a total of 4062 cases (83%) were successfully been evaluated using the proposed protocol to reach a safe range of HKA ±3° with minimal correction. The remaining 822 cases (17%) could not be managed by the proposed algorithm because of their unusual anatomies and were dealt with individually. In this study, we tested a proposed algorithm to perform kinematic alignment TKA avoiding preservation/restoration of some extreme anatomies that might not be suitable for TKA long-term survivorship. A total of 4062 cases (83%) were successfully eligible for our proposed safe range algorithm for kinematic TKA. In conclusion, kinematically aligned TKA may be a promising option to improve normal knee function restoration and patient satisfaction. Until we have valuable data confirming the compatibility of all patients' pre arthritic anatomies with TKA long-term survivorship, we believe that kinematically alignment should be performed within some limits. Further studies with Radiostereometry or longer follow up might help determine if all patients' anatomies are suitable for Kinematic TKA


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 48 - 48
1 Dec 2017
Verstraete M Arnout N De Baets P Vancouillie T Van Hoof T Victor J
Full Access

INTRODUCTION. To assess and compare the effect of new orthopedic surgical procedures, in vitro evaluation remains critical during the pre-clinical validation. Focusing on reconstruction surgery, the ability to restore normal kinematics and stability is thereby of primary importance. Therefore, several simulators have been developed to study the kinematics and create controlled boundary conditions. To simultaneously capture the kinematics in six degrees of freedom as outlined by Grood & Suntay, markers are often rigidly connected to the moving bone segments. The position of these markers can subsequently be tracked while their position relative to the bones is determined using computed tomography (CT) of the test specimen with the markers attached. Although this method serves as golden standard, it clearly lacks real-time feedback. Therefore, this paper presents the validation of a newly developed real-time framework to assess knee kinematics at the time of testing. MATERIALS & METHODS. A total of five cadaveric fresh frozen lower limb specimens have been used to quantitatively assess the difference between the golden standard, CT based, method and the newly developed real-time method. A schematic of the data flow for both methods. Prior to testing, both methods require a CT scan of the full lower limb. During the tests, the proximal femur and distal tibia are necessarily resected to fit the knees in the test setup, thus also removing the anatomical landmarks needed to evaluate their mechanical axis. Subsequently, a set of three passive markers are rigidly attached to the femur and tibia, referred to as M3F and M3T respectively. For the CT based method, the marker positions are captured during the tests and a second CT scan is eventually performed to link the marker positions to the knee anatomy. Using in-house developed software, this allowed to offline evaluate the knee kinematics in six degrees of freedom by combining both CT datasets with the tracked marker positions. For the newly developed real-time method, a calibration procedure is first performed. This calibration aims to link the position of the 3D reconstructed bone and landmarks with the attached markers. A set of bone surface points is therefore registered. These surface points are obtained by tracking the position of a pen while touching the bone surface. The pen's position is thereby tracked by three rigidly attached markers, denoted M3P. The position of the pen tip is subsequently calculated from the known pen geometry. The iterative closest point (ICP) algorithm is then used to match the 3D reconstructed bone to the registered surface points. Two types of 3D reconstructions have therefore been considered. First, the original reconstructions were used, obtained from the CT data. Second, a modified reconstruction was used. This modification accounted for the finite radius (r = 1.0 mm) of the registration pen, by shifting the surface nodes 1.0 mm along the direction of the outer surface normal. During the tests, the positions of the femur and tibia markers are tracked and streamed in real-time to an in-house developed, Matlab based software framework (MathWorks Inc., Natick, Massachussets, USA). This software framework simultaneously calculates the bone positions and knee kinematics in six degrees of freedom, displaying this information to the surgeons and operators. To assess the accuracy, all knee specimens have been subjected to passive flexion-extension movement ranging from 0 to 120 degrees of flexion. For each degree of freedom, the average root mean square (RMS) difference between both measurement methods has been evaluated during this movement. In addition, the distribution of the registered surface points has been assessed along the principal directions of the uniformly meshed 3D reconstructions (average mesh size of 1.0 mm). RESULTS. The root mean square difference between both measurements indicates a strong dependency on the variance of the registered points. This dependency is particularly pronounced when using the original 3D reconstructions in combination with the ICP algorithm, with an R. 2. = 0.76 and 0.85 for the translational and rotational degrees of freedom respectively. When using the modified 3D reconstructions, which compensates for the finite radius of the marker tip, this dependency becomes negligible (R. 2. = 0.10 and 0.05). Using this modified 3D reconstruction, the average difference between both measurements is also reduced to an average value of 1.20 degrees and 1.47 mm. DISCUSSION. The difference in kinematic parameters between both measurement techniques is an order of magnitude lower than the claimed accuracy of the motion tracking cameras. However, the difference is in line with the inter- and intra- observer variability when identifying bony landmarks around the knee. Since these landmarks are essential to calculate knee kinematics, it is understood that the proposed real-time system is sufficiently accurate to study these kinematics


