Advertisement for orthosearch.org.uk
Results 1 - 16 of 16
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 32 - 32
1 Apr 2017
Kabariti R Whitehouse M
Full Access

Background. Recent studies have suggested that full-limb radiographs are more accurate and sensitive than short film radiographs for pre-operative measurement of the anatomical angles required to achieve optimal knee alignment in Total Knee Arthroplasty (TKA). However, there are drawbacks associated with their use including excess radiation to the pelvic organs, the need for specialised radiography equipment and increased cost. Given these drawbacks, we compared the use of MRI scans, a commonly performed pre-operative investigation, with short film knee radiographs for measurement of knee alignment. Objective. To investigate whether knee alignment measurements made on MRI scans correlate with those measured on short film knee radiographs in patients with osteoarthritic knees. Methods. We retrospectively reviewed short film knee radiographs and MRI scans of 50 patients with knee osteoarthritis. The plain radiographs had to be performed whilst weight bearing. The MRI scans were performed supine and non-weight bearing. The exclusion criteria included previous trauma to the knee, previous TKA and previous fracture of the lower limb. 4 angle measurements defined by The American Knee Society: alpha, beta, sigma and gamma were measured using each of the 2 modalities. Kolmogorov-Smirnov and two- tailed paired t-tests were used for statistical analysis of the results. Pearson correlation coefficient was used for the measure of dependence. Results. The alpha, beta, sigma and gamma angles obtained using the MR images were different to those obtained using short film weight bearing knee radiographs by −3°± 1° (p < 0.001), 1° ± 3° (p=0.002), 1° ± 3° (p=0.047) and 1° ± 4° (p=0.113) respectively. There was a weak correlation between the MRI based method and the radiographic method in measuring all 4 angles. Conclusions. Our results have shown that the angular measurements performed on MR images should be interpreted with caution as they may vary depending on the MRI slice selected for evaluation. The differences observed and the weak correlation between the 2 modalities may be due to the different scopes used for determining the femoral or tibial axes. The measurements obtained using the plain radiographs were interpreted using a single 2D projection of a 3D structure. However, the measurements of the MR images were evaluated using a 2D image of a slice through a 3D structure. In conclusion, the use of MRI scans for pre-operative planning in TKA may not be advisable at this stage as the angular measurements obtained using the MR images were poorly correlated to those obtained using plain radiographs


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_30 | Pages 42 - 42
1 Aug 2013
Winter A Ferguson K Holt G
Full Access

The aim of this study is to assess the discrepancy between weight bearing long leg radiographs and supine MRI alignment. There is currently increasing interest in the use of MRI to assess knee alignment and develop custom made cutting blocks utilising this data. However in almost all units MRI scans are performed supine and it is recognised that knee alignment can alter with weight bearing. 46 patients underwent MRI scans as pre-operative planning for Biomet signature total knee replacement and the measure of varus or valgus deformity on MRI was obtained from the plan produced by Biomet Signature software system. 41 of these patients had long leg weight bearing radiographs performed. 37 of these radiographs were amenable to measuring the knee alignment on the picture archiving and communication system (PACS). These measurements were performed by two assessors and inter-observer reliability was satisfactory. There was a significant difference between the alignment as measured on supine MRI compared with weight bearing long leg films. In knee arthroplasty one of the aims is to correct the biomechanical axis of the knee and one of the appeals of custom made cutting blocks is that this can be achieved more easily. However it is important to realise that alignment is not a static value and thus correcting supine alignment may not necessarily result in correction of weight bearing alignment


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 60 - 60
4 Apr 2023
MacLeod A Mandalia V Mathews J Toms A Gill H
Full Access