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_12 | Pages 53 - 53
1 Jul 2014
Haas S
Full Access

Total knee arthroplasty has been shown to provide relief of pain and improved function; however studies have shown that younger active patients still note limitations in performing higher level activities such as dancing, golfing, skiing and gardening. Journey II BCS is designed to have physiological matching which more accurately reproduces the normal knee anatomy and kinematics. By providing more anatomic restoration of the articular geometry and substituting for both cruciate ligaments, Physiological Matching TKA has been shown, with in-vivo kinematic studies, to better reproduce the normal bending, rollback and rotational motions of knees. Patient matched instruments are patient specific custom designed cutting blocks. These instruments utilise pre-operative MRI and full leg x-rays to design guides that will position the knee in the desired mechanical alignment. The purpose of these instruments is to increase efficiency and accuracy, and possibly reduce cost. Efficiency occurs through the elimination of multiple steps compared to the standard operative technique. A single patient matched femoral guide is easily placed and can align the valgus angle with the mechanical axis, and determine the level of resection, rotation, size, and AP position of the implant. A single tibial instrument can determine tibial alignment, depth of resection, slope and rotation. Efficiency also results by eliminating the need for many standard instruments and trays. Implant size is determination pre-operatively so fewer implant trials are necessary. In summary, this Physiological Matching TKA surgery combines Journey II BCS with patient specific instruments to optimise kinematics, fit and efficiency in order to improve outcomes and patient satisfaction


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 99 - 99
1 Jan 2016
Verstraete M Van Der Straeten C Victor J
Full Access

To evaluate the impact of a knee prosthesis on the soft-tissue envelope or knee kinematics, cadaveric lower extremities are often mounted in a custom test rig, e.g. Oxford knee rig. Using such test rig, the knee is tested while performing a squatting motion. However, such motion is of limited daily-life relevance and clinical practices has shown that squatting commonly causes problems for knee patients. As a result, a new test rig was developed that allows a random, controlled movement of the ankle relative to the hip in the sagittal plane. Mounting the specimen in the test rig, restricts five degrees of freedom (DOF) at the hip; only the rotation in the sagittal plane is not restrained (Figure 1). On the other hand, at the ankle, only two degrees of freedom are restrained, namely the movement in the sagittal plane. The ankle has thus three rotational degrees of freedom, all rotation axis intersect in a single point: the center of the ankle. In addition, the out-of-plane translational movement of the ankle remains free. This is achieved by means of a linear bearing. The other translational degrees of freedom, in the sagittal plane, are controlled by two actuators. As a result, the knee has five degrees of freedom left; flexion-extension is controlled. This represents typical closed chain applications, such as cycling. In a first step, the knee kinematics have been evaluated under un-loaded conditions (no quadriceps or hamstring forces applied). To evaluate the knee kinematics, an infrared camera system (OptiTrack, NaturalPoint Inc, USA) is used. Therefore, three infrared markers are placed on the femur and tibia respectively. In addition, markers are placed on the test rig itself, to evaluate the accuracy of the applied motion. All markers are tracked using eight infrared cameras. At the ankle, a 2D circular motion with a radius of 100 mm was applied. Based on the 3D motion analysis, it was demonstrated that the control system has an accuracy of ± 0.5 mm. The evaluation of the knee kinematics in accordance to Grood and Suntay (J. of Biomechanical Engineering, 1983), additionally requires the evaluation of the knee anatomy. To that extent, the cadaveric specimen has been visualized using a CT scan, with the infrared markers in place. From these CT images, a 3D reconstruction has been created (Mimics, Materialise, Belgium). Subsequently, custom software has been developed that combines the CT data with the motion analysis data (Matlab, The MathWorks Inc., USA). As a result, knee motion is visualized in 3D (Figure 2.a) and clinical relevant kinematic parameters can be derived (Figure 2.b). In conclusion, the presented test rig and analysis framework is ready to evaluate more complex knee kinematics with reasonable accuracy and stability of the control loops. Future research will however primarily focus on the evaluation and validation of the impact of forces applied onto the specimen


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 32 - 32
1 May 2016
Carroll K Barlow B Mclawhorn A Esposito C Mayman D
Full Access

Introduction. Neutral mechanical alignment in TKA has been shown to be an important consideration for survivorship, wear, and aseptic loosening. However, native knee anatomy is described by a joint line in 3° of varus, 2–3° of mechanical distal femoral valgus, and 2–3° of proximal tibia varus. Described kinematic planning methods replicate native joint alignment in extension without changing tibiofemoral alignment, but do not account for native alignment through a range of motion. An asymmetric TKA femoral component with a thicker medial femoral condyle and posterior condylar internal rotation paired with an asymmetric polyethylene insert aligns the joint line in 3° of varus while maintaining distal femoral and proximal tibial cuts perpendicular to mechanical axis. The asymmetric components recreate an anatomic varus joint line while avoiding tibiofemoral malalignment or femoral component internal rotation, a risk factor for patellofemoral maltracking. The study seeks to determine how many patients would be candidates for a kinematically planned knee without violating the principle of a neutral mechanical axis (0° ± 3°). Methods. A cohort comprised of 55 consecutive preoperative THA patients with asymptomatic knees and 55 consecutive preoperative primary unilateral TKA patients underwent simultaneous biplanar radiographic imaging. Full length coronal images from the thoracolumbar junction to the ankles were measured by two independent observers for the following: mechanical tibiofemoral angle (mTFA), mechanical lateral distal femoral angle (mLDFA), and mechanical medial proximal tibial angle (mMPTA). Patients who met the following conditions: mTFA 0°±3°; mLDFA 87°±3°; and mMPTA 87°±3°, were considered candidates for TKA with an asymmetric implant that would achieve a kinematic joint line and neutral mechanical axis. Similarly, patients with the following conditions: mTFA 0°±3°; mLDFA 90°±3°; and mMPTA 90°±3°, were considered candidates for TKA with a symmetric implant that would achieve a kinematic joint line and neutral mechanical axis. Results. In this cohort of 110 patients, the mean mTFA was 1° varus ± 5°, the mean mLDFA was 87° ± 3°, mMPTA 87°± 2°. The comparison of patients meeting each of the three conditions required for a TKA with a neutral mechanical axis and a kinematic joint line are outlined in Table 1. Conclusion. A TKA with kinematic 3° varus joint line and neutral mechanical axis was possible in 52% of patients using an asymmetric implant and 23% of patients using a symmetric implant. Previous descriptions of kinematic planning using standard TKA components required compromise of neutral mechanical axis alignment with detrimental effects on overall survivorship. Knee arthroplasty using an asymmetric implant may achieve the best of both worlds, neutral mechanical axis and a kinematic joint line, in a large percentage of patients


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 25 - 25
1 Sep 2012
Prud'homme-Foster M Louati H Parai M Dervin G
Full Access