High tibial osteotomy (HTO) is an effective surgical treatment for isolated medial compartment knee osteoarthritis; however, widespread adoption is limited due to difficulty in achieving the planned correction, and patient dissatisfaction due to soft tissue irritation. A new HTO system – Tailored Osteotomy Knee Alignment (TOKA®, 3D Metal Printing Ltd, Bath, UK) could potentially address these barriers having a custom titanium plate and titanium surgical guides featuring a unique mechanism for precise osteotomy opening as well as saw cutting and drilling guides. The aim of this study was to assess the accuracy of this novel HTO system using cadaveric specimens; a preclinical testing stage ahead of first-in-human surgery according to the ‘IDEAL-D’ framework for device innovation. Local ethics committee approval was obtained. The novel opening wedge HTO procedure was performed on eight cadaver leg specimens. Whole lower limb CT scans pre- and post-operatively provided geometrical assessment quantifying the discrepancy between pre-planned and post-operative measurements for key variables: the gap opening angle and the patient specific surgical instrumentation positioning and rotation - assessed using the implanted plate. The average discrepancy between the pre-operative plan and the post-operative osteotomy correction angle was: 0.0 ± 0.2°. The R2 value for the regression correlation was 0.95. The average error in implant positioning was −0.4 ± 4.3 mm, −2.6 ± 3.4 mm and 3.1 ± 1.7° vertically, horizontally, and rotationally respectively. This novel HTO surgery has greater accuracy and smaller variability in correction angle achieved compared to that reported for conventional or other patient specific methods with published data available. This system could potentially improve the accuracy and reliability of osteotomy correction angles achieved surgically


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 25 - 25
14 Nov 2024
Taylan O Louwagie T Bialy M Peersman G Scheys L
Full Access

Introduction. This study aimed to evaluate the effectiveness of a novel intraoperative navigation platform for total knee arthroplasty (TKA) in restoring native knee joint kinematics and strains in the medial collateral ligament (MCL) and lateral collateral ligament (LCL) during squatting motions. Method. Six cadaver lower limbs underwent computed tomography scans to design patient-specific guides. Using these scans, bony landmarks and virtual single-line collateral ligaments were identified to provide intraoperative real-time feedback, aided in bone resection, implant alignment, tibiofemoral kinematics, and collateral ligament elongations, using the navigation platform. The specimens were subjected to squatting (35°-100°) motions on a physiological ex vivo knee simulator, maintaining a constant 110N vertical ankle load regulated by active quadriceps and bilateral hamstring actuators. Subsequently, each knee underwent a medially-stabilized TKA using the mechanical alignment technique, followed by a retest under the same conditions used preoperatively. Using a dedicated wand, MCL and LCL insertions—anterior, middle, and posterior bundles—were identified in relation to bone-pin markers. The knee kinematics and collateral ligament strains were analyzed from 3D marker trajectories captured by a six-camera optical system. Result. Both native and TKA conditions demonstrated similar patterns in tibial valgus orientation (Root Mean Square Error (RMSE=1.7°), patellar flexion (RMSE=1.2°), abduction (RMSE=0.5°), and rotation (RMSE=0.4°) during squatting (p>0.13). However, a significant difference was found in tibial internal rotation between 35° and 61° (p<0.045, RMSE=3.3°). MCL strains in anterior (RMSE=1.5%), middle (RMSE=0.8%), and posterior (RMSE=0.8%) bundles closely matched in both conditions, showing no statistical differences (p>0.05). Conversely, LCL strain across all bundles (RMSE<4.6%) exhibited significant differences from mid to deep flexion (p<0.048). Conclusion. The novel intraoperative navigation platform not only aims to achieve planned knee alignment but also assists in restoring native knee kinematics and collateral ligament behavior through real-time feedback. Acknowledgment. This study was funded by Medacta International (Castel San Pietro, Switzerland)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 113 - 113
2 Jan 2024
García-Rey E Gómez-Barrena E
Full Access

Pelvic bone defect in patients with severe congenital dysplasia of the hip (CDH) lead to abnormalities in lumbar spine and lower limb alignment that can determine total hip arthroplasty (THA) patients' outcome. These variables may be different in uni- or bilateral CDH. We compared the clinical outcome and the spinopelvic and lower limb radiological changes over time in patients undergoing THA due to uni- or bilateral CHD at a minimum follow-up of five years. Sixty-four patients (77 hips) undergoing THA due to severe CDH between 2006 and 2015 were analyzed: Group 1 consisted of 51 patients with unilateral CDH, and group 2, 113 patients (26 hips) with bilateral CDH. There were 32 females in group 1 and 18 in group 2 (p=0.6). The mean age was 41.6 years in group 1 and 53.6 in group 2 (p<0.001). We compared the hip, spine and knee clinical outcomes. The radiological analysis included the postoperative hip reconstruction, and the evolution of the coronal and sagittal spinopelvic parameters assessing the pelvic obliquity (PO) and the sacro-femoro-pubic (SFP) angles, and the knee mechanical axis evaluating the tibio-femoral angle (TFA). At latest follow-up, the mean Harris Hip Score was 88.6 in group 1 and 90.7 in group 2 (p=0.025). Postoperative leg length discrepancy of more than 5 mm was more frequent in group 1 (p=0.028). Postoperative lumbar back pain was reported in 23.4% of the cases and knee pain in 20.8%, however, there were no differences between groups. One supracondylar femoral osteotomy and one total knee arthroplasty were required. The radiological reconstruction of the hip was similar in both groups. The PO angle improved more in group 1 (p=0.01) from the preoperative to 6-weeks postoperative and was constant at 5 years. The SFP angle improved in both groups but there were no differences between groups (p=0.5). 30 patients in group 1 showed a TFA less than 10º and 17 in group 2 (p=0.7). Although the clinical outcome was better in terms of hip function in patients with bilateral CDH than those with unilateral CDH, the improvement in low back and knee pain was similar. Patients with unilateral dysplasia showed a better correction of the PO after THA. All spinopelvic and knee alignment parameters were corrected and maintained over time in most cases five years after THA


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 17 - 17
1 Nov 2021
Sosio C Sirtori P Ciliberto R Lombardo MDM Mangiavini L Peretti G
Full Access

Introduction and Objective. Kinematic Alignment (KA) is a surgical technique that restores the native knee alignment following Total Knee Arthroplasty (TKA). The association of this technique with a medial pivot implant design (MP) attempts to reestablish the physiological kinematics of the knee. Aim of this study is to analyze the clinical and radiological outcomes of patients undergoing MP-TKA with kinematic alignment, and to assess the effect of the limb alignment and the orientation of the tibial component on the clinical outcomes. Materials and Methods. We retrospectively analyzed 63 patients who underwent kinematic aligned medial pivot TKA from September 2018 to January 2020. Patient-Related Outcomes (PROMs) and radiological measures were collected at baseline, 3 months and 12 months after surgery. Results. We demonstrated a significant improvement in the clinical and functional outcomes starting from 3 months after surgery. This finding was also confirmed at the longest follow-up. The clinical improvement was independent from the limb alignment and from the orientation of the tibial component. The radiological analysis showed that the patient's native limb alignment was restored, and that the joint line orientation maintained the parallelism to the floor when standing. This latter result has a particular relevance, as it may positively influence the outcomes, reducing the risk of wear and mobilization of the implant. Conclusions. The association of kinematic alignment and a medial pivot TKA implant allows for a fast recovery, good clinical and functional outcomes, independently from the final limb alignment and the tibial component orientation


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 52 - 52
1 Dec 2021
Wang J Hall T Musbahi O Jones G van Arkel R
Full Access

Abstract. Objectives. Knee alignment affects both the development and surgical treatment of knee osteoarthritis. Automating femorotibial angle (FTA) and hip-knee-ankle angle (HKA) measurement from radiographs could improve reliability and save time. Further, if the gold-standard HKA from full-limb radiographs could be accurately predicted from knee-only radiographs then the need for more expensive equipment and radiation exposure could be reduced. The aim of this research is to assess if deep learning methods can predict FTA and HKA angle from posteroanterior (PA) knee radiographs. Methods. Convolutional neural networks with densely connected final layers were trained to analyse PA knee radiographs from the Osteoarthritis Initiative (OAI) database with corresponding angle measurements. The FTA dataset with 6149 radiographs and HKA dataset with 2351 radiographs were split into training, validation and test datasets in a 70:15:15 ratio. Separate models were learnt for the prediction of FTA and HKA, which were trained using mean squared error as a loss function. Heat maps were used to identify the anatomical features within each image that most contributed to the predicted angles. Results. FTA could be predicted with errors less than 3° for 99.8% of images, and less than 1° for 89.5%. HKA prediction was less accurate than FTA but still high: 95.7% within 3°, and 68.0 % within 1°. Heat maps for both models were generally concentrated on the knee anatomy and could prove a valuable tool for assessing prediction reliability in clinical application. Conclusions. Deep learning techniques could enable fast, reliable and accurate predictions of both FTA and HKA from plain knee radiographs. This could lead to cost savings for healthcare providers and reduced radiation exposure for patients