Purpose. Unicompartmental knee replacement (UKR) is an established, bone preserving surgical treatment option for medial compartment osteoarthritis (OA). Early revision rates appear consistently higher than those of total knee replacement (TKR) in many case series and consistently in national registry data. Failure with progression of OA in the lateral compartment has been attributed, in part, to surgical technical errors. In this study we used navigation assisted surgery to investigate the effects of improper sizing of the mobile bearing and malrotation of the tibial component on alignment and lateral compartment loading. Method. A total of eight fresh frozen cadaveric lower limbs were used in the study. After thawing overnight, a Brainlab navigation system with an Oxford (Biomet, Inc) medial UKR module was used to capture the native knee anatomy and alignment using a digitizing probe. Following registration, the case was performed with navigation verified neutral cuts and an ideal insert size was selected to serve as a baseline. The bearing thickness was subsequently increased by 2 mm increments to simulate progressive medial joint overstuffing. Excessive tibial internal rotation of 12 was also simulated at each of the intervals. Knee alignment in varus or valgus was recorded in real time for each surgical scenario with the knee in full extension and at 20 of flexion. Lateral compartment peak pressure was measured using a Tekscan pressure map. Results. Incremental overstuffing of the medial compartment with inserts of increasing thickness resulted in a progressive shift to more valgus knee alignment. Internally rotated sagittal cuts at 12 resulted in a further valgus shift for a given insert size. The valgus shift was detectable at full extension however it was more pronounced at 20 of flexion. Conclusion. The intentional technical errors of overstuffing and malrotation in UKR produced coronal valgus knee alignment and a greater load shift to the lateral compartment. These errors can be construed to contribute to the higher early failure rates associated with UKR when compared to TKR. Special care should be taken to ensure a neutral sagittal tibia cut and appropriate bearing selection. The Intra operative verification of knee alignment should be conducted at 20 of flexion where such errors will be easier for the surgeon to detect and rectify


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 66 - 66
1 Oct 2012
Belvedere C Ensini A De La Barrera JM Feliciangeli A Leardini A Catani F
Full Access

During total knee replacement (TKR), surgical navigation systems (SNS) allow accurate prosthesis component implantation by tracking the tibio-femoral joint (TFJ) kinematics in the original articulation at the beginning of the operation, after relevant trial components implantation, and, ultimately, after final component implantation and cementation. It is known that TKR also alters normal patello-femoral joint (PFJ) kinematics resulting frequently in PFJ disorders and TKR failure. More importantly, patellar tracking in case of resurfacing is further affected by patellar bone preparation and relevant component positioning. The traditional technique used to perform patellar resurfacing, even in navigated TKR, is based only on visual inspection of the patellar articular aspect for clamping patellar cutting jig and on a simple calliper to check for patellar thickness before and after bone cut, and, thus, without any computer assistance. Even though the inclusion in in-vivo navigated TKR of a procedure for supporting also patellar resurfacing based on patient-specific bone morphology seems fundamental, this have been completely disregarded till now, whose efficacy being assessed only in-vitro. This procedure has been developed, together with relevant software and surgical instrumentation, as an extension of current SNS, i.e. TKR is navigated, at the same time measuring the effects of every surgical action on PFJ kinematics. The aim of this study was to report on the first in-vivo experiences during TKR with patellar resurfacing. Four patients affected by primary gonarthrosis were implanted with a fixed bearing posterior-stabilised prosthesis (NRG, Stryker®-Orthopaedics, Mahwah, NJ-USA) with patellar resurfacing. All TKR were performed by means of two SNS (Stryker®-Leibinger, Freiburg, Germany) with the standard femoral/tibial trackers, the pointer, and a specially-designed patellar tracker. The novel procedure for patellar tracking was approved by the local ethical committee; the patients gave informed consent prior the surgery. This procedure implies the use of a second system, i.e. the patellar SNS (PSNS), with dedicated software for supporting patellar resurfacing and relative data processing/storing, in addition to the traditional knee SNS (KSNS). TFJ anatomical survey and kinematics data are shared between the two. Before surgery, both systems were initialised and the patellar tracker was assembled with a sterile procedure by shaping a metal grid mounted with three markers to be tracked by PSNS only. The additional patellar-resection-plane and patellar-cut-verification probes were instrumented with a standard tracker and a relevant reference frame was defined on these by digitisation with PSNS. Afterwards, the procedures for standard navigation were performed to calculate preoperative joint deformities and TFJ kinematics. The anatomical survey was performed also with PSNS, with relevant patellar anatomical reference frame definition and PFJ kinematics assessment according to a recent proposal. Standard procedures for femoral and tibial component implantation, and TFJ kinematics assessment were then performed by using relevant trial components. Afterwards, the procedure for patellar resection begun. Once the surgeon had arranged and fixed the patellar cutting jig at the desired position, the patellar-resection-plane probe was inserted into the slot for the saw blade. With this in place, the PSNS captured tracker data to calculate the planned level of patellar bone cut and the patellar cut orientation. Then the cut was executed, and the accuracy of this actual bone cut was assessed by means of the patellar-cut-verification probe. The trial patellar component was positioned, and, with all three trial components in place, TFJ and PFJ kinematics were assessed. Possible adjustments in component positioning could still be performed, until both kinematics were satisfactory. Finally, final components were implanted and cemented, and final TFJ and PFJ kinematics were acquired. A sterile calliper and pre- and post-implantation lower limb X-rays were used to check for the patellar thickness and final lower limb alignment. The novel surgical technique was performed successfully in all four cases without complication, resulting in 30 min longer TKR. The final lower limb alignment was within 0.5°, the resurfaced patella was 0.4±1.3 mm thinner than in the native, the patellar cut was 1.5°±3.0° laterally tilted. PFJ kinematics was taken within the reference normality. The patella implantation parameters were confirmed also by X-ray inspection; discrepancies in thickness up to 5 mm were observed between SNS- and calliper-based measurements. At the present experimental phase, a second separate PSNS was utilised not to affect the standard navigated TKR. The results reported support relevance, feasibility and efficacy of patellar tracking and PFJ kinematics assessment in in-vivo navigated TKR. The encouraging in-vivo results may lay ground for the design of a future clinical patella navigation system the surgeon could use to perform a more comprehensive assessment of the original whole knee anatomy and kinematics, i.e. including also PFJ. Patellar bone preparation would be supported for suitable patellar component positioning in case of resurfacing but, conceptually, also in not resurfacing if patellar anatomy and tracking assessment by SNS reveals no abnormality. After suitable adjustment and further tests, in the future if this procedure will be routinely applied during navigated TKR, abnormalities at both TFJ and PFJ can be corrected intra-operatively by more cautious bone cut preparation on the femur, tibia and also patella, in case of resurfacing, and by correct prosthetic component positioning