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 19 - 19
11 Apr 2023
Wyatt F Al-Dadah O
Full Access

Unicompartmental knee arthroplasty (UKA) and high tibial osteotomy (HTO) are well-established operative interventions in the treatment of knee osteoarthritis (KOA). However, which of these interventions is more beneficial, to patients with KOA, is not known and remains a topic of much debate. Aims: (i) To determine whether UKA or HTO is more beneficial in the treatment of isolated medial compartment KOA, via an assessment of patient-reported outcome measures (PROMs). (ii) To investigate the relationship between PROMs and radiographic parameters of knee joint orientation/alignment. This longitudinal observational study assessed a total of 42 patients that had undergone UKA (n=23) or HTO (n=19) to treat isolated medial compartment KOA. The PROMs assessed, pre-operatively and 1-year post-operatively, consisted of the: self-administered comorbidity questionnaire; short form-12; oxford knee score; knee injury and osteoarthritis outcome score; and the EQ-5D-5L. The radiographic parameters of knee joint alignment/orientation assessed, pre-operatively and 8-weeks post-operatively, included the: hip-knee-ankle angle; mechanical axis deviation; and the angle of the Mikulicz line. Statistical analysis demonstrated an overall significant (p<0.001), pre-operative to post-operative, improvement in the PROM scores of both groups. There were no significant differences in the post-operative PROM scores of the UKA and HTO group. Correlation analyses revealed that pre-operatively, a more distolaterally angled Mikulicz line was associated with worse knee function (p<0.05) and overall health (p<0.05); a relationship that, until now, has not been investigated nor commented upon within the literature. UKAs and HTOs are both efficacious operations that provide a comparable degree of clinical benefit to patients with isolated medial compartment KOA. To further the scientific/medical community's understanding of the factors that impact upon health-outcomes in KOA, future research should seek to investigate the mechanism underlying the relationship, between Mikulicz line and PROMs, observed within the current study


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 22 - 22
1 Nov 2021
Belvedere C Leardini A Gill R Ruggeri M Fabbro GD Grassi A Durante S Zaffagnini S
Full Access

Introduction and Objective. Medial Knee Osteoarthritis (MKO) is associated with abnormal knee varism, this resulting in altered locomotion and abnormal loading at tibio-femoral condylar contacts. To prevent end-stage MKO, medial compartment decompression is selectively considered and, when required, executed via High Tibial Osteotomy (HTO). This is expected to restore normal knee alignment, load distribution and locomotion. In biomechanics, HTO efficacy may be investigated by a thorough analysis of the ground reaction forces (GRF), whose orientation with respect to patient-specific knee morphology should reflect knee misalignment. Although multi-instrumental assessments are feasible, a customized combination of medical imaging and gait analysis (GA), including GRF data, rarely is considered. The aim of this study was to report an original methodology merging Computed-Tomography (CT) with GA and GFR data in order to depict a realistic patient-specific representation of the knee loading status during motion before and after HTO. Materials and Methods. 25 MKO-affected patients were selected for HTO. All patients received pre-operative clinical scoring, and radiological/instrumental assessments; so far, these were also executed post-operatively at 6-month follow-up on 7 of these patients. State-of-the-art GA was performed during walking and more demanding motor tasks, like squatting, stair-climbing/descending, and chair-rising/sitting. An 8-camera motion capture system, combined with wireless electromyography, and force platforms for GRF tracking, was used together with an own established protocol. This marker-set was enlarged with 4 additional skin-based non-collinear markers, attached around the tibial-plateau rim. While still wearing these markers, all analyzed patients received full lower-limb X-ray in standing posture a CT scan of the knee in weight-bearing Subsequently, relevant DICOMs were segmented to reconstruct the morphological models of the proximal tibia and the additional reference markers, for a robust anatomical reference frame to be defined on the tibia. These marker trajectories during motion were then registered to the corresponding from CT-based 3D reconstruction. Relevant registration matrices then were used to report GRF data on the reconstructed tibial model. Intersection paths of GRF vectors with respect to the tibial-plateau plane were calculated, together with their centroids. Results. Pre-operative clinical and radiological scoring confirmed MKO and associated abnormal varism. The morphological characterization of GRF was successfully achieved pre- and post- HTO on patient-specific tibial plateau. Pre-operative GFR patterns and peaks, including those related to knee joint moments, were observed medially on the knee, as expected. In post-HTO, these resulted lateralized and much closer to the tibial plateau spine, as desired. In detail, when post- is compared to pre-op, the difference of the centroids were, on average, 54.6±18.1 mm (min÷max: 36.7÷72.8 mm) more lateral during walking and 52.5±28.5 mm (24.7÷87.6 mm) during stair climbing. When reported in % of the tibial plateau width, these values became 69.2±20.1 (46.1÷81.4) and 78.1±30.1 (43.4÷98.0), respectively. Post-op also clinical scores and GA revealed a considerable overall improvement, especially in functional performances. Conclusions. The reported novel approach allows a combination of motion data, including GFR, and tibial-plateau morphology. Relevant pre- and post-operative routine application offer a quantification of the effect of the original deformity and executed joint realignment, and an assistance for surgical planning in case of HTO as well as ideally in other orthopedic treatments


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVIII | Pages 39 - 39
1 Jun 2012
Clarke J Deakin A Picard F Riches P
Full Access

Knee alignment is a fundamental measurement in the assessment, monitoring and surgical management of patients with OA. In spite of extensive research into the consequences of malalignment, there is a lack of data regarding the potential variation between supine and standing (functional) conditions. The purpose of this study was to explore this relationship in asymptomatic, osteoarthritic and prosthetic knees. Our hypothesis was that the change in alignment of these three groups would be different. Infrared position capture was used to assess knee alignment for 30 asymptomatic controls and 31 patients with OA, before and after TKA. Coronal and sagittal mechanical femorotibial (MFT) angles in extension (negative values varus/hyperextension) were measured supine and in bi-pedal stance and changes analysed using a paired t-test. To quantify this change in 3D, vector plots of ankle centre displacement relative to the knee centre were produced. Alignment in both planes changed significantly from supine to standing for all three groups, most frequently towards relative varus and extension. In the coronal plane, the mean±SD(°) of the supine/standing MFT angles was 0.1±2.5/−1.1±3.7 for asymptomatic (p=0.001), −2.5±5.7/−3.6±6.0 for osteoarthritic (p=0.009) and −0.7±1.4/ −2.5±2.0 for prosthetic knees (p<0.001). In the sagittal plane, the mean±SD(°) of the supine/standing MFT angles was −1.7±3.3/−5.5±4.9 for asymptomatic (p<0.001), 7.7±7.1/1.8±7.7 for osteoarthritic (p<0.001) and 6.8±5.1/1.4±7.6 for prosthetic knees (p<0.001). The vector plots showed that the trend of relative varus and extension in stance was similar in overall magnitude and direction between the groups. The similarities between each group did not support our hypothesis. The consistent kinematic pattern for different knee types suggests that soft tissue restraints rather than underlying joint deformity may be more influential in dynamic control of alignment from lying to standing. This potential change should be considered when positioning TKA components on supine limbs as post-operative functional alignment may be different


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 78 - 78
1 Jan 2017
Yasuda T Konishi H Morita Y Miyazaki Y Hayashi M Yamawaki Y Yoshimoto K Sueyoshi T Ota S Fujita S Onishi E Iwaki K Yamamoto H
Full Access