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 79 - 79
1 Jan 2016
Jenny J Diesinger Y
Full Access

Objectives. An optimal reconstruction of the joint anatomy and physiology during revision total knee replacement (RTKR) is technically demanding. The standard navigation systems were developed for primary procedures, and their adaptation to RTKR is difficult. We present a new navigation software dedicated to RTKR. The rationale of this new software was to allow a virtual planning of the joint reconstruction just after removal of the primary prosthesis. Methods. The new software was developed on the basis of a non-image based navigation system which has been extensively validated for implantation of a primary TKR. Following changes have been implemented: 1) to define and control the vertical level of the joint space on both tibia and femoral side; 2) to measure the tibio-femoral gaps independently in flexion et en extension on both medial and lateral tibio-femoral joints; 3) to virtually plan and control the vertical level and the orientation of the tibia component; 4) to virtually plan and control the sizing and the 3D positioning of the femoral component (figure 1); 5) to virtually plan and control the potential bone resection; 6) to virtually plan and control the potential bone defects and their reconstruction (bone graft or augments) (figure 2); 7) to virtually plan and control the size, the length and the orientation of the stems extensions independently on the femoral and on the tibia side (figure 3). The validity of the concept has been tested by 20 patients operated on for RTKR for any reason, with a routine reconstruction with a cemented, unconstrained revision implant. The accuracy of the experimental software was assessed 1) during the procedure after implantation of the RTKR by measuring the medial and lateral laxity in full extension and 90° of knee flexion with the navigation system, and 2) on post-operative radiographs. Results. No system failure was observed. The virtual planning of the reconstruction was possible in all cases. The intra-operative control of the different reconstruction steps was possible in all cases. The mean coronal tibio-femoral angle was 0+3°, and no outlier was observed. Coronal and sagittal orientation of the prosthetic components was considered satisfactory in all directions for 16 cases. The desired vertical level of the joint space was achieved in all cases. The desired patella height was achieved in 15 cases. The measurement of the knee laxity was satisfactory in 16 cases. A good bone-prosthesis contact was achieved in 17 cases for the tibia, but it was not possible to analyze accurately this criterion for the femur. Conclusion. The software used in the current study allowed performing a straightforward reconstruction of the knee joint anatomy and physiology during RTKR. The virtual planning prevented to perform repetitive trials with different technical solutions which are often necessary during conventional RTKR. The operating time may be consequently decreased