Medial meniscus tear has been proposed as a potential etiology of spontaneous osteonecrosis of the knee (SONK). Disruption of collagen fibers within the meniscus causes meniscal extrusion, which results in alteration in load distribution in the knee. A recent study has demonstrated high incidence of medial meniscus extrusion in the knee with SONK. Our purpose was to determine whether the extent of medial meniscus extrusion correlates with the severity of SONK in the medial femoral condyle. Anteroposterior and lateral knee radiographs were taken with the patients standing. Limb alignment was expressed as the femorotibial angle (FTA) obtained from the anteroposterior radiograph. The stage of progression of SONK was determined according to the radiological classification system described by Koshino. After measurement of anteroposterior, mediolateral, and superoinferior dimensions of the hypointense T1 signal intensity lesion of MRI, its ellipsoid volume was calculated with the three dimensions. Meniscal pathology (degeneration, tear, and extrusion) were also evaluated by MRI. Of the 18 knees with SONK, we found 5 knees at the radiological stage 2 lesions, 9 knees at the stage 3, and 4 knees at the stage 4. Whereas the ellipsoid volume of SONK lesion significantly increased with the stage progression, the volume was significantly greater at stage 4 than stage 2 or 3. All the 18 knees with SONK in the present study showed substantial extrusion (> 3mm) and degeneration of the medial meniscus. While medial meniscal extrusion increased with the stage progression, medial meniscus was significantly extruded at stage 3 or 4 compared with stage 2. A significant increase in FTA was found with the stage progression. FTA was significantly greater at stage 4 than stage 2 or 3. Multiple linear regression analysis revealed that medial meniscus extrusion and FTA were useful predictors of the volume of SONK lesion. This study has clearly shown a significant correlation between the extent of medial meniscus extrusion and the stage and volume of SONK lesion. Degeneration and tears of the medial meniscus in combination with extrusion may result in loss of hoop stress distribution in the medial compartment, which could increase the load in the medial femoral condyle. In addition to meniscal pathology, knee alignment can influence load distribution in the medial compartment biomechanically. Multiple linear regression analysis indicates that an increase in FTA concomitant with a greater extrusion of medial meniscus could result in greater lesion and advanced radiological stage of SONK. Taken together, alteration in compressive force transmission through the medial compartment by meniscus extrusion and varus alignment could develop subchondral insufficiency fractures in the medial femoral condyle, which is considered to be one of the main contributing factors to SONK development. There was high association of medial meniscus extrusion and FTA with the radiological stage and volume of SONK lesion. Increased loading in the medial femoral condyle with greater extrusion of medial meniscus and varus alignment may contribute to expansion and secondary osteoarthritic changes of SONK lesion


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 113 - 113
1 Jan 2017
Iranpour F
Full Access

Constitutional knee varus increases the risk of medial OA disease due to increase in the knee adduction moment and shifting of the mechanical axis medially. Hueter-Volkmann’s law states that the amount of load experienced by the growth plate during development influences the bone morphology. For this reason, heightened sports activity during growth is associated with constitutional varus due to added knee adduction moment. In early OA, X-rays often show a flattened medial femoral condyle extension facet (EF). However, it is unknown whether this is a result of osteoarthritic wear, creep deformation over decades of use, or an outcome of Hueter-Volkmann’s law during development. A larger and flattened medial EF can bear more weight, due to increased load distribution. However, a flattened EF may also extrude the meniscus, leading meniscus degeneration and joint failure. Therefore, this study aimed to investigate whether varus knees have flattened medial EFs of both femur and tibia in a cohort of patients with no signs yet of bony attrition. Segmentation and morphology analysis was conducted using Materialise software (version 8.0, Materialise Inc., Belgium). This study excluded knees with bony attrition of the EFs based on Ahlbäck criteria, intraoperative findings, and operation notes history. Standard reference frames were used for both the femur and tibia to ensure reliable and repeatable measurements. The hip-knee-angle (HKA) angle defined varus or valgus knee alignment. Femur: The femoral EFs and flexion facets (FFs) had best-fit spheres fitted with 6 repetitions. Tibia: The slopes of the antero-medial medial tibial plateau were approximated using lines. Results 72 knees met the inclusion and exclusion criteria. The average age was 59 ± 11 years. The youngest was 31 and the oldest 84 years. Thirty-three were male and 39 were female. There was good intra- and inter-observer reliability for EF sphere fitting. Femur: The results demonstrated that the medial femoral condyle EF is flattened in knees with constitutional varus, as measured by the Sphere Ratios between the medial and lateral EF (varus versus straight: p = 0.006), and in the scaled values for the medial EF sphere radius (varus versus straight: p = 0.005). There was a statistically significant, moderate and positive correlation between the medial femoral EF radius, and the medial femoral EF-FF AP offset. Tibia: There was a statistically significant difference between the steepness of the slopes of the medial tibial plateau EF in varus and valgus knees, suggesting varus knees have a less concave (flatter) medial EF. Conclusions In comparison to straight knees, varus knees have flattened medial EFs in both femur and tibia. As this was the case in knees with no evidence of bony attrition, this could mean flattened medial EFs may be a result of medial physis inhibition during development, due to Hueter-Volkmann’s law. Flattened medial EFs may increase load distribution in the medial compartment, but could also be a potential aetiology in primary knee OA due to over extrusion of the medial meniscus and edge loading


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_3 | Pages 6 - 6
1 Apr 2015
Hatab S Tanagho A Ansara S
Full Access

The patella is an important component of the extensor mechanism of the knee. Patellar fractures need to be fixed if displacement occurs more than 2 mm. Transverse fractures comprise the largest category. Several different techniques for internal fixation have been employed. The aim of this work was to evaluate the results of treatment of transverse patellar fractures with figure of eight wiring through cannulated screws. Twenty patients were included in the study, all suffering from displaced transverse patellar fractures. All were treated by open reduction and internal fixation with figure of eight tension band wire through 4.0 mm cannulated screws. All patients were assessed after 1 month, 3 months and 6 months according to a modified Hospital for special surgery (HSS) knee scoring system. Because varus and valgus knee alignment and stability are not affected by patellar fracture fixation, the ten points assigned to these functions are eliminated, making the highest score ninety points. Excellent results are considered with points from 75 to 90, good from 60 to 74, fair from 50 to 59 and poor with points below 50. The final results of the study showed fourteen patients (70%) had excellent results, five (25%) good result, one (5%) fair result and no patient had a poor result. There was a statistically significant improvement of the patients' score throughout the follow up period. The complications occurred included knee pain in one patient (5%), loss of terminal flexion of knee occurred in three patients (15%), one patient lost 30 degrees, another lost 20 degrees while the last lost 10 degrees. There were no cases with extension lag in this series. Treatment of patellar fractures using figure of eight wiring through cannulated screws is an easy technique which gives good stability leading to good results with a low complication rate


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 12 - 12
1 Apr 2018
Trieb K Senck S
Full Access

Due to the increasing life expectancy the incidence of gonarthrosis, the degeneration of articular cartilage and bone in the knee joint, is increasing worldwide. Although the success rate of knee arthroplasties is high, complications like the loosening of the implant necessitate subsequent treatments. Moreover, the morphology and microstructure of the knee joint varies considerably between patients, therefore the anatomical expertise of orthopedic surgeons is essential. In this analysis we therefore investigate the variation and micro-architectural alterations in subchondral bone in osteoarthritis (OA) patients undergoing a knee replacement surgery. We investigate OA bone degenerations using clinical X-rays and micro-computed tomography (micro-CT). Tibial bone samples are collected from 100 patients undergoing a total knee arthroplasty at the Klinikum Wels-Grieskirchen. Images are obtained using an industrial micro-CT scanner RayScan 250E. Microstructural parameters include bone volume fraction and cortical thickness of the subcondral bone and are obtained from micro-CT images with isometric voxel sizes of 50 µm. Using micro-CT, we show a high morphological variation in relation to cortical thickness, both within the respective condyle as well as between the medial and lateral condyle. Cortical thickness seems to correlate with cartilage thickness and knee joint alignment. The results are incorporated into a gonarthrosis database that integrates microstructural parameters via a combined analysis of X-ray and micro-CT data. This database aims to facilitate the assessment of osteoarthritis, i.e. in relation to cartilage degeneration, in future patients on the basis of the investigated patient collective


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 82 - 82
1 Apr 2017
Palmer J Palmer A Jones L Jackson W Glyn-Jones S Price A
Full Access

Background. Since 2011, the knee service at the Nuffield Orthopaedic Centre has been offering a neutralising medial opening wedge high tibial osteotomy (HTO) to a group of patients presenting with early medial osteoarthritis of the knee, varus alignment and symptoms for more than 2 years. During development of this practice an association was observed between this phenotype of osteoarthritis and the presence of CAM deformity at the hip. Methods. A retrospective cohort study. All patients who underwent HTO since 2011 were identified (n=30). Comparator groups were used in order to establish whether meaningful observations were being made: Control group: The spouses of a high-risk osteoarthritis cohort recruited for a different study at our unit (n=20) Pre-arthroplasty group: Patients who have undergone uni-compartmental arthroplasty (UKA) for antero-medial osteoarthritis (n=20)All patients had standing bilateral full-length radiographs available for analysis using in house developed Matlab-based software for hip measurements and MediCAD for lower limb alignment measurements. Results. A total of 140 limbs from 70 gender-matched subjects were studied. The HTO group had a significantly higher prevalence of CAM lesions defined by an Alpha angle >650. They also had a significantly greater mean alpha angle than both the pre-arthroplasty and control groups [HTO (Avg. 68.3 (±16.1)) vs Pre-arthroplasty (Avg. 59.5 (±15.5)) P=0.01; HTO vs Control (Avg. 58.2 (±13.9)) P=0.007]. Conclusions. The results of this study confirm that our HTO group have a significantly greater prevalence of CAM lesions. A feature not seen in either pre-arthroplasty or control subjects. This group demonstrate independent predictors for progression of OA in both the hip and the knee. To our knowledge this is a novel observation. Level of evidence. Observational cohort study (III)


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 141 - 141
1 Jul 2014
Meijer M Boerboom A Stevens M Bulstra S Reininga I
Full Access

Summary. The EOS stereography system has been developed for the evaluation of prosthetic alignment. This new low-dose device provides reliable 2D/3D measurements of knee prosthesis alignment. Introduction. Achieving optimal prosthetic alignment during Total Knee Arthroplasty (TKA) is an essential part of the surgical procedure since malpositioning can lead to early loosening of the prosthesis and eventually revision surgery. Conventional weight-bearing radiographs are part of the usual clinical follow-up after both primary TKA and revision TKA (rTKA), to assess alignment in the coronal and sagittal planes. However, proportions and angles may not be correct on radiographs since divergence exists in the vertical and horizontal planes. Furthermore estimating the exact planes by looking at the position of the patella depends on rotation in the hip joint and this may be misinterpreted by the investigator. A computed tomography (CT) scanogram can also be used. However, due to high levels of radiation and costs it is not routinely used. To this end, a new device, the EOS stereography system, has been developed. With this biplanar low-dose X-ray technique, orthogonally made 2D images and 3D reconstructions can be obtained. Advantages of EOS are that images of the leg are obtained on a 1:1 scale with an amount of radiation 800–1000 times lower than CT-scans and 10 times lower than conventional radiographs. Another advantage is that the 3D reconstructions lead to determination of the real coronal and sagittal planes. However, the software for creating 3D reconstructions is developed for the lower limbs without knee prosthesis material. Consequently a reliability study concerning the generation of 2D images and 3D reconstructions of a leg containing a knee prosthesis has not been performed yet. Therefore objective of this study was to investigate interobserver and intraobserver reliability of knee prosthetic alignment measurements after rTKA using EOS. Patients and Methods. Forty anteroposterior and lateral images of 37 rTKA patients were included. Two observers independently performed measurements on these images twice. Measured angles were varus/valgus angle in 2D (VV2D) and 3D (VV3D). Intraclass correlation coefficients (ICCs) were used to determine relative reliability and the Bland and Altman method was used to determine absolute reliability. T-tests were used to test potential differences between the two observers, first and second measurement sessions and 2D and 3D measurements. Results. Relative interobserver reliability was excellent for both VV2D and VV3D with ICCs > 0.95, and no significant differences between the two observers. For the absolute reliability of VV2D, a bias of −0.16° (95%CI: −0.31–0.01) existed between both observers. Absolute reliability of VV3D was good. Relative intraobserver reliability was excellent for both VV2D and VV3D with ICCs > 0.97. No significant difference and no bias between the first and second measurements were found. A significant difference existed between the angles measured in 2D and 3D (p=0.01). Discussion / Conclusion. The EOS low-dose stereography system provides reliable varus/valgus measurements in 2D and 3D for the alignment of the knee joint with a knee prosthesis. However, significant differences exist between the varus/valgus measurements in 2D and in 3D. Therefore, a validation study is suggested to investigate the difference between the 2D measurements and 3D reconstructions and to find a possible explanation for this difference